verilator/include/verilated_trace.h

389 lines
15 KiB
C
Raw Normal View History

// -*- mode: C++; c-file-style: "cc-mode" -*-
//=============================================================================
//
// THIS MODULE IS PUBLICLY LICENSED
//
// Copyright 2001-2020 by Wilson Snyder. This program is free software; you
// can redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//=============================================================================
///
/// \file
/// \brief Tracing functionality common to all formats
///
//=============================================================================
// SPDIFF_OFF
#ifndef _VERILATED_TRACE_H_
#define _VERILATED_TRACE_H_ 1
// clang-format off
#include "verilated.h"
#include <string>
#include <vector>
#ifdef VL_TRACE_THREADED
# include <condition_variable>
# include <deque>
# include <thread>
#endif
// clang-format on
#ifdef VL_TRACE_THREADED
//=============================================================================
// Threaded tracing
// A simple synchronized first in first out queue
template <class T> class VerilatedThreadQueue {
private:
VerilatedMutex m_mutex; // Protects m_queue
std::condition_variable_any m_cv;
std::deque<T> m_queue VL_GUARDED_BY(m_mutex);
public:
// Put an element at the back of the queue
void put(T value) {
VerilatedLockGuard lock(m_mutex);
m_queue.push_back(value);
m_cv.notify_one();
}
// Put an element at the front of the queue
void put_front(T value) {
VerilatedLockGuard lock(m_mutex);
m_queue.push_front(value);
m_cv.notify_one();
}
// Get an element from the front of the queue. Blocks if none available
T get() {
VerilatedLockGuard lock(m_mutex);
m_cv.wait(lock, [this]() VL_REQUIRES(m_mutex) { return !m_queue.empty(); });
assert(!m_queue.empty());
T value = m_queue.front();
m_queue.pop_front();
return value;
}
// Non blocking get
bool tryGet(T& result) {
VerilatedLockGuard lockGuard(m_mutex);
if (m_queue.empty()) { return false; }
result = m_queue.front();
m_queue.pop_front();
return true;
}
};
// Commands used by thread tracing. Anonymous enum in class, as we want
// it scoped, but we also want the automatic conversion to integer types.
class VerilatedTraceCommand {
public:
// These must all fit in 4 bit at the moment, as the tracing routines
// pack parameters in the top bits.
enum {
CHG_BIT_0 = 0x0,
CHG_BIT_1 = 0x1,
CHG_CDATA = 0x2,
CHG_SDATA = 0x3,
CHG_IDATA = 0x4,
CHG_QDATA = 0x5,
CHG_WDATA = 0x6,
CHG_FLOAT = 0x7,
CHG_DOUBLE = 0x8,
// TODO: full..
TIME_CHANGE = 0xd,
END = 0xe, // End of buffer
SHUTDOWN = 0xf // Shutdown worker thread, also marks end of buffer
};
};
#endif
class VerilatedTraceCallInfo;
//=============================================================================
// VerilatedTrace
// VerilatedTrace uses F-bounded polymorphism to access duck-typed
// implementations in the format specific derived class, which must be passed
// as the type parameter T_Derived
template <class T_Derived> class VerilatedTrace {
private:
//=========================================================================
// Generic tracing internals
vluint32_t* m_sigs_oldvalp; ///< Old value store
vluint64_t m_timeLastDump; ///< Last time we did a dump
std::vector<VerilatedTraceCallInfo*> m_callbacks; ///< Routines to perform dumping
bool m_fullDump; ///< Whether a full dump is required on the next call to 'dump'
vluint32_t m_nextCode; ///< Next code number to assign
vluint32_t m_numSignals; ///< Number of distinct signals
vluint32_t m_maxBits; ///< Number of bits in the widest signal
std::string m_moduleName; ///< Name of module being trace initialized now
char m_scopeEscape;
double m_timeRes; ///< Time resolution (ns/ms etc)
double m_timeUnit; ///< Time units (ns/ms etc)
// Equivalent to 'this' but is of the sub-type 'T_Derived*'. Use 'self()->'
// to access duck-typed functions to avoid a virtual function call.
T_Derived* self() { return static_cast<T_Derived*>(this); }
#ifdef VL_TRACE_THREADED
// Number of total trace buffers that have been allocated
vluint32_t m_numTraceBuffers;
// Size of trace buffers
size_t m_traceBufferSize;
// Buffers handed to worker for processing
VerilatedThreadQueue<vluint32_t*> m_buffersToWorker;
// Buffers returned from worker after processing
VerilatedThreadQueue<vluint32_t*> m_buffersFromWorker;
// Get a new trace buffer that can be populated. May block if none available
vluint32_t* getTraceBuffer();
// Write pointer into current buffer
vluint32_t* m_traceBufferWritep;
// End of trace buffer
vluint32_t* m_traceBufferEndp;
// The worker thread itself
std::unique_ptr<std::thread> m_workerThread;
// The function executed by the worker thread
void workerThreadMain();
// Wait until given buffer is placed in m_buffersFromWorker
void waitForBuffer(const vluint32_t* bufferp);
// Shut down and join worker, if it's running, otherwise do nothing
void shutdownWorker();
#endif
// CONSTRUCTORS
VL_UNCOPYABLE(VerilatedTrace);
protected:
//=========================================================================
// Internals available to format specific implementations
VerilatedAssertOneThread m_assertOne; ///< Assert only called from single thread
vluint32_t nextCode() const { return m_nextCode; }
vluint32_t numSignals() const { return m_numSignals; }
vluint32_t maxBits() const { return m_maxBits; }
const std::string& moduleName() const { return m_moduleName; }
void fullDump(bool value) { m_fullDump = value; }
vluint64_t timeLastDump() { return m_timeLastDump; }
double timeRes() const { return m_timeRes; }
double timeUnit() const { return m_timeUnit; }
std::string timeResStr() const;
std::string timeUnitStr() const;
void traceInit() VL_MT_UNSAFE;
void declCode(vluint32_t code, vluint32_t bits, bool tri);
/// Is this an escape?
bool isScopeEscape(char c) { return isspace(c) || c == m_scopeEscape; }
/// Character that splits scopes. Note whitespace are ALWAYS escapes.
char scopeEscape() { return m_scopeEscape; }
void close();
void flush();
//=========================================================================
// Virtual functions to be provided by the format specific implementation
// Called when the trace moves forward to a new time point
virtual void emitTimeChange(vluint64_t timeui) = 0;
// These hooks are called before a full or change based dump is produced.
// The return value indicates whether to proceed with the dump.
virtual bool preFullDump() { return true; }
virtual bool preChangeDump() { return true; }
public:
//=========================================================================
// External interface to client code
explicit VerilatedTrace();
~VerilatedTrace();
// Set time units (s/ms, defaults to ns)
void set_time_unit(const char* unitp);
void set_time_unit(const std::string& unit);
// Set time resolution (s/ms, defaults to ns)
void set_time_resolution(const char* unitp);
void set_time_resolution(const std::string& unit);
// Call
void dump(vluint64_t timeui);
//=========================================================================
// Non-hot path internal interface to Verilator generated code
typedef void (*callback_t)(T_Derived* tracep, void* userthis, vluint32_t code);
void changeThread() { m_assertOne.changeThread(); }
void addCallback(callback_t initcb, callback_t fullcb, callback_t changecb,
void* userthis) VL_MT_UNSAFE_ONE;
void module(const std::string& name) VL_MT_UNSAFE_ONE {
m_assertOne.check();
m_moduleName = name;
}
void scopeEscape(char flag) { m_scopeEscape = flag; }
//=========================================================================
// Hot path internal interface to Verilator generated code
// Implementation note: We rely on the following duck-typed implementations
// in the derived class T_Derived. These emit* functions record a format
// specific trace entry. Normally one would use pure virtual functions for
// these here, but we cannot afford dynamic dispatch for calling these as
// this is very hot code during tracing.
// duck-typed void emitBit(vluint32_t code, CData newval) = 0;
// duck-typed void emitCData(vluint32_t code, CData newval, int bits) = 0;
// duck-typed void emitSData(vluint32_t code, SData newval, int bits) = 0;
// duck-typed void emitIData(vluint32_t code, IData newval, int bits) = 0;
// duck-typed void emitQData(vluint32_t code, QData newval, int bits) = 0;
// duck-typed void emitWData(vluint32_t code, const WData* newvalp, int bits) = 0;
// duck-typed void emitFloat(vluint32_t code, float newval) = 0;
// duck-typed void emitDouble(vluint32_t code, double newval) = 0;
vluint32_t* oldp(vluint32_t code) { return m_sigs_oldvalp + code; }
// Write to previous value buffer value and emit trace entry.
void fullBit(vluint32_t* oldp, CData newval);
void fullCData(vluint32_t* oldp, CData newval, int bits);
void fullSData(vluint32_t* oldp, SData newval, int bits);
void fullIData(vluint32_t* oldp, IData newval, int bits);
void fullQData(vluint32_t* oldp, QData newval, int bits);
void fullWData(vluint32_t* oldp, const WData* newvalp, int bits);
void fullFloat(vluint32_t* oldp, float newval);
void fullDouble(vluint32_t* oldp, double newval);
#ifdef VL_TRACE_THREADED
// Threaded tracing. Just dump everything in the trace buffer
inline void chgBit(vluint32_t code, CData newval) {
m_traceBufferWritep[0] = VerilatedTraceCommand::CHG_BIT_0 | newval;
m_traceBufferWritep[1] = code;
m_traceBufferWritep += 2;
VL_DEBUG_IF(assert(m_traceBufferWritep <= m_traceBufferEndp););
}
inline void chgCData(vluint32_t code, CData newval, int bits) {
m_traceBufferWritep[0] = (bits << 4) | VerilatedTraceCommand::CHG_CDATA;
m_traceBufferWritep[1] = code;
m_traceBufferWritep[2] = newval;
m_traceBufferWritep += 3;
VL_DEBUG_IF(assert(m_traceBufferWritep <= m_traceBufferEndp););
}
inline void chgSData(vluint32_t code, SData newval, int bits) {
m_traceBufferWritep[0] = (bits << 4) | VerilatedTraceCommand::CHG_SDATA;
m_traceBufferWritep[1] = code;
m_traceBufferWritep[2] = newval;
m_traceBufferWritep += 3;
VL_DEBUG_IF(assert(m_traceBufferWritep <= m_traceBufferEndp););
}
inline void chgIData(vluint32_t code, IData newval, int bits) {
m_traceBufferWritep[0] = (bits << 4) | VerilatedTraceCommand::CHG_IDATA;
m_traceBufferWritep[1] = code;
m_traceBufferWritep[2] = newval;
m_traceBufferWritep += 3;
VL_DEBUG_IF(assert(m_traceBufferWritep <= m_traceBufferEndp););
}
inline void chgQData(vluint32_t code, QData newval, int bits) {
m_traceBufferWritep[0] = (bits << 4) | VerilatedTraceCommand::CHG_QDATA;
m_traceBufferWritep[1] = code;
*reinterpret_cast<QData*>(m_traceBufferWritep + 2) = newval;
m_traceBufferWritep += 4;
VL_DEBUG_IF(assert(m_traceBufferWritep <= m_traceBufferEndp););
}
inline void chgWData(vluint32_t code, const WData* newvalp, int bits) {
m_traceBufferWritep[0] = (bits << 4) | VerilatedTraceCommand::CHG_WDATA;
m_traceBufferWritep[1] = code;
m_traceBufferWritep += 2;
for (int i = 0; i < (bits + 31) / 32; ++i) { *m_traceBufferWritep++ = newvalp[i]; }
VL_DEBUG_IF(assert(m_traceBufferWritep <= m_traceBufferEndp););
}
inline void chgFloat(vluint32_t code, float newval) {
m_traceBufferWritep[0] = VerilatedTraceCommand::CHG_FLOAT;
m_traceBufferWritep[1] = code;
// cppcheck-suppress invalidPointerCast
*reinterpret_cast<float*>(m_traceBufferWritep + 2) = newval;
m_traceBufferWritep += 3;
VL_DEBUG_IF(assert(m_traceBufferWritep <= m_traceBufferEndp););
}
inline void chgDouble(vluint32_t code, double newval) {
m_traceBufferWritep[0] = VerilatedTraceCommand::CHG_DOUBLE;
m_traceBufferWritep[1] = code;
// cppcheck-suppress invalidPointerCast
*reinterpret_cast<double*>(m_traceBufferWritep + 2) = newval;
m_traceBufferWritep += 4;
VL_DEBUG_IF(assert(m_traceBufferWritep <= m_traceBufferEndp););
}
#define CHG(name) chg##name##Impl
#else
#define CHG(name) chg##name
#endif
// In non-threaded mode, these are called directly by the trace callbacks,
// and are called chg*. In threaded mode, they are called by the worker
// thread and are called chg*Impl
// Check previous dumped value of signal. If changed, then emit trace entry
inline void CHG(Bit)(vluint32_t* oldp, CData newval) {
const vluint32_t diff = *oldp ^ newval;
if (VL_UNLIKELY(diff)) fullBit(oldp, newval);
}
inline void CHG(CData)(vluint32_t* oldp, CData newval, int bits) {
const vluint32_t diff = *oldp ^ newval;
if (VL_UNLIKELY(diff)) fullCData(oldp, newval, bits);
}
inline void CHG(SData)(vluint32_t* oldp, SData newval, int bits) {
const vluint32_t diff = *oldp ^ newval;
if (VL_UNLIKELY(diff)) fullSData(oldp, newval, bits);
}
inline void CHG(IData)(vluint32_t* oldp, IData newval, int bits) {
const vluint32_t diff = *oldp ^ newval;
if (VL_UNLIKELY(diff)) fullIData(oldp, newval, bits);
}
inline void CHG(QData)(vluint32_t* oldp, QData newval, int bits) {
const vluint64_t diff = *reinterpret_cast<QData*>(oldp) ^ newval;
if (VL_UNLIKELY(diff)) fullQData(oldp, newval, bits);
}
inline void CHG(WData)(vluint32_t* oldp, const WData* newvalp, int bits) {
for (int i = 0; i < (bits + 31) / 32; ++i) {
if (VL_UNLIKELY(oldp[i] ^ newvalp[i])) {
fullWData(oldp, newvalp, bits);
return;
}
}
}
inline void CHG(Float)(vluint32_t* oldp, float newval) {
// cppcheck-suppress invalidPointerCast
if (VL_UNLIKELY(*reinterpret_cast<float*>(oldp) != newval)) fullFloat(oldp, newval);
}
inline void CHG(Double)(vluint32_t* oldp, double newval) {
// cppcheck-suppress invalidPointerCast
if (VL_UNLIKELY(*reinterpret_cast<double*>(oldp) != newval)) fullDouble(oldp, newval);
}
#undef CHG
};
#endif // guard