This allows compiling the run-time library with optimization even when OPT_FAST is not used in order to imporove model build speed, possibly during debug cycles.
This adds the flag --generate-waivefile <filename>. This will generate
a verilator config file with the proper lint_off statemens to turn off
warnings emitted during this particular run.
This feature can be used to start with using Verilator as linter and
systematically capture all known lint warning for further
elimination. It hopefully helps people turning of -Wno-fatal or
-Wno-lint and gradually improve their code base.
Signed-off-by: Stefan Wallentowitz <stefan.wallentowitz@hm.edu>
--output-split is now on by default with value 20000.
--output-split-cfuncs and --output-split-ctrace now defaults to the
value of --output-split unless explicitly specified.
Instead of __ALLfast.cpp and __ALLslow.cpp, we now create only a single
__ALL.cpp and compile it with OPT_FAST, this speeds up small builds
where the C compiler does not dominate. A separate patch will follow
turning VM_PARALLEL_BUILDS on by default at a certain size.
Given this change to the build there is now no point in emitting both
fast and slow routines into the same .cpp file when --output-split is
not set as they will be just included in the same __ALL.cpp file. To
keep things simpler and the output easier to comprehend, V3EmitC has
also been changed to always emit the fast and slow files separately.
Also change verilated.mk to apply OPT_SLOW to all slow files, not just
ones called *__Slow.cpp. This change in particular ensures __Syms.cpp
is build as slow.
Part of #2360.
- Issue an error when --build is used together with --make
- When given --build, always use GNU Make to perform the build
- Update documentation (examples were good as they were)
- Remove the broken t_flag_build_cmake test
Fixes#2280
The --trace-threads option can now be used to perform tracing on a
thread separate from the main thread when using VCD tracing (with
--trace-threads 1). For FST tracing --trace-threads can be 1 or 2, and
--trace-fst --trace-threads 1 is the same a what --trace-fst-threads
used to be (which is now deprecated).
Performance numbers on SweRV EH1 CoreMark, clang 6.0.0, Intel i7-3770 @
3.40GHz, IO to ramdisk, with numactl set to schedule threads on different
physical cores. Relative speedup:
--trace -> --trace --trace-threads 1 +22%
--trace-fst -> --trace-fst --trace-threads 1 +38% (as --trace-fst-thread)
--trace-fst -> --trace-fst --trace-threads 2 +93%
Speed relative to --trace with no threaded tracing:
--trace 1.00 x
--trace --trace-threads 1 0.82 x
--trace-fst 1.79 x
--trace-fst --trace-threads 1 1.23 x
--trace-fst --trace-threads 2 0.87 x
This means FST tracing with 2 extra threads is now faster than single
threaded VCD tracing, and is on par with threaded VCD tracing. You do
pay for it in total compute though as --trace-fst --trace-threads 2 uses
about 240% CPU vs 150% for --trace-fst --trace-threads 1, and 155% for
--trace --trace threads 1. Still for interactive use it should be
helpful with large designs.