verilator/src/V3Active.cpp
Geza Lore 599d23697d
IEEE compliant scheduler (#3384)
This is a major re-design of the way code is scheduled in Verilator,
with the goal of properly supporting the Active and NBA regions of the
SystemVerilog scheduling model, as defined in IEEE 1800-2017 chapter 4.

With this change, all internally generated clocks should simulate
correctly, and there should be no more need for the `clock_enable` and
`clocker` attributes for correctness in the absence of Verilator
generated library models (`--lib-create`).

Details of the new scheduling model and algorithm are provided in
docs/internals.rst.

Implements #3278
2022-05-15 16:03:32 +01:00

597 lines
24 KiB
C++

// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
// DESCRIPTION: Verilator: Break always into sensitivity active domains
//
// Code available from: https://verilator.org
//
//*************************************************************************
//
// Copyright 2003-2022 by Wilson Snyder. This program is free software; you
// can redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//*************************************************************************
// V3Active's Transformations:
//
// Note this can be called multiple times.
// Create a IACTIVE(initial), SACTIVE(combo)
// ALWAYS: Remove any-edges from sense list
// If no POS/NEG in senselist, Fold into SACTIVE(combo)
// Else fold into SACTIVE(sequent).
// OPTIMIZE: When support async clocks, fold into that active if possible
// INITIAL: Move into IACTIVE
// WIRE: Move into SACTIVE(combo)
//
//*************************************************************************
#include "config_build.h"
#include "verilatedos.h"
#include "V3Global.h"
#include "V3Active.h"
#include "V3Ast.h"
#include "V3Const.h"
#include "V3Graph.h"
#include <unordered_map>
//***** See below for main transformation engine
//######################################################################
// Extend V3GraphVertex class for use in latch detection graph
class LatchDetectGraphVertex final : public V3GraphVertex {
public:
enum VertexType : uint8_t { VT_BLOCK, VT_BRANCH, VT_OUTPUT };
private:
const string m_name; // Only used for .dot file generation
const VertexType m_type; // Vertex type (BLOCK/BRANCH/OUTPUT)
string typestr() const { // "
switch (m_type) {
case VT_BLOCK: return "(||)"; // basic block node
case VT_BRANCH: return "(&&)"; // if/else branch mode
case VT_OUTPUT: return "(out)"; // var assignment
default: return "??"; // unknown
}
}
public:
LatchDetectGraphVertex(V3Graph* graphp, const string& name, VertexType type = VT_BLOCK)
: V3GraphVertex{graphp}
, m_name{name}
, m_type{type} {}
virtual string name() const override { return m_name + " " + typestr(); }
virtual string dotColor() const override { return user() ? "green" : "black"; }
virtual int type() const { return m_type; }
};
//######################################################################
// Extend V3Graph class for use as a latch detection graph
class LatchDetectGraph final : public V3Graph {
protected:
LatchDetectGraphVertex* m_curVertexp; // Current latch detection graph vertex
std::vector<AstVarRef*> m_outputs; // Vector of lvalues encountered on this pass
VL_DEBUG_FUNC; // Declare debug()
static LatchDetectGraphVertex* castVertexp(void* vertexp) {
return reinterpret_cast<LatchDetectGraphVertex*>(vertexp);
}
// Recursively traverse the graph to determine whether every control 'BLOCK' has an assignment
// to the output we are currently analysing (the output whose 'user() is set), if so return
// true. Where a BLOCK contains a BRANCH, both the if and else sides of the branch must return
// true for the BRANCH to evalute to true. A BLOCK however needs only a single one of its
// siblings to evaluate true in order to evaluate true itself. On output vertex only evaluates
// true if it is the vertex we are analyzing on this check
bool latchCheckInternal(LatchDetectGraphVertex* vertexp) {
bool result = false;
switch (vertexp->type()) {
case LatchDetectGraphVertex::VT_OUTPUT: // Base case
result = vertexp->user();
break;
case LatchDetectGraphVertex::VT_BLOCK: // (OR of potentially many siblings)
for (V3GraphEdge* edgep = vertexp->outBeginp(); edgep; edgep = edgep->outNextp()) {
if (latchCheckInternal(castVertexp(edgep->top()))) {
result = true;
break;
}
}
break;
case LatchDetectGraphVertex::VT_BRANCH: // (AND of both sibling)
// A BRANCH vertex always has exactly 2 siblings
LatchDetectGraphVertex* const ifp = castVertexp(vertexp->outBeginp()->top());
LatchDetectGraphVertex* const elsp
= castVertexp(vertexp->outBeginp()->outNextp()->top());
result = latchCheckInternal(ifp) && latchCheckInternal(elsp);
break;
}
vertexp->user(result);
return result;
}
public:
LatchDetectGraph() { clear(); }
virtual ~LatchDetectGraph() override { clear(); }
// ACCESSORS
LatchDetectGraphVertex* currentp() { return m_curVertexp; }
void currentp(LatchDetectGraphVertex* vertex) { m_curVertexp = vertex; }
// METHODS
void begin() {
// Start a new if/else tracking graph
// See NODE STATE comment in ActiveLatchCheckVisitor
AstNode::user1ClearTree();
m_curVertexp = new LatchDetectGraphVertex(this, "ROOT");
}
// Clear out userp field of referenced outputs on destruction
// (occurs at the end of each combinational always block)
void clear() {
m_outputs.clear();
// Calling base class clear will unlink & delete all edges & vertices
V3Graph::clear();
m_curVertexp = nullptr;
}
// Add a new control path and connect it to its parent
LatchDetectGraphVertex* addPathVertex(LatchDetectGraphVertex* parent, const string& name,
bool branch = false) {
m_curVertexp = new LatchDetectGraphVertex{this, name,
branch ? LatchDetectGraphVertex::VT_BRANCH
: LatchDetectGraphVertex::VT_BLOCK};
new V3GraphEdge{this, parent, m_curVertexp, 1};
return m_curVertexp;
}
// Add a new output variable vertex and store a pointer to it in the user1 field of the
// variables AstNode
LatchDetectGraphVertex* addOutputVertex(AstVarRef* nodep) {
LatchDetectGraphVertex* const outVertexp
= new LatchDetectGraphVertex{this, nodep->name(), LatchDetectGraphVertex::VT_OUTPUT};
nodep->varp()->user1p(outVertexp);
m_outputs.push_back(nodep);
return outVertexp;
}
// Connect an output assignment to its parent control block
void addAssignment(AstVarRef* nodep) {
LatchDetectGraphVertex* outVertexp;
if (!nodep->varp()->user1p()) { // Not seen this output before
outVertexp = addOutputVertex(nodep);
} else {
outVertexp = castVertexp(nodep->varp()->user1p());
}
new V3GraphEdge(this, m_curVertexp, outVertexp, 1);
}
// Run latchCheckInternal on each variable assigned by the always block to see if all control
// paths make an assignment. Detected latches are flagged in the variables AstVar
void latchCheck(AstNode* nodep, bool latch_expected) {
bool latch_detected = false;
for (const auto& vrp : m_outputs) {
LatchDetectGraphVertex* const vertp = castVertexp(vrp->varp()->user1p());
vertp->user(true); // Identify the output vertex we are checking paths _to_
if (!latchCheckInternal(castVertexp(verticesBeginp()))) latch_detected = true;
if (latch_detected && !latch_expected) {
nodep->v3warn(
LATCH,
"Latch inferred for signal "
<< vrp->prettyNameQ()
<< " (not all control paths of combinational always assign a value)\n"
<< nodep->warnMore()
<< "... Suggest use of always_latch for intentional latches");
if (debug() >= 9) dumpDotFilePrefixed("latch_" + vrp->name());
}
vertp->user(false); // Clear again (see above)
vrp->varp()->isLatched(latch_detected);
}
// Should _all_ variables assigned in always_latch be latches? Probably, but this only
// warns if none of them are
if (latch_expected && !latch_detected)
nodep->v3warn(NOLATCH, "No latches detected in always_latch block");
}
};
//######################################################################
// Collect existing active names
class ActiveBaseVisitor VL_NOT_FINAL : public VNVisitor {
protected:
VL_DEBUG_FUNC; // Declare debug()
};
class ActiveNamer final : public ActiveBaseVisitor {
private:
// STATE
AstScope* m_scopep = nullptr; // Current scope to add statement to
AstActive* m_sActivep = nullptr; // For current scope, the Static active we're building
AstActive* m_iActivep = nullptr; // For current scope, the Initial active we're building
AstActive* m_fActivep = nullptr; // For current scope, the Final active we're building
AstActive* m_cActivep = nullptr; // For current scope, the Combo active we're building
// Map from AstSenTree (equivalence) to the corresponding AstActive created.
std::unordered_map<VNRef<AstSenTree>, AstActive*> m_activeMap;
// METHODS
void addActive(AstActive* nodep) {
UASSERT_OBJ(m_scopep, nodep, "nullptr scope");
m_scopep->addActivep(nodep);
}
// VISITORS
virtual void visit(AstScope* nodep) override {
m_scopep = nodep;
m_sActivep = nullptr;
m_iActivep = nullptr;
m_fActivep = nullptr;
m_cActivep = nullptr;
m_activeMap.clear();
iterateChildren(nodep);
// Don't clear scopep, the namer persists beyond this visit
}
virtual void visit(AstSenTree* nodep) override {
// Simplify sensitivity list
VL_DO_DANGLING(V3Const::constifyExpensiveEdit(nodep), nodep);
}
//--------------------
virtual void visit(AstNodeStmt*) override {} // Accelerate
virtual void visit(AstNode* nodep) override { iterateChildren(nodep); }
// Specialized below for the special sensitivity classes
template <typename SenItemKind> AstActive*& getSpecialActive();
public:
// METHODS
AstScope* scopep() { return m_scopep; }
// Return an AstActive sensitive to the given special sensitivity class
template <typename SenItemKind> AstActive* getSpecialActive(FileLine* fl) {
AstActive*& cachep = getSpecialActive<SenItemKind>();
if (!cachep) {
AstSenTree* const senTreep = new AstSenTree{fl, new AstSenItem{fl, SenItemKind{}}};
cachep = new AstActive{fl, "", senTreep};
cachep->sensesStorep(cachep->sensesp());
addActive(cachep);
}
return cachep;
}
// Return an AstActive that is sensitive to a SenTree equivalent to the given sentreep.
AstActive* getActive(FileLine* fl, AstSenTree* sensesp) {
UASSERT(sensesp, "Must be non-null");
auto it = m_activeMap.find(*sensesp);
// If found matching AstActive, return it
if (it != m_activeMap.end()) return it->second;
// No such AstActive yet, creat it, and add to map.
AstSenTree* const newsenp = sensesp->cloneTree(false);
AstActive* const activep = new AstActive(fl, "sequent", newsenp);
activep->sensesStorep(activep->sensesp());
addActive(activep);
m_activeMap.emplace(*newsenp, activep);
return activep;
}
// CONSTRUCTORS
ActiveNamer() = default;
virtual ~ActiveNamer() override = default;
void main(AstScope* nodep) { iterate(nodep); }
};
template <> AstActive*& ActiveNamer::getSpecialActive<AstSenItem::Static>() { return m_sActivep; }
template <> AstActive*& ActiveNamer::getSpecialActive<AstSenItem::Initial>() { return m_iActivep; }
template <> AstActive*& ActiveNamer::getSpecialActive<AstSenItem::Final>() { return m_fActivep; }
template <> AstActive*& ActiveNamer::getSpecialActive<AstSenItem::Combo>() { return m_cActivep; }
//######################################################################
// Latch checking visitor
class ActiveLatchCheckVisitor final : public ActiveBaseVisitor {
private:
// NODE STATE
// Input:
// AstVar::user1p // V2LatchGraphVertex* The vertex handling this node
const VNUser1InUse m_inuser1;
// STATE
LatchDetectGraph m_graph; // Graph used to detect latches in combo always
// VISITORS
virtual void visit(AstVarRef* nodep) {
const AstVar* const varp = nodep->varp();
if (nodep->access().isWriteOrRW() && varp->isSignal() && !varp->isUsedLoopIdx()) {
m_graph.addAssignment(nodep);
}
}
virtual void visit(AstNodeIf* nodep) {
if (!nodep->isBoundsCheck()) {
LatchDetectGraphVertex* const parentp = m_graph.currentp();
LatchDetectGraphVertex* const branchp = m_graph.addPathVertex(parentp, "BRANCH", true);
m_graph.addPathVertex(branchp, "IF");
iterateAndNextNull(nodep->ifsp());
m_graph.addPathVertex(branchp, "ELSE");
iterateAndNextNull(nodep->elsesp());
m_graph.currentp(parentp);
}
}
//--------------------
virtual void visit(AstNode* nodep) { iterateChildren(nodep); }
public:
// CONSTRUCTORS
ActiveLatchCheckVisitor(AstNode* nodep, bool expectLatch) {
m_graph.begin();
iterate(nodep);
m_graph.latchCheck(nodep, expectLatch);
}
virtual ~ActiveLatchCheckVisitor() = default;
};
//######################################################################
// Replace unsupported non-blocking assignments with blocking assignments
class ActiveDlyVisitor final : public ActiveBaseVisitor {
public:
enum CheckType : uint8_t { CT_SEQ, CT_COMB, CT_INITIAL };
private:
// MEMBERS
const CheckType m_check; // Process type we are checking
// VISITORS
virtual void visit(AstAssignDly* nodep) override {
// Non-blocking assignments are OK in sequential processes
if (m_check == CT_SEQ) return;
// Issue appropriate warning
if (m_check == CT_INITIAL) {
nodep->v3warn(INITIALDLY,
"Non-blocking assignment '<=' in initial/final block\n"
<< nodep->warnMore()
<< "... This will be executed as a blocking assignment '='!");
} else {
nodep->v3warn(COMBDLY,
"Non-blocking assignment '<=' in combinational logic process\n"
<< nodep->warnMore()
<< "... This will be executed as a blocking assignment '='!");
}
// Convert to blocking assignment
nodep->replaceWith(new AstAssign{nodep->fileline(), //
nodep->lhsp()->unlinkFrBack(), //
nodep->rhsp()->unlinkFrBack()});
VL_DO_DANGLING(nodep->deleteTree(), nodep);
}
virtual void visit(AstAssign* nodep) override {
// Blocking assignments are always OK in combinational (and initial/final) processes
if (m_check != CT_SEQ) return;
const bool ignore = nodep->lhsp()->forall<AstVarRef>([&](const AstVarRef* refp) {
// Ignore reads (e.g.: index expressions)
if (refp->access().isReadOnly()) return true;
const AstVar* const varp = refp->varp();
// Ignore ...
return varp->isUsedLoopIdx() // ... loop indices
|| varp->isTemp() // ... temporaries
|| varp->fileline()->warnIsOff(V3ErrorCode::BLKSEQ); // ... user said so
});
if (ignore) return;
nodep->v3warn(BLKSEQ,
"Blocking assignment '=' in sequential logic process\n"
<< nodep->warnMore() //
<< "... Suggest using delayed assignment '<='");
}
//--------------------
virtual void visit(AstNode* nodep) override { iterateChildren(nodep); }
public:
// CONSTRUCTORS
ActiveDlyVisitor(AstNode* nodep, CheckType check)
: m_check{check} {
iterate(nodep);
}
virtual ~ActiveDlyVisitor() override = default;
};
//######################################################################
// Active class functions
class ActiveVisitor final : public ActiveBaseVisitor {
private:
// NODE STATE
// Each call to V3Const::constify
// AstVarScope::user1() bool: This VarScope is referenced in the sensitivity list
// AstVarScope::user2() bool: This VarScope is written in the current process
// AstNode::user4() Used by V3Const::constify, called below
// STATE
ActiveNamer m_namer; // Tracking of active names
bool m_clockedProcess = false; // Whether current process is a clocked process
bool m_allChanged = false; // Whether all SenItem in the SenTree are ET_CHANGED
bool m_walkingBody = false; // Walking body of a process
bool m_canBeComb = false; // Whether current clocked process can be turned into a comb process
// METHODS
template <typename T> void moveUnderSpecial(AstNode* nodep) {
AstActive* const wantactivep = m_namer.getSpecialActive<T>(nodep->fileline());
nodep->unlinkFrBack();
wantactivep->addStmtsp(nodep);
}
void visitAlways(AstNode* nodep, AstSenTree* oldsensesp, VAlwaysKwd kwd) {
// Move always to appropriate ACTIVE based on its sense list
if (oldsensesp && oldsensesp->sensesp() && oldsensesp->sensesp()->isNever()) {
// Never executing. Kill it.
UASSERT_OBJ(!oldsensesp->sensesp()->nextp(), nodep,
"Never senitem should be alone, else the never should be eliminated.");
VL_DO_DANGLING(nodep->unlinkFrBack()->deleteTree(), nodep);
return;
}
{
const VNUser1InUse user1InUse;
// Walk sensitivity list
m_clockedProcess = false;
m_allChanged = true;
if (oldsensesp) {
oldsensesp->unlinkFrBack();
iterateChildrenConst(oldsensesp);
}
// If all SenItems are ET_CHANGE, then walk the body to determine if this process
// could be turned into a combinational process instead.
if (m_allChanged) {
const VNUser2InUse user2InUse;
m_walkingBody = true;
m_canBeComb = true;
iterateChildrenConst(nodep);
m_walkingBody = false;
if (m_canBeComb) m_clockedProcess = false;
}
}
AstActive* const wantactivep
= m_clockedProcess ? m_namer.getActive(nodep->fileline(), oldsensesp)
: m_namer.getSpecialActive<AstSenItem::Combo>(nodep->fileline());
// Delete sensitivity list
if (oldsensesp) VL_DO_DANGLING(oldsensesp->deleteTree(), oldsensesp);
// Move node to new active
nodep->unlinkFrBack();
wantactivep->addStmtsp(nodep);
// Warn and convert any delayed assignments
ActiveDlyVisitor{nodep,
m_clockedProcess ? ActiveDlyVisitor::CT_SEQ : ActiveDlyVisitor::CT_COMB};
// check combinational processes for latches
if (!m_clockedProcess || kwd == VAlwaysKwd::ALWAYS_LATCH) {
const ActiveLatchCheckVisitor latchvisitor{nodep, kwd == VAlwaysKwd::ALWAYS_LATCH};
}
}
// VISITORS
virtual void visit(AstScope* nodep) override {
m_namer.main(nodep); // Clear last scope's names, and collect this scope's existing names
iterateChildren(nodep);
}
virtual void visit(AstActive* nodep) override {
// Actives are being formed, so we can ignore any already made
}
virtual void visit(AstInitialStatic* nodep) override {
moveUnderSpecial<AstSenItem::Static>(nodep);
}
virtual void visit(AstInitial* nodep) override {
const ActiveDlyVisitor dlyvisitor{nodep, ActiveDlyVisitor::CT_INITIAL};
moveUnderSpecial<AstSenItem::Initial>(nodep);
}
virtual void visit(AstFinal* nodep) override {
const ActiveDlyVisitor dlyvisitor{nodep, ActiveDlyVisitor::CT_INITIAL};
moveUnderSpecial<AstSenItem::Final>(nodep);
}
virtual void visit(AstAssignAlias* nodep) override {
moveUnderSpecial<AstSenItem::Combo>(nodep);
}
virtual void visit(AstCoverToggle* nodep) override {
moveUnderSpecial<AstSenItem::Combo>(nodep);
}
virtual void visit(AstAssignW* nodep) override {
visitAlways(nodep, nullptr, VAlwaysKwd::ALWAYS_COMB);
}
virtual void visit(AstAlways* nodep) override {
if (!nodep->bodysp()) { // Empty always. Remove it now.
VL_DO_DANGLING(nodep->unlinkFrBack()->deleteTree(), nodep);
return;
}
visitAlways(nodep, nodep->sensesp(), nodep->keyword());
}
virtual void visit(AstAlwaysPostponed* nodep) override {
if (!nodep->bodysp()) { // Empty always. Remove it now.
VL_DO_DANGLING(nodep->unlinkFrBack()->deleteTree(), nodep);
return;
}
visitAlways(nodep, nullptr, VAlwaysKwd::ALWAYS);
}
virtual void visit(AstAlwaysPublic* nodep) override {
visitAlways(nodep, nodep->sensesp(), VAlwaysKwd::ALWAYS);
}
virtual void visit(AstSenItem* nodep) override {
UASSERT_OBJ(!m_walkingBody, nodep, "Should not reach here when walking body");
if (!nodep->sensp()) return; // Ignore sequential items (e.g.: initial, comb, etc.)
m_clockedProcess = true;
if (nodep->edgeType() != VEdgeType::ET_CHANGED) m_allChanged = false;
if (nodep->varrefp()) {
if (const AstBasicDType* const basicp = nodep->varrefp()->dtypep()->basicp()) {
if (basicp->isEvent()) nodep->edgeType(VEdgeType::ET_EVENT);
}
}
nodep->sensp()->foreach<AstVarRef>([](const AstVarRef* refp) {
refp->varp()->usedClock(true);
refp->varScopep()->user1(true);
});
}
virtual void visit(AstVarRef* nodep) override {
AstVarScope* const vscp = nodep->varScopep();
if (nodep->access().isWriteOnly()) {
vscp->user2(true);
} else {
// If the variable is read before it is written, and is not in the sensitivity list,
// then this cannot be optimized into a combinational process
// TODO: live variable analysis would be more precise
if (!vscp->user2() && !vscp->user1()) m_canBeComb = false;
}
}
virtual void visit(AstAssignDly* nodep) override {
m_canBeComb = false;
iterateChildrenConst(nodep);
}
virtual void visit(AstFireEvent* nodep) override {
m_canBeComb = false;
iterateChildrenConst(nodep);
}
virtual void visit(AstAssignForce* nodep) override {
m_canBeComb = false;
iterateChildrenConst(nodep);
}
virtual void visit(AstRelease* nodep) override {
m_canBeComb = false;
iterateChildrenConst(nodep);
}
//--------------------
virtual void visit(AstVar*) override {} // Accelerate
virtual void visit(AstVarScope*) override {} // Accelerate
virtual void visit(AstNode* nodep) override {
if (m_walkingBody && !m_canBeComb) return; // Accelerate
if (!nodep->isPure()) m_canBeComb = false;
iterateChildren(nodep);
}
public:
// CONSTRUCTORS
explicit ActiveVisitor(AstNetlist* nodep) { iterate(nodep); }
virtual ~ActiveVisitor() override = default;
};
//######################################################################
// Active class functions
void V3Active::activeAll(AstNetlist* nodep) {
UINFO(2, __FUNCTION__ << ": " << endl);
{ ActiveVisitor{nodep}; } // Destruct before checking
V3Global::dumpCheckGlobalTree("active", 0, v3Global.opt.dumpTreeLevel(__FILE__) >= 3);
}