- Improve flag pruning heuristic
- Set all trace activity flags in slow code. This in turns enables us
to remove checking the slow flag on the fast path.
Firstly, we always use a byte array for fine grained activity flags
instead of a bit vector (we used to use a byte array only if we had
parallel mtasks). The byte vector can be set more cheaply in eval,
closing about 1/3 of the gap in performance between compiling with
or without --trace on SweRV EH1. The speed of tracing itself is not
measurably different.
Secondly, we prune the activity tracking such that if a set of activity
flag combinations only guard a small number of signals, we will turn
those signals into awayls traced signals. This avoids code which
sometimes tests dozens of activity flags just to subsequently check one
signal and dump it if it's value changed. We can just check the signal
state straight instead, and not bother with the flags. This removes
about 30% of activity flags in SweRV EH1, and makes both single threaded
VCD and FST tracing 8-9% faster.
The main goal of this patch is to enable splitting the full and
incremental tracing functions into multiple functions, which can then be
run in parallel at a later stage. It also simplifies further
experimentation as all of the interesting trace code construction now
happens in V3Trace. No functional change is intended by this patch, but
there are some implementation changes in the generated code.
Highlights:
- Pass symbol table directly to trace callbacks for simplicity.
- A new traceRegister function is generated which adds each trace
function as an individual callback, which means we can have multiple
callbacks for each trace function type.
- A new traceCleanup function is generated which clears the activity
flags, as the trace callbacks might be implemented as multiple functions.
- Re-worked sub-function handling so there is no separate sub-function
for each trace activity class. Sub-functions are generate when required
by splitting.
- traceFull/traceChg are now created in V3Trace rather than V3TraceDecl,
this requires carrying the trace value tree in TraceDecl until it
reaches V3Trace where the TraceInc nodes are created (previously a
TraceInc was also created in V3TraceDecl which carries the value).