// -*- mode: C++; c-file-style: "cc-mode" -*- //============================================================================= // // THIS MODULE IS PUBLICLY LICENSED // // Copyright 2001-2020 by Wilson Snyder. This program is free software; you // can redistribute it and/or modify it under the terms of either the GNU // Lesser General Public License Version 3 or the Perl Artistic License // Version 2.0. // SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0 // //============================================================================= /// /// \file /// \brief Tracing functionality common to all formats /// //============================================================================= // SPDIFF_OFF #ifndef _VERILATED_TRACE_H_ #define _VERILATED_TRACE_H_ 1 // clang-format off #include "verilated.h" #include #include #ifdef VL_TRACE_THREADED # include # include # include #endif // clang-format on #ifdef VL_TRACE_THREADED //============================================================================= // Threaded tracing // A simple synchronized first in first out queue template class VerilatedThreadQueue { private: VerilatedMutex m_mutex; // Protects m_queue std::condition_variable_any m_cv; std::deque m_queue VL_GUARDED_BY(m_mutex); public: // Put an element at the back of the queue void put(T value) { VerilatedLockGuard lock(m_mutex); m_queue.push_back(value); m_cv.notify_one(); } // Put an element at the front of the queue void put_front(T value) { VerilatedLockGuard lock(m_mutex); m_queue.push_front(value); m_cv.notify_one(); } // Get an element from the front of the queue. Blocks if none available T get() { VerilatedLockGuard lock(m_mutex); m_cv.wait(lock, [this]() VL_REQUIRES(m_mutex) { return !m_queue.empty(); }); assert(!m_queue.empty()); T value = m_queue.front(); m_queue.pop_front(); return value; } // Non blocking get bool tryGet(T& result) { VerilatedLockGuard lockGuard(m_mutex); if (m_queue.empty()) { return false; } result = m_queue.front(); m_queue.pop_front(); return true; } }; // Commands used by thread tracing. Anonymous enum in class, as we want // it scoped, but we also want the automatic conversion to integer types. class VerilatedTraceCommand { public: // These must all fit in 4 bit at the moment, as the tracing routines // pack parameters in the top bits. enum { CHG_BIT_0 = 0x0, CHG_BIT_1 = 0x1, CHG_CDATA = 0x2, CHG_SDATA = 0x3, CHG_IDATA = 0x4, CHG_QDATA = 0x5, CHG_WDATA = 0x6, CHG_FLOAT = 0x7, CHG_DOUBLE = 0x8, // TODO: full.. TIME_CHANGE = 0xd, END = 0xe, // End of buffer SHUTDOWN = 0xf // Shutdown worker thread, also marks end of buffer }; }; #endif class VerilatedTraceCallInfo; //============================================================================= // VerilatedTrace // VerilatedTrace uses F-bounded polymorphism to access duck-typed // implementations in the format specific derived class, which must be passed // as the type parameter T_Derived template class VerilatedTrace { private: //========================================================================= // Generic tracing internals vluint32_t* m_sigs_oldvalp; ///< Old value store vluint64_t m_timeLastDump; ///< Last time we did a dump std::vector m_callbacks; ///< Routines to perform dumping bool m_fullDump; ///< Whether a full dump is required on the next call to 'dump' vluint32_t m_nextCode; ///< Next code number to assign vluint32_t m_numSignals; ///< Number of distinct signals vluint32_t m_maxBits; ///< Number of bits in the widest signal std::string m_moduleName; ///< Name of module being trace initialized now char m_scopeEscape; double m_timeRes; ///< Time resolution (ns/ms etc) double m_timeUnit; ///< Time units (ns/ms etc) // Equivalent to 'this' but is of the sub-type 'T_Derived*'. Use 'self()->' // to access duck-typed functions to avoid a virtual function call. T_Derived* self() { return static_cast(this); } #ifdef VL_TRACE_THREADED // Number of total trace buffers that have been allocated vluint32_t m_numTraceBuffers; // Size of trace buffers size_t m_traceBufferSize; // Buffers handed to worker for processing VerilatedThreadQueue m_buffersToWorker; // Buffers returned from worker after processing VerilatedThreadQueue m_buffersFromWorker; // Get a new trace buffer that can be populated. May block if none available vluint32_t* getTraceBuffer(); // Write pointer into current buffer vluint32_t* m_traceBufferWritep; // End of trace buffer vluint32_t* m_traceBufferEndp; // The worker thread itself std::unique_ptr m_workerThread; // The function executed by the worker thread void workerThreadMain(); // Wait until given buffer is placed in m_buffersFromWorker void waitForBuffer(const vluint32_t* bufferp); // Shut down and join worker, if it's running, otherwise do nothing void shutdownWorker(); #endif // CONSTRUCTORS VL_UNCOPYABLE(VerilatedTrace); protected: //========================================================================= // Internals available to format specific implementations VerilatedAssertOneThread m_assertOne; ///< Assert only called from single thread vluint32_t nextCode() const { return m_nextCode; } vluint32_t numSignals() const { return m_numSignals; } vluint32_t maxBits() const { return m_maxBits; } const std::string& moduleName() const { return m_moduleName; } void fullDump(bool value) { m_fullDump = value; } vluint64_t timeLastDump() { return m_timeLastDump; } double timeRes() const { return m_timeRes; } double timeUnit() const { return m_timeUnit; } std::string timeResStr() const; std::string timeUnitStr() const; void traceInit() VL_MT_UNSAFE; void declCode(vluint32_t code, vluint32_t bits, bool tri); /// Is this an escape? bool isScopeEscape(char c) { return isspace(c) || c == m_scopeEscape; } /// Character that splits scopes. Note whitespace are ALWAYS escapes. char scopeEscape() { return m_scopeEscape; } void close(); void flush(); //========================================================================= // Virtual functions to be provided by the format specific implementation // Called when the trace moves forward to a new time point virtual void emitTimeChange(vluint64_t timeui) = 0; // These hooks are called before a full or change based dump is produced. // The return value indicates whether to proceed with the dump. virtual bool preFullDump() { return true; } virtual bool preChangeDump() { return true; } public: //========================================================================= // External interface to client code explicit VerilatedTrace(); ~VerilatedTrace(); // Set time units (s/ms, defaults to ns) void set_time_unit(const char* unitp); void set_time_unit(const std::string& unit); // Set time resolution (s/ms, defaults to ns) void set_time_resolution(const char* unitp); void set_time_resolution(const std::string& unit); // Call void dump(vluint64_t timeui); //========================================================================= // Non-hot path internal interface to Verilator generated code typedef void (*callback_t)(T_Derived* tracep, void* userthis, vluint32_t code); void changeThread() { m_assertOne.changeThread(); } void addCallback(callback_t initcb, callback_t fullcb, callback_t changecb, void* userthis) VL_MT_UNSAFE_ONE; void module(const std::string& name) VL_MT_UNSAFE_ONE { m_assertOne.check(); m_moduleName = name; } void scopeEscape(char flag) { m_scopeEscape = flag; } //========================================================================= // Hot path internal interface to Verilator generated code // Implementation note: We rely on the following duck-typed implementations // in the derived class T_Derived. These emit* functions record a format // specific trace entry. Normally one would use pure virtual functions for // these here, but we cannot afford dynamic dispatch for calling these as // this is very hot code during tracing. // duck-typed void emitBit(vluint32_t code, CData newval) = 0; // duck-typed void emitCData(vluint32_t code, CData newval, int bits) = 0; // duck-typed void emitSData(vluint32_t code, SData newval, int bits) = 0; // duck-typed void emitIData(vluint32_t code, IData newval, int bits) = 0; // duck-typed void emitQData(vluint32_t code, QData newval, int bits) = 0; // duck-typed void emitWData(vluint32_t code, const WData* newvalp, int bits) = 0; // duck-typed void emitFloat(vluint32_t code, float newval) = 0; // duck-typed void emitDouble(vluint32_t code, double newval) = 0; vluint32_t* oldp(vluint32_t code) { return m_sigs_oldvalp + code; } // Write to previous value buffer value and emit trace entry. void fullBit(vluint32_t* oldp, CData newval); void fullCData(vluint32_t* oldp, CData newval, int bits); void fullSData(vluint32_t* oldp, SData newval, int bits); void fullIData(vluint32_t* oldp, IData newval, int bits); void fullQData(vluint32_t* oldp, QData newval, int bits); void fullWData(vluint32_t* oldp, const WData* newvalp, int bits); void fullFloat(vluint32_t* oldp, float newval); void fullDouble(vluint32_t* oldp, double newval); #ifdef VL_TRACE_THREADED // Threaded tracing. Just dump everything in the trace buffer inline void chgBit(vluint32_t code, CData newval) { m_traceBufferWritep[0] = VerilatedTraceCommand::CHG_BIT_0 | newval; m_traceBufferWritep[1] = code; m_traceBufferWritep += 2; VL_DEBUG_IF(assert(m_traceBufferWritep <= m_traceBufferEndp);); } inline void chgCData(vluint32_t code, CData newval, int bits) { m_traceBufferWritep[0] = (bits << 4) | VerilatedTraceCommand::CHG_CDATA; m_traceBufferWritep[1] = code; m_traceBufferWritep[2] = newval; m_traceBufferWritep += 3; VL_DEBUG_IF(assert(m_traceBufferWritep <= m_traceBufferEndp);); } inline void chgSData(vluint32_t code, SData newval, int bits) { m_traceBufferWritep[0] = (bits << 4) | VerilatedTraceCommand::CHG_SDATA; m_traceBufferWritep[1] = code; m_traceBufferWritep[2] = newval; m_traceBufferWritep += 3; VL_DEBUG_IF(assert(m_traceBufferWritep <= m_traceBufferEndp);); } inline void chgIData(vluint32_t code, IData newval, int bits) { m_traceBufferWritep[0] = (bits << 4) | VerilatedTraceCommand::CHG_IDATA; m_traceBufferWritep[1] = code; m_traceBufferWritep[2] = newval; m_traceBufferWritep += 3; VL_DEBUG_IF(assert(m_traceBufferWritep <= m_traceBufferEndp);); } inline void chgQData(vluint32_t code, QData newval, int bits) { m_traceBufferWritep[0] = (bits << 4) | VerilatedTraceCommand::CHG_QDATA; m_traceBufferWritep[1] = code; *reinterpret_cast(m_traceBufferWritep + 2) = newval; m_traceBufferWritep += 4; VL_DEBUG_IF(assert(m_traceBufferWritep <= m_traceBufferEndp);); } inline void chgWData(vluint32_t code, const WData* newvalp, int bits) { m_traceBufferWritep[0] = (bits << 4) | VerilatedTraceCommand::CHG_WDATA; m_traceBufferWritep[1] = code; m_traceBufferWritep += 2; for (int i = 0; i < (bits + 31) / 32; ++i) { *m_traceBufferWritep++ = newvalp[i]; } VL_DEBUG_IF(assert(m_traceBufferWritep <= m_traceBufferEndp);); } inline void chgFloat(vluint32_t code, float newval) { m_traceBufferWritep[0] = VerilatedTraceCommand::CHG_FLOAT; m_traceBufferWritep[1] = code; // cppcheck-suppress invalidPointerCast *reinterpret_cast(m_traceBufferWritep + 2) = newval; m_traceBufferWritep += 3; VL_DEBUG_IF(assert(m_traceBufferWritep <= m_traceBufferEndp);); } inline void chgDouble(vluint32_t code, double newval) { m_traceBufferWritep[0] = VerilatedTraceCommand::CHG_DOUBLE; m_traceBufferWritep[1] = code; // cppcheck-suppress invalidPointerCast *reinterpret_cast(m_traceBufferWritep + 2) = newval; m_traceBufferWritep += 4; VL_DEBUG_IF(assert(m_traceBufferWritep <= m_traceBufferEndp);); } #define CHG(name) chg##name##Impl #else #define CHG(name) chg##name #endif // In non-threaded mode, these are called directly by the trace callbacks, // and are called chg*. In threaded mode, they are called by the worker // thread and are called chg*Impl // Check previous dumped value of signal. If changed, then emit trace entry inline void CHG(Bit)(vluint32_t* oldp, CData newval) { const vluint32_t diff = *oldp ^ newval; if (VL_UNLIKELY(diff)) fullBit(oldp, newval); } inline void CHG(CData)(vluint32_t* oldp, CData newval, int bits) { const vluint32_t diff = *oldp ^ newval; if (VL_UNLIKELY(diff)) fullCData(oldp, newval, bits); } inline void CHG(SData)(vluint32_t* oldp, SData newval, int bits) { const vluint32_t diff = *oldp ^ newval; if (VL_UNLIKELY(diff)) fullSData(oldp, newval, bits); } inline void CHG(IData)(vluint32_t* oldp, IData newval, int bits) { const vluint32_t diff = *oldp ^ newval; if (VL_UNLIKELY(diff)) fullIData(oldp, newval, bits); } inline void CHG(QData)(vluint32_t* oldp, QData newval, int bits) { const vluint64_t diff = *reinterpret_cast(oldp) ^ newval; if (VL_UNLIKELY(diff)) fullQData(oldp, newval, bits); } inline void CHG(WData)(vluint32_t* oldp, const WData* newvalp, int bits) { for (int i = 0; i < (bits + 31) / 32; ++i) { if (VL_UNLIKELY(oldp[i] ^ newvalp[i])) { fullWData(oldp, newvalp, bits); return; } } } inline void CHG(Float)(vluint32_t* oldp, float newval) { // cppcheck-suppress invalidPointerCast if (VL_UNLIKELY(*reinterpret_cast(oldp) != newval)) fullFloat(oldp, newval); } inline void CHG(Double)(vluint32_t* oldp, double newval) { // cppcheck-suppress invalidPointerCast if (VL_UNLIKELY(*reinterpret_cast(oldp) != newval)) fullDouble(oldp, newval); } #undef CHG }; #endif // guard