In V3Active, we try hard to turn `always @(a or b or c)` into an
`always_comb` if the only variables read in the block are also in the
sensitivity list. In addition, also allow this optimization when reading
variables that are not in the sensitivity list, but are known to be
constant/never changing after initialization. In particular lookup
tables introduced by V3Table are covered by this. This can have a
significant impact on designs that use the `always @(a or b or c)` style
for combinational logic.
- Rename `--dump-treei` option to `--dumpi-tree`, which itself is now a
special case of `--dumpi-<tag>` where tag can be a magic word, or a
filename
- Control dumping via static `dump*()` functions, analogous to `debug()`
- Make dumping independent of the value of `debug()` (so dumping always
works even without the debug flag)
- Add separate `--dumpi-graph` for dumping V3Graphs, which is again a
special case of `--dumpi-<tag>`
- Alias `--dump-<tag>` to `--dumpi-<tag> 3` as before
Introduce the @astgen directives parsed by astgen, currently used for
the generation child node (operand) accessors. Please see the updated
internal documentation for details.
Introduce the @astgen directives parsed by astgen, currently used for
the generation child node (operand) accessors. Please see the updated
internal documentation for details.
Adds timing support to Verilator. It makes it possible to use delays,
event controls within processes (not just at the start), wait
statements, and forks.
Building a design with those constructs requires a compiler that
supports C++20 coroutines (GCC 10, Clang 5).
The basic idea is to have processes and tasks with delays/event controls
implemented as C++20 coroutines. This allows us to suspend and resume
them at any time.
There are five main runtime classes responsible for managing suspended
coroutines:
* `VlCoroutineHandle`, a wrapper over C++20's `std::coroutine_handle`
with move semantics and automatic cleanup.
* `VlDelayScheduler`, for coroutines suspended by delays. It resumes
them at a proper simulation time.
* `VlTriggerScheduler`, for coroutines suspended by event controls. It
resumes them if its corresponding trigger was set.
* `VlForkSync`, used for syncing `fork..join` and `fork..join_any`
blocks.
* `VlCoroutine`, the return type of all verilated coroutines. It allows
for suspending a stack of coroutines (normally, C++ coroutines are
stackless).
There is a new visitor in `V3Timing.cpp` which:
* scales delays according to the timescale,
* simplifies intra-assignment timing controls and net delays into
regular timing controls and assignments,
* simplifies wait statements into loops with event controls,
* marks processes and tasks with timing controls in them as
suspendable,
* creates delay, trigger scheduler, and fork sync variables,
* transforms timing controls and fork joins into C++ awaits
There are new functions in `V3SchedTiming.cpp` (used by `V3Sched.cpp`)
that integrate static scheduling with timing. This involves providing
external domains for variables, so that the necessary combinational
logic gets triggered after coroutine resumption, as well as statements
that need to be injected into the design eval function to perform this
resumption at the correct time.
There is also a function that transforms forked processes into separate
functions.
See the comments in `verilated_timing.h`, `verilated_timing.cpp`,
`V3Timing.cpp`, and `V3SchedTiming.cpp`, as well as the internals
documentation for more details.
Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>
This is a major re-design of the way code is scheduled in Verilator,
with the goal of properly supporting the Active and NBA regions of the
SystemVerilog scheduling model, as defined in IEEE 1800-2017 chapter 4.
With this change, all internally generated clocks should simulate
correctly, and there should be no more need for the `clock_enable` and
`clocker` attributes for correctness in the absence of Verilator
generated library models (`--lib-create`).
Details of the new scheduling model and algorithm are provided in
docs/internals.rst.
Implements #3278
Some cases of warnings about the use of blocking and non-blocking
assignments in combinational vs sequential processes were suppressed in
a way that is inconsistent with the *actual* current execution model of
Verilator. Turning these back on to, well, warn the user that these might
cause unexpected results. V5 will clean these up, but until then err on
the side of caution.
Fixes#864.
Static variable initializers run before initial blocks, so use an
explicitly different procedure type for them. This also enables us to
now raise errors for assignments to const variables in initial blocks.
Introduce VNRef that can be used to wrap AstNode keys in STL
collections, resulting in equality comparisons rather than identity
comparisons. This can then replace the SenTreeSet data-structure.
Fail at compile time if the result of these macros can be statically
determined (i.e.: they aways succeed or always fail). Remove unnecessary
casts discovered. No functional change.