verilator/include/verilated.cpp
2024-09-03 21:42:06 -04:00

3489 lines
139 KiB
C++

// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
//
// Code available from: https://verilator.org
//
// Copyright 2003-2024 by Wilson Snyder. This program is free software; you can
// redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//=========================================================================
///
/// \file
/// \brief Verilated general routine implementation code
///
/// This file must be compiled and linked against all Verilated objects
/// (all code created from Verilator).
///
/// Verilator always adds this file to the Makefile for the linker.
///
/// Those macro/function/variable starting or ending in _ are internal,
/// however many of the other function/macros here are also internal.
///
//=========================================================================
// Internal note:
//
// verilated.o may exist both in --lib-create (incrementally linked .a/.so)
// and the main module. Both refer the same instance of static
// variables/thread_local in verilated.o such as Verilated, or
// VerilatedImpData. This is important to share that state, but the
// sharing may cause a double-free error when shutting down because the
// loader will insert a constructor/destructor at each reference to
// verilated.o, resulting in at runtime constructors/destructors being
// called multiple times.
//
// To avoid the trouble:
// * Statics declared inside functions. The compiler will wrap
// the construction in must-be-one-time checks.
// * Or, use only C++20 constinit types. (TODO: Make a VL_CONSTINIT).
// * Or, use types that are multi-constructor safe.
// * Or, the static should be of a union, which will avoid compiler
// construction, and appropriately check for duplicate construction.
// * Or, code is not linked in protected library. e.g. the VPI
// and DPI libraries are not needed there.
//=========================================================================
#define VERILATOR_VERILATED_CPP_
#include "verilated_config.h"
#include "verilatedos.h"
#include "verilated_imp.h"
#include <algorithm>
#include <cctype>
#include <cerrno>
#include <cstdlib>
#include <limits>
#include <list>
#include <sstream>
#include <utility>
#include <sys/stat.h> // mkdir
// clang-format off
#if defined(_WIN32) || defined(__MINGW32__)
# include <direct.h> // mkdir
#endif
#ifdef __GLIBC__
# include <execinfo.h>
# define _VL_HAVE_STACKTRACE
#endif
#if defined(__linux) || (defined(__APPLE__) && defined(__MACH__))
# include <sys/time.h>
# include <sys/resource.h>
# define _VL_HAVE_GETRLIMIT
#endif
#include "verilated_threads.h"
// clang-format on
#include "verilated_trace.h"
#ifdef VM_SOLVER_DEFAULT
#define VL_SOLVER_DEFAULT VM_SOLVER_DEFAULT
#else
#define VL_SOLVER_DEFAULT "z3 --in"
#endif
// Max characters in static char string for VL_VALUE_STRING
constexpr unsigned VL_VALUE_STRING_MAX_WIDTH = 8192;
//===========================================================================
// Static sanity checks
static_assert(sizeof(uint8_t) == 1, "uint8_t is missized");
static_assert(sizeof(uint16_t) == 2, "uint8_t is missized");
static_assert(sizeof(uint32_t) == 4, "uint8_t is missized");
static_assert(sizeof(uint64_t) == 8, "uint8_t is missized");
//===========================================================================
// Global variables
// Internal note: Globals may multi-construct, see verilated.cpp top.
// Fast path, keep together
int Verilated::s_debug = 0;
VerilatedContext* Verilated::s_lastContextp = nullptr;
// Keep below together in one cache line
// Internal note: Globals may multi-construct, see verilated.cpp top.
thread_local Verilated::ThreadLocal Verilated::t_s;
//===========================================================================
// User definable functions
// Note a TODO is a future version of the API will pass a structure so that
// the calling arguments allow for extension
#ifndef VL_USER_FINISH ///< Define this to override the vl_finish function
void vl_finish(const char* filename, int linenum, const char* hier) VL_MT_UNSAFE {
// hier is unused in the default implementation.
(void)hier;
VL_PRINTF( // Not VL_PRINTF_MT, already on main thread
"- %s:%d: Verilog $finish\n", filename, linenum);
Verilated::threadContextp()->gotFinish(true);
}
#endif
#ifndef VL_USER_STOP ///< Define this to override the vl_stop function
void vl_stop(const char* filename, int linenum, const char* hier) VL_MT_UNSAFE {
const char* const msg = "Verilog $stop";
Verilated::threadContextp()->gotError(true);
Verilated::threadContextp()->gotFinish(true);
if (Verilated::threadContextp()->fatalOnError()) {
vl_fatal(filename, linenum, hier, msg);
} else {
if (filename && filename[0]) {
// Not VL_PRINTF_MT, already on main thread
VL_PRINTF("%%Error: %s:%d: %s\n", filename, linenum, msg);
} else {
VL_PRINTF("%%Error: %s\n", msg);
}
Verilated::runFlushCallbacks();
}
}
#endif
#ifndef VL_USER_FATAL ///< Define this to override the vl_fatal function
void vl_fatal(const char* filename, int linenum, const char* hier, const char* msg) VL_MT_UNSAFE {
// hier is unused in the default implementation.
(void)hier;
Verilated::threadContextp()->gotError(true);
Verilated::threadContextp()->gotFinish(true);
if (filename && filename[0]) {
// Not VL_PRINTF_MT, already on main thread
VL_PRINTF("%%Error: %s:%d: %s\n", filename, linenum, msg);
} else {
VL_PRINTF("%%Error: %s\n", msg);
}
Verilated::runFlushCallbacks();
VL_PRINTF("Aborting...\n"); // Not VL_PRINTF_MT, already on main thread
// Second flush in case VL_PRINTF does something needing a flush
Verilated::runFlushCallbacks();
// Callbacks prior to termination
Verilated::runExitCallbacks();
std::abort();
}
#endif
#ifndef VL_USER_STOP_MAYBE ///< Define this to override the vl_stop_maybe function
void vl_stop_maybe(const char* filename, int linenum, const char* hier, bool maybe) VL_MT_UNSAFE {
Verilated::threadContextp()->errorCountInc();
if (maybe
&& Verilated::threadContextp()->errorCount() < Verilated::threadContextp()->errorLimit()) {
// Do just once when cross error limit
if (Verilated::threadContextp()->errorCount() == 1) {
VL_PRINTF( // Not VL_PRINTF_MT, already on main thread
"-Info: %s:%d: %s\n", filename, linenum,
"Verilog $stop, ignored due to +verilator+error+limit");
}
} else {
vl_stop(filename, linenum, hier);
}
}
#endif
#ifndef VL_USER_WARN ///< Define this to override the vl_warn function
void vl_warn(const char* filename, int linenum, const char* hier, const char* msg) VL_MT_UNSAFE {
// hier is unused in the default implementation.
(void)hier;
if (filename && filename[0]) {
// Not VL_PRINTF_MT, already on main thread
VL_PRINTF("%%Warning: %s:%d: %s\n", filename, linenum, msg);
} else {
VL_PRINTF("%%Warning: %s\n", msg);
}
Verilated::runFlushCallbacks();
}
#endif
//===========================================================================
// Wrapper to call certain functions via messages when multithreaded
void VL_FINISH_MT(const char* filename, int linenum, const char* hier) VL_MT_SAFE {
VerilatedThreadMsgQueue::post(VerilatedMsg{[=]() { //
vl_finish(filename, linenum, hier);
}});
}
void VL_STOP_MT(const char* filename, int linenum, const char* hier, bool maybe) VL_MT_SAFE {
VerilatedThreadMsgQueue::post(VerilatedMsg{[=]() { //
vl_stop_maybe(filename, linenum, hier, maybe);
}});
}
void VL_FATAL_MT(const char* filename, int linenum, const char* hier, const char* msg) VL_MT_SAFE {
VerilatedThreadMsgQueue::post(VerilatedMsg{[=]() { //
vl_fatal(filename, linenum, hier, msg);
}});
}
void VL_WARN_MT(const char* filename, int linenum, const char* hier, const char* msg) VL_MT_SAFE {
VerilatedThreadMsgQueue::post(VerilatedMsg{[=]() { //
vl_warn(filename, linenum, hier, msg);
}});
}
//===========================================================================
// Debug prints
// sprintf but return as string (this isn't fast, for print messages only)
std::string _vl_string_vprintf(const char* formatp, va_list ap) VL_MT_SAFE {
va_list aq;
va_copy(aq, ap);
const size_t len = VL_VSNPRINTF(nullptr, 0, formatp, aq);
va_end(aq);
if (VL_UNLIKELY(len < 1)) return "";
char* const bufp = new char[len + 1];
VL_VSNPRINTF(bufp, len + 1, formatp, ap);
std::string result{bufp, len}; // Not const to allow move optimization
delete[] bufp;
return result;
}
uint64_t _vl_dbg_sequence_number() VL_MT_SAFE {
static std::atomic<uint64_t> sequence;
return ++sequence;
}
uint32_t VL_THREAD_ID() VL_MT_SAFE {
// Alternative is to use std::this_thread::get_id, but that returns a
// hard-to-read number and is very slow
static std::atomic<uint32_t> s_nextId(0);
static thread_local uint32_t t_myId = ++s_nextId;
return t_myId;
}
void VL_DBG_MSGF(const char* formatp, ...) VL_MT_SAFE {
// We're still using c printf formats instead of operator<< so we can avoid the heavy
// includes that otherwise would be required in every Verilated module
va_list ap;
va_start(ap, formatp);
const std::string result = _vl_string_vprintf(formatp, ap);
va_end(ap);
// printf("-imm-V{t%d,%" PRId64 "}%s", VL_THREAD_ID(), _vl_dbg_sequence_number(),
// result.c_str());
// Using VL_PRINTF not VL_PRINTF_MT so that we can call VL_DBG_MSGF
// from within the guts of the thread execution machinery (and it goes
// to the screen and not into the queues we're debugging)
VL_PRINTF("-V{t%u,%" PRIu64 "}%s", VL_THREAD_ID(), _vl_dbg_sequence_number(), result.c_str());
}
void VL_PRINTF_MT(const char* formatp, ...) VL_MT_SAFE {
va_list ap;
va_start(ap, formatp);
const std::string result = _vl_string_vprintf(formatp, ap);
va_end(ap);
VerilatedThreadMsgQueue::post(VerilatedMsg{[=]() { //
VL_PRINTF("%s", result.c_str());
}});
}
//===========================================================================
// Random -- Mostly called at init time, so not inline.
VlRNG::VlRNG() VL_MT_SAFE {
// Starting point for this new class comes from the global RNG
VlRNG& fromr = vl_thread_rng();
m_state = fromr.m_state;
// Advance the *source* so it can later generate a new number
// Xoroshiro128+ algorithm
fromr.m_state[1] ^= fromr.m_state[0];
fromr.m_state[0] = (((fromr.m_state[0] << 55) | (fromr.m_state[0] >> 9)) ^ fromr.m_state[1]
^ (fromr.m_state[1] << 14));
fromr.m_state[1] = (fromr.m_state[1] << 36) | (fromr.m_state[1] >> 28);
}
uint64_t VlRNG::rand64() VL_MT_UNSAFE {
// Xoroshiro128+ algorithm
const uint64_t result = m_state[0] + m_state[1];
m_state[1] ^= m_state[0];
m_state[0] = (((m_state[0] << 55) | (m_state[0] >> 9)) ^ m_state[1] ^ (m_state[1] << 14));
m_state[1] = (m_state[1] << 36) | (m_state[1] >> 28);
return result;
}
uint64_t VlRNG::vl_thread_rng_rand64() VL_MT_SAFE {
VlRNG& fromr = vl_thread_rng();
const uint64_t result = fromr.m_state[0] + fromr.m_state[1];
fromr.m_state[1] ^= fromr.m_state[0];
fromr.m_state[0] = (((fromr.m_state[0] << 55) | (fromr.m_state[0] >> 9)) ^ fromr.m_state[1]
^ (fromr.m_state[1] << 14));
fromr.m_state[1] = (fromr.m_state[1] << 36) | (fromr.m_state[1] >> 28);
return result;
}
void VlRNG::srandom(uint64_t n) VL_MT_UNSAFE {
m_state[0] = n;
m_state[1] = m_state[0];
// Fix state as algorithm is slow to randomize if many zeros
// This causes a loss of ~ 1 bit of seed entropy, no big deal
if (VL_COUNTONES_I(m_state[0]) < 10) m_state[0] = ~m_state[0];
if (VL_COUNTONES_I(m_state[1]) < 10) m_state[1] = ~m_state[1];
}
std::string VlRNG::get_randstate() const VL_MT_UNSAFE {
// Though not stated in IEEE, assumption is the string must be printable
const char* const stateCharsp = reinterpret_cast<const char*>(&m_state);
static_assert(sizeof(m_state) == 16, "");
std::string result{"R00112233445566770011223344556677"};
for (size_t i = 0; i < sizeof(m_state); ++i) {
result[1 + i * 2] = 'a' + ((stateCharsp[i] >> 4) & 15);
result[1 + i * 2 + 1] = 'a' + (stateCharsp[i] & 15);
}
return result;
}
void VlRNG::set_randstate(const std::string& state) VL_MT_UNSAFE {
if (VL_UNLIKELY((state.length() != 1 + 2 * sizeof(m_state)) || (state[0] != 'R'))) {
VL_PRINTF_MT("%%Warning: set_randstate ignored as state string not from get_randstate\n");
return;
}
char* const stateCharsp = reinterpret_cast<char*>(&m_state);
for (size_t i = 0; i < sizeof(m_state); ++i) {
stateCharsp[i]
= (((state[1 + i * 2] - 'a') & 15) << 4) | ((state[1 + i * 2 + 1] - 'a') & 15);
}
}
static uint32_t vl_sys_rand32() VL_MT_SAFE {
// Return random 32-bits using system library.
// Used only to construct seed for Verilator's PRNG.
static VerilatedMutex s_mutex;
const VerilatedLockGuard lock{s_mutex}; // Otherwise rand is unsafe
#if defined(_WIN32) && !defined(__CYGWIN__)
// Windows doesn't have lrand48(), although Cygwin does.
return (std::rand() << 16) ^ std::rand();
#else
return (lrand48() << 16) ^ lrand48();
#endif
}
VlRNG& VlRNG::vl_thread_rng() VL_MT_SAFE {
static thread_local VlRNG t_rng{0};
static thread_local uint32_t t_seedEpoch = 0;
// For speed, we use a thread-local epoch number to know when to reseed
// A thread always belongs to a single context, so this works out ok
if (VL_UNLIKELY(t_seedEpoch != VerilatedContextImp::randSeedEpoch())) {
// Set epoch before state, to avoid race case with new seeding
t_seedEpoch = VerilatedContextImp::randSeedEpoch();
// Same as srandom() but here as needs to be VL_MT_SAFE
t_rng.m_state[0] = Verilated::threadContextp()->impp()->randSeedDefault64();
t_rng.m_state[1] = t_rng.m_state[0];
// Fix state as algorithm is slow to randomize if many zeros
// This causes a loss of ~ 1 bit of seed entropy, no big deal
if (VL_COUNTONES_I(t_rng.m_state[0]) < 10) t_rng.m_state[0] = ~t_rng.m_state[0];
if (VL_COUNTONES_I(t_rng.m_state[1]) < 10) t_rng.m_state[1] = ~t_rng.m_state[1];
}
return t_rng;
}
WDataOutP VL_RANDOM_W(int obits, WDataOutP outwp) VL_MT_SAFE {
for (int i = 0; i < VL_WORDS_I(obits); ++i) outwp[i] = vl_rand64();
// Last word is unclean
return outwp;
}
WDataOutP VL_RANDOM_RNG_W(VlRNG& rngr, int obits, WDataOutP outwp) VL_MT_UNSAFE {
for (int i = 0; i < VL_WORDS_I(obits); ++i) outwp[i] = rngr.rand64();
// Last word is unclean
return outwp;
}
IData VL_RANDOM_SEEDED_II(IData& seedr) VL_MT_SAFE {
// $random - seed is a new seed to apply, then we return new seed
Verilated::threadContextp()->randSeed(static_cast<int>(seedr));
seedr = VL_RANDOM_I();
return VL_RANDOM_I();
}
IData VL_URANDOM_SEEDED_II(IData seed) VL_MT_SAFE {
// $urandom - seed is a new seed to apply
Verilated::threadContextp()->randSeed(static_cast<int>(seed));
return VL_RANDOM_I();
}
IData VL_RAND_RESET_I(int obits) VL_MT_SAFE {
if (Verilated::threadContextp()->randReset() == 0) return 0;
IData data = ~0;
if (Verilated::threadContextp()->randReset() != 1) { // if 2, randomize
data = VL_RANDOM_I();
}
data &= VL_MASK_I(obits);
return data;
}
IData VL_RAND_RESET_ASSIGN_I(int obits) VL_MT_SAFE { return VL_RANDOM_I() & VL_MASK_I(obits); }
QData VL_RAND_RESET_Q(int obits) VL_MT_SAFE {
if (Verilated::threadContextp()->randReset() == 0) return 0;
QData data = ~0ULL;
if (Verilated::threadContextp()->randReset() != 1) { // if 2, randomize
data = VL_RANDOM_Q();
}
data &= VL_MASK_Q(obits);
return data;
}
QData VL_RAND_RESET_ASSIGN_Q(int obits) VL_MT_SAFE { return VL_RANDOM_Q() & VL_MASK_Q(obits); }
WDataOutP VL_RAND_RESET_W(int obits, WDataOutP outwp) VL_MT_SAFE {
for (int i = 0; i < VL_WORDS_I(obits) - 1; ++i) outwp[i] = VL_RAND_RESET_I(32);
outwp[VL_WORDS_I(obits) - 1] = VL_RAND_RESET_I(32) & VL_MASK_E(obits);
return outwp;
}
WDataOutP VL_RAND_RESET_ASSIGN_W(int obits, WDataOutP outwp) VL_MT_SAFE {
for (int i = 0; i < VL_WORDS_I(obits) - 1; ++i) outwp[i] = VL_RAND_RESET_ASSIGN_I(32);
outwp[VL_WORDS_I(obits) - 1] = VL_RAND_RESET_ASSIGN_I(32) & VL_MASK_E(obits);
return outwp;
}
WDataOutP VL_ZERO_RESET_W(int obits, WDataOutP outwp) VL_MT_SAFE {
// Not inlined to speed up compilation of slowpath code
return VL_ZERO_W(obits, outwp);
}
//===========================================================================
// Debug
void _vl_debug_print_w(int lbits, const WDataInP iwp) VL_MT_SAFE {
VL_PRINTF_MT(" Data: w%d: ", lbits);
for (int i = VL_WORDS_I(lbits) - 1; i >= 0; --i) VL_PRINTF_MT("%08x ", iwp[i]);
VL_PRINTF_MT("\n");
}
//===========================================================================
// Slow expressions
WDataOutP _vl_moddiv_w(int lbits, WDataOutP owp, const WDataInP lwp, const WDataInP rwp,
bool is_modulus) VL_MT_SAFE {
// See Knuth Algorithm D. Computes u/v = q.r
// This isn't massively tuned, as wide division is rare
// for debug see V3Number version
// Requires clean input
const int words = VL_WORDS_I(lbits);
for (int i = 0; i < words; ++i) owp[i] = 0;
// Find MSB and check for zero.
const int umsbp1 = VL_MOSTSETBITP1_W(words, lwp); // dividend
const int vmsbp1 = VL_MOSTSETBITP1_W(words, rwp); // divisor
if (VL_UNLIKELY(vmsbp1 == 0) // rwp==0 so division by zero. Return 0.
|| VL_UNLIKELY(umsbp1 == 0)) { // 0/x so short circuit and return 0
return owp;
}
const int uw = VL_WORDS_I(umsbp1); // aka "m" in the algorithm
const int vw = VL_WORDS_I(vmsbp1); // aka "n" in the algorithm
VL_DEBUG_IFDEF(assert(uw <= VL_MULS_MAX_WORDS););
VL_DEBUG_IFDEF(assert(vw <= VL_MULS_MAX_WORDS););
if (vw == 1) { // Single divisor word breaks rest of algorithm
uint64_t k = 0;
for (int j = uw - 1; j >= 0; --j) {
const uint64_t unw64 = ((k << 32ULL) + static_cast<uint64_t>(lwp[j]));
owp[j] = unw64 / static_cast<uint64_t>(rwp[0]);
k = unw64 - static_cast<uint64_t>(owp[j]) * static_cast<uint64_t>(rwp[0]);
}
if (is_modulus) {
owp[0] = k;
for (int i = 1; i < words; ++i) owp[i] = 0;
}
return owp;
}
// +1 word as we may shift during normalization
uint32_t un[VL_MULS_MAX_WORDS + 1]; // Fixed size, as MSVC++ doesn't allow [words] here
uint32_t vn[VL_MULS_MAX_WORDS + 1]; // v normalized
// Zero for ease of debugging and to save having to zero for shifts
// Note +1 as loop will use extra word
for (int i = 0; i < words + 1; ++i) un[i] = vn[i] = 0;
// Algorithm requires divisor MSB to be set
// Copy and shift to normalize divisor so MSB of vn[vw-1] is set
const int s = 31 - VL_BITBIT_I(vmsbp1 - 1); // shift amount (0...31)
// Copy and shift dividend by same amount; may set new upper word
if (s) {
for (int i = vw - 1; i > 0; --i) vn[i] = (rwp[i] << s) | (rwp[i - 1] >> (32 - s));
vn[0] = rwp[0] << s;
un[uw] = lwp[uw - 1] >> (32 - s);
for (int i = uw - 1; i > 0; --i) un[i] = (lwp[i] << s) | (lwp[i - 1] >> (32 - s));
un[0] = lwp[0] << s;
} else {
for (int i = vw - 1; i > 0; --i) vn[i] = rwp[i];
vn[0] = rwp[0];
un[uw] = 0;
for (int i = uw - 1; i > 0; --i) un[i] = lwp[i];
un[0] = lwp[0];
}
// Main loop
for (int j = uw - vw; j >= 0; --j) {
// Estimate
const uint64_t unw64
= (static_cast<uint64_t>(un[j + vw]) << 32ULL | static_cast<uint64_t>(un[j + vw - 1]));
uint64_t qhat = unw64 / static_cast<uint64_t>(vn[vw - 1]);
uint64_t rhat = unw64 - qhat * static_cast<uint64_t>(vn[vw - 1]);
again:
if (qhat >= 0x100000000ULL || ((qhat * vn[vw - 2]) > ((rhat << 32ULL) + un[j + vw - 2]))) {
qhat = qhat - 1;
rhat = rhat + vn[vw - 1];
if (rhat < 0x100000000ULL) goto again;
}
int64_t t = 0; // Must be signed
uint64_t k = 0;
for (int i = 0; i < vw; ++i) {
const uint64_t p = qhat * vn[i]; // Multiply by estimate
t = un[i + j] - k - (p & 0xFFFFFFFFULL); // Subtract
un[i + j] = t;
k = (p >> 32ULL) - (t >> 32ULL);
}
t = un[j + vw] - k;
un[j + vw] = t;
owp[j] = qhat; // Save quotient digit
if (t < 0) {
// Over subtracted; correct by adding back
owp[j]--;
k = 0;
for (int i = 0; i < vw; ++i) {
t = static_cast<uint64_t>(un[i + j]) + static_cast<uint64_t>(vn[i]) + k;
un[i + j] = t;
k = t >> 32ULL;
}
un[j + vw] = un[j + vw] + k;
}
}
if (is_modulus) { // modulus
// Need to reverse normalization on copy to output
if (s) {
for (int i = 0; i < vw; ++i) owp[i] = (un[i] >> s) | (un[i + 1] << (32 - s));
} else {
for (int i = 0; i < vw; ++i) owp[i] = un[i];
}
for (int i = vw; i < words; ++i) owp[i] = 0;
return owp;
} else { // division
return owp;
}
}
WDataOutP VL_POW_WWW(int obits, int, int rbits, WDataOutP owp, const WDataInP lwp,
const WDataInP rwp) VL_MT_SAFE {
// obits==lbits, rbits can be different
const int owords = VL_WORDS_I(obits);
VL_DEBUG_IFDEF(assert(owords <= VL_MULS_MAX_WORDS););
owp[0] = 1;
for (int i = 1; i < VL_WORDS_I(obits); i++) owp[i] = 0;
// cppcheck-has-bug-suppress variableScope
VlWide<VL_MULS_MAX_WORDS> powstore; // Fixed size, as MSVC++ doesn't allow [words] here
VlWide<VL_MULS_MAX_WORDS> lastpowstore; // Fixed size, as MSVC++ doesn't allow [words] here
VlWide<VL_MULS_MAX_WORDS> lastoutstore; // Fixed size, as MSVC++ doesn't allow [words] here
// cppcheck-has-bug-suppress variableScope
VL_ASSIGN_W(obits, powstore, lwp);
for (int bit = 0; bit < rbits; bit++) {
if (bit > 0) { // power = power*power
VL_ASSIGN_W(obits, lastpowstore, powstore);
VL_MUL_W(owords, powstore, lastpowstore, lastpowstore);
}
if (VL_BITISSET_W(rwp, bit)) { // out *= power
VL_ASSIGN_W(obits, lastoutstore, owp);
VL_MUL_W(owords, owp, lastoutstore, powstore);
}
}
return owp;
}
WDataOutP VL_POW_WWQ(int obits, int lbits, int rbits, WDataOutP owp, const WDataInP lwp,
QData rhs) VL_MT_SAFE {
VlWide<VL_WQ_WORDS_E> rhsw;
VL_SET_WQ(rhsw, rhs);
return VL_POW_WWW(obits, lbits, rbits, owp, lwp, rhsw);
}
QData VL_POW_QQW(int, int, int rbits, QData lhs, const WDataInP rwp) VL_MT_SAFE {
const int rwords = VL_WORDS_I(rbits);
EData rnz = rwp[0];
for (int w = 1; w < rwords; ++w) rnz |= rwp[w];
if (!rnz) return 1; // rwp == 0
if (VL_UNLIKELY(lhs == 0)) return 0;
QData power = lhs;
QData result = 1ULL;
for (int bit = 0; bit < rbits; ++bit) {
if (bit > 0) power = power * power;
if (VL_BITISSET_W(rwp, bit)) result *= power;
}
return result;
}
WDataOutP VL_POWSS_WWW(int obits, int, int rbits, WDataOutP owp, const WDataInP lwp,
const WDataInP rwp, bool lsign, bool rsign) VL_MT_SAFE {
// obits==lbits, rbits can be different
if (rsign && VL_SIGN_W(rbits, rwp)) {
const int words = VL_WORDS_I(obits);
VL_ZERO_W(obits, owp);
EData lor = 0; // 0=all zeros, ~0=all ones, else mix
for (int i = 1; i < (words - 1); ++i) lor |= lwp[i];
lor |= ((lwp[words - 1] == VL_MASK_E(rbits)) ? ~VL_EUL(0) : 0);
if (lor == 0 && lwp[0] == 0) { // "X" so return 0
return owp;
} else if (lor == 0 && lwp[0] == 1) { // 1
owp[0] = 1;
return owp;
} else if (lsign && lor == ~VL_EUL(0) && lwp[0] == ~VL_EUL(0)) { // -1
if (rwp[0] & 1) { // -1^odd=-1
return VL_ALLONES_W(obits, owp);
} else { // -1^even=1
owp[0] = 1;
return owp;
}
}
return owp;
}
return VL_POW_WWW(obits, rbits, rbits, owp, lwp, rwp);
}
WDataOutP VL_POWSS_WWQ(int obits, int lbits, int rbits, WDataOutP owp, const WDataInP lwp,
QData rhs, bool lsign, bool rsign) VL_MT_SAFE {
VlWide<VL_WQ_WORDS_E> rhsw;
VL_SET_WQ(rhsw, rhs);
return VL_POWSS_WWW(obits, lbits, rbits, owp, lwp, rhsw, lsign, rsign);
}
QData VL_POWSS_QQW(int obits, int, int rbits, QData lhs, const WDataInP rwp, bool lsign,
bool rsign) VL_MT_SAFE {
// Skip check for rhs == 0, as short-circuit doesn't save time
if (rsign && VL_SIGN_W(rbits, rwp)) {
if (lhs == 0) {
return 0; // "X"
} else if (lhs == 1) {
return 1;
} else if (lsign && lhs == VL_MASK_Q(obits)) { // -1
if (rwp[0] & 1) {
return VL_MASK_Q(obits); // -1^odd=-1
} else {
return 1; // -1^even=1
}
}
return 0;
}
return VL_POW_QQW(obits, rbits, rbits, lhs, rwp);
}
double VL_ITOR_D_W(int lbits, const WDataInP lwp) VL_PURE {
int ms_word = VL_WORDS_I(lbits) - 1;
for (; !lwp[ms_word] && ms_word > 0;) --ms_word;
if (ms_word == 0) return static_cast<double>(lwp[0]);
if (ms_word == 1) return static_cast<double>(VL_SET_QW(lwp));
// We need 53 bits of mantissa, which might mean looking at 3 words
// namely ms_word, ms_word-1 and ms_word-2
const EData ihi = lwp[ms_word];
const EData imid = lwp[ms_word - 1];
const EData ilo = lwp[ms_word - 2];
const double hi = static_cast<double>(ihi) * std::exp2(2 * VL_EDATASIZE);
const double mid = static_cast<double>(imid) * std::exp2(VL_EDATASIZE);
const double lo = static_cast<double>(ilo);
const double d = (hi + mid + lo) * std::exp2(VL_EDATASIZE * (ms_word - 2));
return d;
}
double VL_ISTOR_D_W(int lbits, const WDataInP lwp) VL_MT_SAFE {
if (!VL_SIGN_W(lbits, lwp)) return VL_ITOR_D_W(lbits, lwp);
const int words = VL_WORDS_I(lbits);
VL_DEBUG_IFDEF(assert(words <= VL_MULS_MAX_WORDS););
uint32_t pos[VL_MULS_MAX_WORDS + 1]; // Fixed size, as MSVC++ doesn't allow [words] here
VL_NEGATE_W(words, pos, lwp);
_vl_clean_inplace_w(lbits, pos);
return -VL_ITOR_D_W(lbits, pos);
}
//===========================================================================
// Formatting
// Output a string representation of a wide number
std::string VL_DECIMAL_NW(int width, const WDataInP lwp) VL_MT_SAFE {
const int maxdecwidth = (width + 3) * 4 / 3;
// Or (maxdecwidth+7)/8], but can't have more than 4 BCD bits per word
VlWide<VL_VALUE_STRING_MAX_WIDTH / 4 + 2> bcd;
VL_ZERO_W(maxdecwidth, bcd);
VlWide<VL_VALUE_STRING_MAX_WIDTH / 4 + 2> tmp;
VlWide<VL_VALUE_STRING_MAX_WIDTH / 4 + 2> tmp2;
int from_bit = width - 1;
// Skip all leading zeros
for (; from_bit >= 0 && !(VL_BITRSHIFT_W(lwp, from_bit) & 1); --from_bit) {}
// Double-dabble algorithm
for (; from_bit >= 0; --from_bit) {
// Any digits >= 5 need an add 3 (via tmp)
for (int nibble_bit = 0; nibble_bit < maxdecwidth; nibble_bit += 4) {
if ((VL_BITRSHIFT_W(bcd, nibble_bit) & 0xf) >= 5) {
VL_ZERO_W(maxdecwidth, tmp2);
tmp2[VL_BITWORD_E(nibble_bit)] |= VL_EUL(0x3) << VL_BITBIT_E(nibble_bit);
VL_ASSIGN_W(maxdecwidth, tmp, bcd);
VL_ADD_W(VL_WORDS_I(maxdecwidth), bcd, tmp, tmp2);
}
}
// Shift; bcd = bcd << 1
VL_ASSIGN_W(maxdecwidth, tmp, bcd);
VL_SHIFTL_WWI(maxdecwidth, maxdecwidth, 32, bcd, tmp, 1);
// bcd[0] = lwp[from_bit]
if (VL_BITISSET_W(lwp, from_bit)) bcd[0] |= 1;
}
std::string output;
int lsb = (maxdecwidth - 1) & ~3;
for (; lsb > 0; lsb -= 4) { // Skip leading zeros
if (VL_BITRSHIFT_W(bcd, lsb) & 0xf) break;
}
for (; lsb >= 0; lsb -= 4) {
output += ('0' + (VL_BITRSHIFT_W(bcd, lsb) & 0xf)); // 0..9
}
return output;
}
template <typename T>
std::string _vl_vsformat_time(char* tmp, T ld, int timeunit, bool left, size_t width) VL_MT_SAFE {
const VerilatedContextImp* const ctxImpp = Verilated::threadContextp()->impp();
const std::string suffix = ctxImpp->timeFormatSuffix();
const int userUnits = ctxImpp->timeFormatUnits(); // 0..-15
const int fracDigits = ctxImpp->timeFormatPrecision(); // 0..N
const int shift = -userUnits + fracDigits + timeunit; // 0..-15
int digits = 0;
if (std::numeric_limits<T>::is_integer) {
constexpr int b = 128;
constexpr int w = VL_WORDS_I(b);
VlWide<w> tmp0;
VlWide<w> tmp1;
VlWide<w> tmp2;
VlWide<w> tmp3;
WDataInP shifted = VL_EXTEND_WQ(b, 0, tmp0, static_cast<QData>(ld));
if (shift < 0) {
const WDataInP pow10 = VL_EXTEND_WQ(b, 0, tmp1, vl_time_pow10(-shift));
shifted = VL_DIV_WWW(b, tmp2, shifted, pow10);
} else {
const WDataInP pow10 = VL_EXTEND_WQ(b, 0, tmp1, vl_time_pow10(shift));
shifted = VL_MUL_W(w, tmp2, shifted, pow10);
}
const WDataInP fracDigitsPow10 = VL_EXTEND_WQ(b, 0, tmp3, vl_time_pow10(fracDigits));
const WDataInP integer = VL_DIV_WWW(b, tmp0, shifted, fracDigitsPow10);
const WDataInP frac = VL_MODDIV_WWW(b, tmp1, shifted, fracDigitsPow10);
const WDataInP max64Bit
= VL_EXTEND_WQ(b, 0, tmp2, std::numeric_limits<uint64_t>::max()); // breaks shifted
if (VL_GT_W(w, integer, max64Bit)) {
WDataOutP v = VL_ASSIGN_W(b, tmp3, integer); // breaks fracDigitsPow10
VlWide<w> zero;
VlWide<w> ten;
VL_ZERO_W(b, zero);
VL_EXTEND_WI(b, 0, ten, 10);
char buf[128]; // 128B is obviously long enough to represent 128bit integer in decimal
char* ptr = buf + sizeof(buf) - 1;
*ptr = '\0';
while (VL_GT_W(w, v, zero)) {
--ptr;
const WDataInP mod = VL_MODDIV_WWW(b, tmp2, v, ten); // breaks max64Bit
*ptr = "0123456789"[VL_SET_QW(mod)];
VlWide<w> divided;
VL_DIV_WWW(b, divided, v, ten);
VL_ASSIGN_W(b, v, divided);
}
if (!fracDigits) {
digits = VL_SNPRINTF(tmp, VL_VALUE_STRING_MAX_WIDTH, "%s%s", ptr, suffix.c_str());
} else {
digits = VL_SNPRINTF(tmp, VL_VALUE_STRING_MAX_WIDTH, "%s.%0*" PRIu64 "%s", ptr,
fracDigits, VL_SET_QW(frac), suffix.c_str());
}
} else {
const uint64_t integer64 = VL_SET_QW(integer);
if (!fracDigits) {
digits = VL_SNPRINTF(tmp, VL_VALUE_STRING_MAX_WIDTH, "%" PRIu64 "%s", integer64,
suffix.c_str());
} else {
digits = VL_SNPRINTF(tmp, VL_VALUE_STRING_MAX_WIDTH, "%" PRIu64 ".%0*" PRIu64 "%s",
integer64, fracDigits, VL_SET_QW(frac), suffix.c_str());
}
}
} else {
const double shiftd = vl_time_multiplier(shift);
const double scaled = ld * shiftd;
const double fracDiv = vl_time_multiplier(fracDigits);
const double whole = scaled / fracDiv;
if (!fracDigits) {
digits = VL_SNPRINTF(tmp, VL_VALUE_STRING_MAX_WIDTH, "%.0f%s", whole, suffix.c_str());
} else {
digits = VL_SNPRINTF(tmp, VL_VALUE_STRING_MAX_WIDTH, "%.*f%s", fracDigits, whole,
suffix.c_str());
}
}
const int needmore = static_cast<int>(width) - digits;
std::string padding;
if (needmore > 0) padding.append(needmore, ' '); // Pad with spaces
return left ? (tmp + padding) : (padding + tmp);
}
// Do a va_arg returning a quad, assuming input argument is anything less than wide
#define VL_VA_ARG_Q_(ap, bits) (((bits) <= VL_IDATASIZE) ? va_arg(ap, IData) : va_arg(ap, QData))
void _vl_vsformat(std::string& output, const std::string& format, va_list ap) VL_MT_SAFE {
// Format a Verilog $write style format into the output list
// The format must be pre-processed (and lower cased) by Verilator
// Arguments are in "width, arg-value (or WDataIn* if wide)" form
//
// Note uses a single buffer internally; presumes only one usage per printf
// Note also assumes variables < 64 are not wide, this assumption is
// sometimes not true in low-level routines written here in verilated.cpp
static thread_local char t_tmp[VL_VALUE_STRING_MAX_WIDTH];
std::string::const_iterator pctit = format.end(); // Most recent %##.##g format
bool inPct = false;
bool widthSet = false;
bool left = false;
size_t width = 0;
for (std::string::const_iterator pos = format.cbegin(); pos != format.cend(); ++pos) {
if (!inPct && pos[0] == '%') {
pctit = pos;
inPct = true;
widthSet = false;
width = 0;
} else if (!inPct) { // Normal text
// Fast-forward to next escape and add to output
std::string::const_iterator ep = pos;
while (ep != format.end() && ep[0] != '%') ++ep;
if (ep != pos) {
output.append(pos, ep);
pos = ep - 1;
}
} else { // Format character
inPct = false;
const char fmt = pos[0];
switch (fmt) {
case '0': // FALLTHRU
case '1': // FALLTHRU
case '2': // FALLTHRU
case '3': // FALLTHRU
case '4': // FALLTHRU
case '5': // FALLTHRU
case '6': // FALLTHRU
case '7': // FALLTHRU
case '8': // FALLTHRU
case '9':
inPct = true; // Get more digits
widthSet = true;
width = width * 10 + (fmt - '0');
break;
case '-':
left = true;
inPct = true; // Get more digits
break;
case '.':
inPct = true; // Get more digits
break;
case '%': //
output += '%';
break;
case 'N': { // "C" string with name of module, add . if needed
const char* const cstrp = va_arg(ap, const char*);
if (VL_LIKELY(*cstrp)) {
output += cstrp;
output += '.';
}
break;
}
case 'S': { // "C" string
const char* const cstrp = va_arg(ap, const char*);
output += cstrp;
break;
}
case '@': { // Verilog/C++ string
va_arg(ap, int); // # bits is ignored
const std::string* const cstrp = va_arg(ap, const std::string*);
std::string padding;
if (width > cstrp->size()) padding.append(width - cstrp->size(), ' ');
output += left ? (*cstrp + padding) : (padding + *cstrp);
break;
}
case 'e':
case 'f':
case 'g':
case '^': { // Realtime
const int lbits = va_arg(ap, int);
const double d = va_arg(ap, double);
(void)lbits; // UNUSED - always 64
if (fmt == '^') { // Realtime
if (!widthSet) width = Verilated::threadContextp()->impp()->timeFormatWidth();
const int timeunit = va_arg(ap, int);
output += _vl_vsformat_time(t_tmp, d, timeunit, left, width);
} else {
const std::string fmts{pctit, pos + 1};
VL_SNPRINTF(t_tmp, VL_VALUE_STRING_MAX_WIDTH, fmts.c_str(), d);
output += t_tmp;
}
break;
}
default: {
// Deal with all read-and-print somethings
const int lbits = va_arg(ap, int);
QData ld = 0;
VlWide<VL_WQ_WORDS_E> qlwp;
WDataInP lwp = nullptr;
if (lbits <= VL_QUADSIZE) {
ld = VL_VA_ARG_Q_(ap, lbits);
VL_SET_WQ(qlwp, ld);
lwp = qlwp;
} else {
lwp = va_arg(ap, WDataInP);
ld = lwp[0];
}
int lsb = lbits - 1;
if (widthSet && width == 0) {
while (lsb && !VL_BITISSET_W(lwp, lsb)) --lsb;
}
switch (fmt) {
case 'c': {
const IData charval = ld & 0xff;
output += static_cast<char>(charval);
break;
}
case 's': {
std::string field;
for (; lsb >= 0; --lsb) {
lsb = (lsb / 8) * 8; // Next digit
const IData charval = VL_BITRSHIFT_W(lwp, lsb) & 0xff;
field += (charval == 0) ? ' ' : charval;
}
std::string padding;
if (width > field.size()) padding.append(width - field.size(), ' ');
output += left ? (field + padding) : (padding + field);
break;
}
case 'd': { // Signed decimal
int digits = 0;
std::string append;
if (lbits <= VL_QUADSIZE) {
digits
= VL_SNPRINTF(t_tmp, VL_VALUE_STRING_MAX_WIDTH, "%" PRId64,
static_cast<int64_t>(VL_EXTENDS_QQ(lbits, lbits, ld)));
append = t_tmp;
} else {
if (VL_SIGN_E(lbits, lwp[VL_WORDS_I(lbits) - 1])) {
VlWide<VL_VALUE_STRING_MAX_WIDTH / 4 + 2> neg;
VL_NEGATE_W(VL_WORDS_I(lbits), neg, lwp);
append = "-"s + VL_DECIMAL_NW(lbits, neg);
} else {
append = VL_DECIMAL_NW(lbits, lwp);
}
digits = static_cast<int>(append.length());
}
const int needmore = static_cast<int>(width) - digits;
if (needmore > 0) {
std::string padding;
if (left) {
padding.append(needmore, ' '); // Pre-pad spaces
output += append + padding;
} else {
if (pctit != format.end() && pctit[0] && pctit[1] == '0') { // %0
padding.append(needmore, '0'); // Pre-pad zero
} else {
padding.append(needmore, ' '); // Pre-pad spaces
}
output += padding + append;
}
} else {
output += append;
}
break;
}
case '#': { // Unsigned decimal
int digits = 0;
std::string append;
if (lbits <= VL_QUADSIZE) {
digits = VL_SNPRINTF(t_tmp, VL_VALUE_STRING_MAX_WIDTH, "%" PRIu64, ld);
append = t_tmp;
} else {
append = VL_DECIMAL_NW(lbits, lwp);
digits = static_cast<int>(append.length());
}
const int needmore = static_cast<int>(width) - digits;
if (needmore > 0) {
std::string padding;
if (left) {
padding.append(needmore, ' '); // Pre-pad spaces
output += append + padding;
} else {
if (pctit != format.end() && pctit[0] && pctit[1] == '0') { // %0
padding.append(needmore, '0'); // Pre-pad zero
} else {
padding.append(needmore, ' '); // Pre-pad spaces
}
output += padding + append;
}
} else {
output += append;
}
break;
}
case 't': { // Time
if (!widthSet) width = Verilated::threadContextp()->impp()->timeFormatWidth();
const int timeunit = va_arg(ap, int);
output += _vl_vsformat_time(t_tmp, ld, timeunit, left, width);
break;
}
case 'b': // FALLTHRU
case 'o': // FALLTHRU
case 'x': {
if (widthSet || left) {
lsb = VL_MOSTSETBITP1_W(VL_WORDS_I(lbits), lwp);
lsb = (lsb < 1) ? 0 : (lsb - 1);
}
std::string append;
int digits;
switch (fmt) {
case 'b': {
digits = lsb + 1;
for (; lsb >= 0; --lsb) append += (VL_BITRSHIFT_W(lwp, lsb) & 1) + '0';
break;
}
case 'o': {
digits = (lsb + 1 + 2) / 3;
for (; lsb >= 0; --lsb) {
lsb = (lsb / 3) * 3; // Next digit
// Octal numbers may span more than one wide word,
// so we need to grab each bit separately and check for overrun
// Octal is rare, so we'll do it a slow simple way
append += static_cast<char>(
'0' + ((VL_BITISSETLIMIT_W(lwp, lbits, lsb + 0)) ? 1 : 0)
+ ((VL_BITISSETLIMIT_W(lwp, lbits, lsb + 1)) ? 2 : 0)
+ ((VL_BITISSETLIMIT_W(lwp, lbits, lsb + 2)) ? 4 : 0));
}
break;
}
default: { // 'x'
digits = (lsb + 1 + 3) / 4;
for (; lsb >= 0; --lsb) {
lsb = (lsb / 4) * 4; // Next digit
const IData charval = VL_BITRSHIFT_W(lwp, lsb) & 0xf;
append += "0123456789abcdef"[charval];
}
break;
}
} // switch
const int needmore = static_cast<int>(width) - digits;
if (needmore > 0) {
std::string padding;
if (left) {
padding.append(needmore, ' '); // Pre-pad spaces
output += append + padding;
} else {
padding.append(needmore, '0'); // Pre-pad zero
output += padding + append;
}
} else {
output += append;
}
break;
} // b / o / x
case 'u':
case 'z': { // Packed 4-state
const bool is_4_state = (fmt == 'z');
output.reserve(output.size() + ((is_4_state ? 2 : 1) * VL_WORDS_I(lbits)));
int bytes_to_go = VL_BYTES_I(lbits);
int bit = 0;
while (bytes_to_go > 0) {
const int wr_bytes = std::min(4, bytes_to_go);
for (int byte = 0; byte < wr_bytes; byte++, bit += 8)
output += static_cast<char>(VL_BITRSHIFT_W(lwp, bit) & 0xff);
output.append(4 - wr_bytes, static_cast<char>(0));
if (is_4_state) output.append(4, static_cast<char>(0));
bytes_to_go -= wr_bytes;
}
break;
}
case 'v': // Strength; assume always strong
for (lsb = lbits - 1; lsb >= 0; --lsb) {
if (VL_BITRSHIFT_W(lwp, lsb) & 1) {
output += "St1 ";
} else {
output += "St0 ";
}
}
break;
default: { // LCOV_EXCL_START
const std::string msg = "Unknown _vl_vsformat code: "s + pos[0];
VL_FATAL_MT(__FILE__, __LINE__, "", msg.c_str());
break;
} // LCOV_EXCL_STOP
} // switch
}
} // switch
}
}
}
static bool _vl_vsss_eof(FILE* fp, int floc) VL_MT_SAFE {
if (VL_LIKELY(fp)) {
return std::feof(fp) ? true : false; // true : false to prevent MSVC++ warning
} else {
return floc < 0;
}
}
static void _vl_vsss_advance(FILE* fp, int& floc) VL_MT_SAFE {
if (VL_LIKELY(fp)) {
std::fgetc(fp);
} else {
floc -= 8;
}
}
static int _vl_vsss_peek(FILE* fp, int& floc, const WDataInP fromp,
const std::string& fstr) VL_MT_SAFE {
// Get a character without advancing
if (VL_LIKELY(fp)) {
const int data = std::fgetc(fp);
if (data == EOF) return EOF;
ungetc(data, fp);
return data;
} else {
if (floc < 0) return EOF;
floc = floc & ~7; // Align to closest character
if (fromp == nullptr) {
return fstr[fstr.length() - 1 - (floc >> 3)];
} else {
return VL_BITRSHIFT_W(fromp, floc) & 0xff;
}
}
}
static void _vl_vsss_skipspace(FILE* fp, int& floc, const WDataInP fromp,
const std::string& fstr) VL_MT_SAFE {
while (true) {
const int c = _vl_vsss_peek(fp, floc, fromp, fstr);
if (c == EOF || !std::isspace(c)) return;
_vl_vsss_advance(fp, floc);
}
}
static void _vl_vsss_read_str(FILE* fp, int& floc, const WDataInP fromp, const std::string& fstr,
char* tmpp, const char* acceptp) VL_MT_SAFE {
// Read into tmp, consisting of characters from acceptp list
char* cp = tmpp;
while (true) {
int c = _vl_vsss_peek(fp, floc, fromp, fstr);
if (c == EOF || std::isspace(c)) break;
if (acceptp && nullptr == std::strchr(acceptp, c)) break; // String - allow anything
if (acceptp) c = std::tolower(c); // Non-strings we'll simplify
*cp++ = c;
_vl_vsss_advance(fp, floc);
}
*cp++ = '\0';
// VL_DBG_MSGF(" _read got='"<<tmpp<<"'\n");
}
static char* _vl_vsss_read_bin(FILE* fp, int& floc, const WDataInP fromp, const std::string& fstr,
char* beginp, std::size_t n,
const bool inhibit = false) VL_MT_SAFE {
// Variant of _vl_vsss_read_str using the same underlying I/O functions but optimized
// specifically for block reads of N bytes (read operations are not demarcated by
// whitespace). In the fp case, except descriptor to have been opened in binary mode.
while (n-- > 0) {
const int c = _vl_vsss_peek(fp, floc, fromp, fstr);
if (c == EOF) return nullptr;
if (!inhibit) *beginp++ = c;
_vl_vsss_advance(fp, floc);
}
return beginp;
}
static void _vl_vsss_setbit(WDataOutP iowp, int obits, int lsb, int nbits, IData ld) VL_MT_SAFE {
for (; nbits && lsb < obits; nbits--, lsb++, ld >>= 1) VL_ASSIGNBIT_WI(lsb, iowp, ld & 1);
}
void _vl_vsss_based(WDataOutP owp, int obits, int baseLog2, const char* strp, size_t posstart,
size_t posend) VL_MT_SAFE {
// Read in base "2^^baseLog2" digits from strp[posstart..posend-1] into owp of size obits.
VL_ZERO_W(obits, owp);
int lsb = 0;
for (int i = 0, pos = static_cast<int>(posend) - 1;
i < obits && pos >= static_cast<int>(posstart); --pos) {
// clang-format off
switch (tolower (strp[pos])) {
case 'x': case 'z': case '?': // FALLTHRU
case '0': lsb += baseLog2; break;
case '1': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 1); lsb += baseLog2; break;
case '2': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 2); lsb += baseLog2; break;
case '3': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 3); lsb += baseLog2; break;
case '4': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 4); lsb += baseLog2; break;
case '5': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 5); lsb += baseLog2; break;
case '6': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 6); lsb += baseLog2; break;
case '7': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 7); lsb += baseLog2; break;
case '8': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 8); lsb += baseLog2; break;
case '9': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 9); lsb += baseLog2; break;
case 'a': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 10); lsb += baseLog2; break;
case 'b': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 11); lsb += baseLog2; break;
case 'c': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 12); lsb += baseLog2; break;
case 'd': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 13); lsb += baseLog2; break;
case 'e': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 14); lsb += baseLog2; break;
case 'f': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 15); lsb += baseLog2; break;
case '_': break;
}
// clang-format on
}
}
IData _vl_vsscanf(FILE* fp, // If a fscanf
int fbits, const WDataInP fromp, // Else if a sscanf
const std::string& fstr, // if a sscanf to string
const std::string& format, va_list ap) VL_MT_SAFE {
// Read a Verilog $sscanf/$fscanf style format into the output list
// The format must be pre-processed (and lower cased) by Verilator
// Arguments are in "width, arg-value (or WDataIn* if wide)" form
static thread_local char t_tmp[VL_VALUE_STRING_MAX_WIDTH];
int floc = fbits - 1;
IData got = 0;
bool inPct = false;
bool inIgnore = false;
std::string::const_iterator pos = format.cbegin();
for (; pos != format.cend() && !_vl_vsss_eof(fp, floc); ++pos) {
// VL_DBG_MSGF("_vlscan fmt='"<<pos[0]<<"' floc="<<floc<<" file='"<<_vl_vsss_peek(fp, floc,
// fromp, fstr)<<"'\n");
if (!inPct && pos[0] == '%') {
inPct = true;
inIgnore = false;
} else if (!inPct && std::isspace(pos[0])) { // Format spaces
while (std::isspace(pos[1])) ++pos;
_vl_vsss_skipspace(fp, floc, fromp, fstr);
} else if (!inPct) { // Expected Format
_vl_vsss_skipspace(fp, floc, fromp, fstr);
const int c = _vl_vsss_peek(fp, floc, fromp, fstr);
if (c != pos[0]) goto done;
_vl_vsss_advance(fp, floc);
} else { // Format character
// Skip loading spaces
inPct = false;
const char fmt = pos[0];
switch (fmt) {
case '%': {
const int c = _vl_vsss_peek(fp, floc, fromp, fstr);
if (c != '%') goto done;
_vl_vsss_advance(fp, floc);
break;
}
case '*':
inPct = true;
inIgnore = true;
break;
default: {
// Deal with all read-and-scan somethings
// Note LSBs are preserved if there's an overflow
const int obits = inIgnore ? 0 : va_arg(ap, int);
VlWide<VL_WQ_WORDS_E> qowp;
VL_SET_WQ(qowp, 0ULL);
WDataOutP owp = qowp;
if (obits == -1) { // string
owp = nullptr;
if (VL_UNCOVERABLE(fmt != 's')) {
VL_FATAL_MT(
__FILE__, __LINE__, "",
"Internal: format other than %s is passed to string"); // LCOV_EXCL_LINE
}
} else if (obits > VL_QUADSIZE) {
owp = va_arg(ap, WDataOutP);
}
for (int i = 0; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
switch (fmt) {
case 'c': {
const int c = _vl_vsss_peek(fp, floc, fromp, fstr);
if (c == EOF) goto done;
_vl_vsss_advance(fp, floc);
owp[0] = c;
break;
}
case 's': {
_vl_vsss_skipspace(fp, floc, fromp, fstr);
_vl_vsss_read_str(fp, floc, fromp, fstr, t_tmp, nullptr);
if (!t_tmp[0]) goto done;
if (owp) {
int lpos = (static_cast<int>(std::strlen(t_tmp))) - 1;
int lsb = 0;
for (int i = 0; i < obits && lpos >= 0; --lpos) {
_vl_vsss_setbit(owp, obits, lsb, 8, t_tmp[lpos]);
lsb += 8;
}
}
break;
}
case 'd': { // Signed decimal
_vl_vsss_skipspace(fp, floc, fromp, fstr);
_vl_vsss_read_str(fp, floc, fromp, fstr, t_tmp, "0123456789+-xXzZ?_");
if (!t_tmp[0]) goto done;
int64_t ld = 0;
std::sscanf(t_tmp, "%30" PRId64, &ld);
VL_SET_WQ(owp, ld);
break;
}
case 'f':
case 'e':
case 'g': { // Real number
_vl_vsss_skipspace(fp, floc, fromp, fstr);
_vl_vsss_read_str(fp, floc, fromp, fstr, t_tmp, "+-.0123456789eE");
if (!t_tmp[0]) goto done;
// cppcheck-has-bug-suppress unusedStructMember, unreadVariable
union {
double r;
int64_t ld;
} u;
u.r = std::strtod(t_tmp, nullptr);
VL_SET_WQ(owp, u.ld);
break;
}
case 't': // FALLTHRU // Time
case '#': { // Unsigned decimal
_vl_vsss_skipspace(fp, floc, fromp, fstr);
_vl_vsss_read_str(fp, floc, fromp, fstr, t_tmp, "0123456789+-xXzZ?_");
if (!t_tmp[0]) goto done;
QData ld = 0;
std::sscanf(t_tmp, "%30" PRIu64, &ld);
VL_SET_WQ(owp, ld);
break;
}
case 'b': {
_vl_vsss_skipspace(fp, floc, fromp, fstr);
_vl_vsss_read_str(fp, floc, fromp, fstr, t_tmp, "01xXzZ?_");
if (!t_tmp[0]) goto done;
_vl_vsss_based(owp, obits, 1, t_tmp, 0, std::strlen(t_tmp));
break;
}
case 'o': {
_vl_vsss_skipspace(fp, floc, fromp, fstr);
_vl_vsss_read_str(fp, floc, fromp, fstr, t_tmp, "01234567xXzZ?_");
if (!t_tmp[0]) goto done;
_vl_vsss_based(owp, obits, 3, t_tmp, 0, std::strlen(t_tmp));
break;
}
case 'x': {
_vl_vsss_skipspace(fp, floc, fromp, fstr);
_vl_vsss_read_str(fp, floc, fromp, fstr, t_tmp,
"0123456789abcdefABCDEFxXzZ?_");
if (!t_tmp[0]) goto done;
_vl_vsss_based(owp, obits, 4, t_tmp, 0, std::strlen(t_tmp));
break;
}
case 'u': {
// Read packed 2-value binary data
const int bytes = VL_BYTES_I(obits);
char* const out = reinterpret_cast<char*>(owp);
if (!_vl_vsss_read_bin(fp, floc, fromp, fstr, out, bytes)) goto done;
const int last = bytes % 4;
if (last != 0
&& !_vl_vsss_read_bin(fp, floc, fromp, fstr, out, 4 - last, true))
goto done;
break;
}
case 'z': {
// Read packed 4-value binary data
char* out = reinterpret_cast<char*>(owp);
int bytes = VL_BYTES_I(obits);
while (bytes > 0) {
const int abytes = std::min(4, bytes);
// aval (4B) read {0, 1} state
out = _vl_vsss_read_bin(fp, floc, fromp, fstr, out, abytes);
if (!out) goto done;
// bval (4B) disregard {X, Z} state and align to new 8B boundary.
out = _vl_vsss_read_bin(fp, floc, fromp, fstr, out, 8 - abytes, true);
if (!out) goto done;
bytes -= abytes;
}
break;
}
default: { // LCOV_EXCL_START
const std::string msg = "Unknown _vl_vsscanf code: "s + pos[0];
VL_FATAL_MT(__FILE__, __LINE__, "", msg.c_str());
break;
} // LCOV_EXCL_STOP
} // switch
if (!inIgnore) ++got;
// Reload data if non-wide (if wide, we put it in the right place directly)
if (obits == 0) { // Due to inIgnore
} else if (obits == -1) { // string
std::string* const p = va_arg(ap, std::string*);
*p = t_tmp;
} else if (obits <= VL_BYTESIZE) {
CData* const p = va_arg(ap, CData*);
*p = VL_CLEAN_II(obits, obits, owp[0]);
} else if (obits <= VL_SHORTSIZE) {
SData* const p = va_arg(ap, SData*);
*p = VL_CLEAN_II(obits, obits, owp[0]);
} else if (obits <= VL_IDATASIZE) {
IData* const p = va_arg(ap, IData*);
*p = VL_CLEAN_II(obits, obits, owp[0]);
} else if (obits <= VL_QUADSIZE) {
QData* const p = va_arg(ap, QData*);
*p = VL_CLEAN_QQ(obits, obits, VL_SET_QW(owp));
} else {
_vl_clean_inplace_w(obits, owp);
}
}
} // switch
}
}
done:
return got;
}
//===========================================================================
// File I/O
FILE* VL_CVT_I_FP(IData lhs) VL_MT_SAFE {
// Expected non-MCD case; returns null on MCD descriptors.
return Verilated::threadContextp()->impp()->fdToFp(lhs);
}
void _vl_vint_to_string(int obits, char* destoutp, const WDataInP sourcep) VL_MT_SAFE {
// See also VL_DATA_TO_STRING_NW
int lsb = obits - 1;
bool start = true;
char* destp = destoutp;
for (; lsb >= 0; --lsb) {
lsb = (lsb / 8) * 8; // Next digit
const IData charval = VL_BITRSHIFT_W(sourcep, lsb) & 0xff;
if (!start || charval) {
*destp++ = (charval == 0) ? ' ' : charval;
start = false; // Drop leading 0s
}
}
*destp = '\0'; // Terminate
if (!start) { // Drop trailing spaces
while (std::isspace(*(destp - 1)) && destp > destoutp) *--destp = '\0';
}
}
void _vl_string_to_vint(int obits, void* destp, size_t srclen, const char* srcp) VL_MT_SAFE {
// Convert C string to Verilog format
const size_t bytes = VL_BYTES_I(obits);
char* op = reinterpret_cast<char*>(destp);
if (srclen > bytes) srclen = bytes; // Don't overflow destination
size_t i = 0;
for (i = 0; i < srclen; ++i) *op++ = srcp[srclen - 1 - i];
for (; i < bytes; ++i) *op++ = 0;
}
static IData getLine(std::string& str, IData fpi, size_t maxLen) VL_MT_SAFE {
str.clear();
// While threadsafe, each thread can only access different file handles
FILE* const fp = VL_CVT_I_FP(fpi);
if (VL_UNLIKELY(!fp)) return 0;
// We don't use fgets, as we must read \0s.
while (str.size() < maxLen) {
const int c = getc(fp); // getc() is threadsafe
if (c == EOF) break;
str.push_back(c);
if (c == '\n') break;
}
return static_cast<IData>(str.size());
}
IData VL_FGETS_IXI(int obits, void* destp, IData fpi) VL_MT_SAFE {
std::string str;
const IData bytes = VL_BYTES_I(obits);
const IData got = getLine(str, fpi, bytes);
if (VL_UNLIKELY(str.empty())) return 0;
// V3Emit has static check that bytes < VL_VALUE_STRING_MAX_WORDS, but be safe
if (VL_UNCOVERABLE(bytes < str.size())) {
VL_FATAL_MT(__FILE__, __LINE__, "", "Internal: fgets buffer overrun"); // LCOV_EXCL_LINE
}
_vl_string_to_vint(obits, destp, got, str.data());
return got;
}
IData VL_FGETS_NI(std::string& dest, IData fpi) VL_MT_SAFE {
return getLine(dest, fpi, std::numeric_limits<size_t>::max());
}
IData VL_FERROR_IN(IData, std::string& outputr) VL_MT_SAFE {
// We ignore lhs/fpi - IEEE says "most recent error" so probably good enough
const IData ret = errno;
outputr = std::string{::std::strerror(ret)};
return ret;
}
IData VL_FERROR_IW(IData fpi, int obits, WDataOutP outwp) VL_MT_SAFE {
std::string output;
const IData ret = VL_FERROR_IN(fpi, output /*ref*/);
_vl_string_to_vint(obits, outwp, output.length(), output.c_str());
return ret;
}
IData VL_FOPEN_NN(const std::string& filename, const std::string& mode) {
return Verilated::threadContextp()->impp()->fdNew(filename.c_str(), mode.c_str());
}
IData VL_FOPEN_MCD_N(const std::string& filename) VL_MT_SAFE {
return Verilated::threadContextp()->impp()->fdNewMcd(filename.c_str());
}
void VL_FFLUSH_I(IData fdi) VL_MT_SAFE { Verilated::threadContextp()->impp()->fdFlush(fdi); }
IData VL_FSEEK_I(IData fdi, IData offset, IData origin) VL_MT_SAFE {
return Verilated::threadContextp()->impp()->fdSeek(fdi, offset, origin);
}
IData VL_FTELL_I(IData fdi) VL_MT_SAFE { return Verilated::threadContextp()->impp()->fdTell(fdi); }
void VL_FCLOSE_I(IData fdi) VL_MT_SAFE {
// While threadsafe, each thread can only access different file handles
Verilated::threadContextp()->impp()->fdClose(fdi);
}
void VL_SFORMAT_NX(int obits, CData& destr, const std::string& format, int argc, ...) VL_MT_SAFE {
static thread_local std::string t_output; // static only for speed
t_output = "";
va_list ap;
va_start(ap, argc);
_vl_vsformat(t_output, format, ap);
va_end(ap);
_vl_string_to_vint(obits, &destr, t_output.length(), t_output.c_str());
}
void VL_SFORMAT_NX(int obits, SData& destr, const std::string& format, int argc, ...) VL_MT_SAFE {
static thread_local std::string t_output; // static only for speed
t_output = "";
va_list ap;
va_start(ap, argc);
_vl_vsformat(t_output, format, ap);
va_end(ap);
_vl_string_to_vint(obits, &destr, t_output.length(), t_output.c_str());
}
void VL_SFORMAT_NX(int obits, IData& destr, const std::string& format, int argc, ...) VL_MT_SAFE {
static thread_local std::string t_output; // static only for speed
t_output = "";
va_list ap;
va_start(ap, argc);
_vl_vsformat(t_output, format, ap);
va_end(ap);
_vl_string_to_vint(obits, &destr, t_output.length(), t_output.c_str());
}
void VL_SFORMAT_NX(int obits, QData& destr, const std::string& format, int argc, ...) VL_MT_SAFE {
static thread_local std::string t_output; // static only for speed
t_output = "";
va_list ap;
va_start(ap, argc);
_vl_vsformat(t_output, format, ap);
va_end(ap);
_vl_string_to_vint(obits, &destr, t_output.length(), t_output.c_str());
}
void VL_SFORMAT_NX(int obits, void* destp, const std::string& format, int argc, ...) VL_MT_SAFE {
static thread_local std::string t_output; // static only for speed
t_output = "";
va_list ap;
va_start(ap, argc);
_vl_vsformat(t_output, format, ap);
va_end(ap);
_vl_string_to_vint(obits, destp, t_output.length(), t_output.c_str());
}
void VL_SFORMAT_NX(int obits_ignored, std::string& output, const std::string& format, int argc,
...) VL_MT_SAFE {
(void)obits_ignored; // So VL_SFORMAT_NNX function signatures all match
std::string temp_output;
va_list ap;
va_start(ap, argc);
_vl_vsformat(temp_output, format, ap);
va_end(ap);
output = temp_output;
}
std::string VL_SFORMATF_N_NX(const std::string& format, int argc, ...) VL_MT_SAFE {
static thread_local std::string t_output; // static only for speed
t_output = "";
va_list ap;
va_start(ap, argc);
_vl_vsformat(t_output, format, ap);
va_end(ap);
return t_output;
}
void VL_WRITEF_NX(const std::string& format, int argc, ...) VL_MT_SAFE {
static thread_local std::string t_output; // static only for speed
t_output = "";
va_list ap;
va_start(ap, argc);
_vl_vsformat(t_output, format, ap);
va_end(ap);
VL_PRINTF_MT("%s", t_output.c_str());
}
void VL_FWRITEF_NX(IData fpi, const std::string& format, int argc, ...) VL_MT_SAFE {
// While threadsafe, each thread can only access different file handles
static thread_local std::string t_output; // static only for speed
t_output = "";
va_list ap;
va_start(ap, argc);
_vl_vsformat(t_output, format, ap);
va_end(ap);
Verilated::threadContextp()->impp()->fdWrite(fpi, t_output);
}
IData VL_FSCANF_INX(IData fpi, const std::string& format, int argc, ...) VL_MT_SAFE {
// While threadsafe, each thread can only access different file handles
FILE* const fp = VL_CVT_I_FP(fpi);
if (VL_UNLIKELY(!fp)) return ~0U; // -1
va_list ap;
va_start(ap, argc);
const IData got = _vl_vsscanf(fp, 0, nullptr, "", format, ap);
va_end(ap);
return got;
}
IData VL_SSCANF_IINX(int lbits, IData ld, const std::string& format, int argc, ...) VL_MT_SAFE {
VlWide<VL_WQ_WORDS_E> fnw;
VL_SET_WI(fnw, ld);
va_list ap;
va_start(ap, argc);
const IData got = _vl_vsscanf(nullptr, lbits, fnw, "", format, ap);
va_end(ap);
return got;
}
IData VL_SSCANF_IQNX(int lbits, QData ld, const std::string& format, int argc, ...) VL_MT_SAFE {
VlWide<VL_WQ_WORDS_E> fnw;
VL_SET_WQ(fnw, ld);
va_list ap;
va_start(ap, argc);
const IData got = _vl_vsscanf(nullptr, lbits, fnw, "", format, ap);
va_end(ap);
return got;
}
IData VL_SSCANF_IWNX(int lbits, const WDataInP lwp, const std::string& format, int argc,
...) VL_MT_SAFE {
va_list ap;
va_start(ap, argc);
const IData got = _vl_vsscanf(nullptr, lbits, lwp, "", format, ap);
va_end(ap);
return got;
}
IData VL_SSCANF_INNX(int, const std::string& ld, const std::string& format, int argc,
...) VL_MT_SAFE {
va_list ap;
va_start(ap, argc);
const IData got
= _vl_vsscanf(nullptr, static_cast<int>(ld.length() * 8), nullptr, ld, format, ap);
va_end(ap);
return got;
}
IData VL_FREAD_I(int width, int array_lsb, int array_size, void* memp, IData fpi, IData start,
IData count) VL_MT_SAFE {
// While threadsafe, each thread can only access different file handles
FILE* const fp = VL_CVT_I_FP(fpi);
if (VL_UNLIKELY(!fp)) return 0;
if (count > (array_size - (start - array_lsb))) count = array_size - (start - array_lsb);
// Prep for reading
IData read_count = 0;
IData read_elements = 0;
const int start_shift = (width - 1) & ~7; // bit+7:bit gets first character
int shift = start_shift;
// Read the data
// We process a character at a time, as then we don't need to deal
// with changing buffer sizes dynamically, etc.
while (true) {
const int c = std::fgetc(fp);
if (VL_UNLIKELY(c == EOF)) break;
// Shift value in
const IData entry = read_elements + start - array_lsb;
if (width <= 8) {
CData* const datap = &(reinterpret_cast<CData*>(memp))[entry];
if (shift == start_shift) *datap = 0;
*datap |= (c << shift) & VL_MASK_I(width);
} else if (width <= 16) {
SData* const datap = &(reinterpret_cast<SData*>(memp))[entry];
if (shift == start_shift) *datap = 0;
*datap |= (c << shift) & VL_MASK_I(width);
} else if (width <= VL_IDATASIZE) {
IData* const datap = &(reinterpret_cast<IData*>(memp))[entry];
if (shift == start_shift) *datap = 0;
*datap |= (c << shift) & VL_MASK_I(width);
} else if (width <= VL_QUADSIZE) {
QData* const datap = &(reinterpret_cast<QData*>(memp))[entry];
if (shift == start_shift) *datap = 0;
*datap |= ((static_cast<QData>(c) << static_cast<QData>(shift)) & VL_MASK_Q(width));
} else {
WDataOutP datap = &(reinterpret_cast<WDataOutP>(memp))[entry * VL_WORDS_I(width)];
if (shift == start_shift) VL_ZERO_W(width, datap);
datap[VL_BITWORD_E(shift)] |= (static_cast<EData>(c) << VL_BITBIT_E(shift));
}
// Prep for next
++read_count;
shift -= 8;
if (shift < 0) {
shift = start_shift;
++read_elements;
if (VL_UNLIKELY(read_elements >= count)) break;
}
}
return read_count;
}
std::string VL_STACKTRACE_N() VL_MT_SAFE {
static VerilatedMutex s_stackTraceMutex;
const VerilatedLockGuard lock{s_stackTraceMutex};
int nptrs = 0;
char** strings = nullptr;
#ifdef _VL_HAVE_STACKTRACE
constexpr int BT_BUF_SIZE = 100;
void* buffer[BT_BUF_SIZE];
nptrs = backtrace(buffer, BT_BUF_SIZE);
strings = backtrace_symbols(buffer, nptrs);
#endif
// cppcheck-suppress knownConditionTrueFalse
if (!strings) return "Unable to backtrace\n";
std::string result = "Backtrace:\n";
for (int j = 0; j < nptrs; j++) result += std::string{strings[j]} + "\n"s;
free(strings);
return result;
}
void VL_STACKTRACE() VL_MT_SAFE {
const std::string result = VL_STACKTRACE_N();
VL_PRINTF("%s", result.c_str());
}
IData VL_SYSTEM_IQ(QData lhs) VL_MT_SAFE {
VlWide<VL_WQ_WORDS_E> lhsw;
VL_SET_WQ(lhsw, lhs);
return VL_SYSTEM_IW(VL_WQ_WORDS_E, lhsw);
}
IData VL_SYSTEM_IW(int lhswords, const WDataInP lhsp) VL_MT_SAFE {
char filenamez[VL_VALUE_STRING_MAX_CHARS + 1];
_vl_vint_to_string(lhswords * VL_EDATASIZE, filenamez, lhsp);
return VL_SYSTEM_IN(filenamez);
}
IData VL_SYSTEM_IN(const std::string& lhs) VL_MT_SAFE {
const int code = std::system(lhs.c_str()); // Yes, std::system() is threadsafe
return code >> 8; // Want exit status
}
IData VL_TESTPLUSARGS_I(const std::string& format) VL_MT_SAFE {
const std::string& match = Verilated::threadContextp()->impp()->argPlusMatch(format.c_str());
return match.empty() ? 0 : 1;
}
IData VL_VALUEPLUSARGS_INW(int rbits, const std::string& ld, WDataOutP rwp) VL_MT_SAFE {
std::string prefix;
bool inPct = false;
bool done = false;
char fmt = ' ';
for (const char* posp = ld.c_str(); !done && *posp; ++posp) {
if (!inPct && posp[0] == '%') {
inPct = true;
} else if (!inPct) { // Normal text
prefix += *posp;
} else if (*posp == '0') { // %0
} else { // Format character
switch (std::tolower(*posp)) {
case '%':
prefix += *posp;
inPct = false;
break;
default:
fmt = *posp;
done = true;
break;
}
}
}
const std::string& match = Verilated::threadContextp()->impp()->argPlusMatch(prefix.c_str());
const char* const dp = match.c_str() + 1 /*leading + */ + prefix.length();
if (match.empty()) return 0;
VL_ZERO_W(rbits, rwp);
switch (std::tolower(fmt)) {
case 'd': {
int64_t lld = 0;
std::sscanf(dp, "%30" PRId64, &lld);
VL_SET_WQ(rwp, lld);
break;
}
case 'b': _vl_vsss_based(rwp, rbits, 1, dp, 0, std::strlen(dp)); break;
case 'o': _vl_vsss_based(rwp, rbits, 3, dp, 0, std::strlen(dp)); break;
case 'h': // FALLTHRU
case 'x': _vl_vsss_based(rwp, rbits, 4, dp, 0, std::strlen(dp)); break;
case 's': { // string/no conversion
for (int i = 0, lsb = 0, posp = static_cast<int>(std::strlen(dp)) - 1;
i < rbits && posp >= 0; --posp) {
_vl_vsss_setbit(rwp, rbits, lsb, 8, dp[posp]);
lsb += 8;
}
break;
}
case 'e': {
double temp = 0.F;
std::sscanf(dp, "%le", &temp);
VL_SET_WQ(rwp, VL_CVT_Q_D(temp));
break;
}
case 'f': {
double temp = 0.F;
std::sscanf(dp, "%lf", &temp);
VL_SET_WQ(rwp, VL_CVT_Q_D(temp));
break;
}
case 'g': {
double temp = 0.F;
std::sscanf(dp, "%lg", &temp);
VL_SET_WQ(rwp, VL_CVT_Q_D(temp));
break;
}
default: // Other simulators return 0 in these cases and don't error out
return 0;
}
_vl_clean_inplace_w(rbits, rwp);
return 1;
}
IData VL_VALUEPLUSARGS_INN(int, const std::string& ld, std::string& rdr) VL_MT_SAFE {
std::string prefix;
bool inPct = false;
bool done = false;
for (const char* posp = ld.c_str(); !done && *posp; ++posp) {
if (!inPct && posp[0] == '%') {
inPct = true;
} else if (!inPct) { // Normal text
prefix += *posp;
} else { // Format character
switch (std::tolower(*posp)) {
case '%':
prefix += *posp;
inPct = false;
break;
default: //
done = true;
break;
}
}
}
const std::string& match = Verilated::threadContextp()->impp()->argPlusMatch(prefix.c_str());
const char* const dp = match.c_str() + 1 /*leading + */ + prefix.length();
if (match.empty()) return 0;
rdr = std::string{dp};
return 1;
}
const char* vl_mc_scan_plusargs(const char* prefixp) VL_MT_SAFE {
const std::string& match = Verilated::threadContextp()->impp()->argPlusMatch(prefixp);
static thread_local char t_outstr[VL_VALUE_STRING_MAX_WIDTH];
if (match.empty()) return nullptr;
char* dp = t_outstr;
for (const char* sp = match.c_str() + std::strlen(prefixp) + 1; // +1 to skip the "+"
*sp && (dp - t_outstr) < (VL_VALUE_STRING_MAX_WIDTH - 2);)
*dp++ = *sp++;
*dp++ = '\0';
return t_outstr;
}
//===========================================================================
// Heavy string functions
std::string VL_TO_STRING(CData lhs) { return VL_SFORMATF_N_NX("'h%0x", 0, 8, lhs); }
std::string VL_TO_STRING(SData lhs) { return VL_SFORMATF_N_NX("'h%0x", 0, 16, lhs); }
std::string VL_TO_STRING(IData lhs) { return VL_SFORMATF_N_NX("'h%0x", 0, 32, lhs); }
std::string VL_TO_STRING(QData lhs) { return VL_SFORMATF_N_NX("'h%0x", 0, 64, lhs); }
std::string VL_TO_STRING(double lhs) { return VL_SFORMATF_N_NX("%d", 0, 64, lhs); }
std::string VL_TO_STRING_W(int words, const WDataInP obj) {
return VL_SFORMATF_N_NX("'h%0x", 0, words * VL_EDATASIZE, obj);
}
std::string VL_TOLOWER_NN(const std::string& ld) VL_PURE {
std::string result = ld;
for (auto& cr : result) cr = std::tolower(cr);
return result;
}
std::string VL_TOUPPER_NN(const std::string& ld) VL_PURE {
std::string result = ld;
for (auto& cr : result) cr = std::toupper(cr);
return result;
}
std::string VL_CVT_PACK_STR_NW(int lwords, const WDataInP lwp) VL_PURE {
// See also _vl_vint_to_string
char destout[VL_VALUE_STRING_MAX_CHARS + 1];
const int obits = lwords * VL_EDATASIZE;
int lsb = obits - 1;
char* destp = destout;
size_t len = 0;
for (; lsb >= 0; --lsb) {
lsb = (lsb / 8) * 8; // Next digit
const IData charval = VL_BITRSHIFT_W(lwp, lsb) & 0xff;
if (charval) {
*destp++ = static_cast<char>(charval);
++len;
}
}
return std::string{destout, len};
}
std::string VL_CVT_PACK_STR_ND(const VlQueue<std::string>& q) VL_PURE {
std::string output;
for (const std::string& s : q) output += s;
return output;
}
std::string VL_PUTC_N(const std::string& lhs, IData rhs, CData ths) VL_PURE {
std::string lstring = lhs;
const int32_t rhs_s = rhs; // To signed value
// 6.16.2:str.putc(i, c) does not change the value when i < 0 || i >= str.len() || c == 0
if (0 <= rhs_s && rhs < lhs.length() && ths != 0) lstring[rhs] = ths;
return lstring;
}
CData VL_GETC_N(const std::string& lhs, IData rhs) VL_PURE {
CData v = 0;
const int32_t rhs_s = rhs; // To signed value
// 6.16.3:str.getc(i) returns 0 if i < 0 || i >= str.len()
if (0 <= rhs_s && rhs < lhs.length()) v = lhs[rhs];
return v;
}
std::string VL_SUBSTR_N(const std::string& lhs, IData rhs, IData ths) VL_PURE {
const int32_t rhs_s = rhs; // To signed value
const int32_t ths_s = ths; // To signed value
// 6.16.8:str.substr(i, j) returns an empty string when i < 0 || j < i || j >= str.len()
if (rhs_s < 0 || ths_s < rhs_s || ths >= lhs.length()) return "";
// Second parameter of std::string::substr(i, n) is length, not position as in SystemVerilog
return lhs.substr(rhs, ths - rhs + 1);
}
IData VL_ATOI_N(const std::string& str, int base) VL_PURE {
std::string str_mod = str;
// IEEE 1800-2023 6.16.9 says '_' may exist.
str_mod.erase(std::remove(str_mod.begin(), str_mod.end(), '_'), str_mod.end());
errno = 0;
auto v = std::strtol(str_mod.c_str(), nullptr, base);
if (errno != 0) v = 0;
return static_cast<IData>(v);
}
IData VL_NTOI_I(int obits, const std::string& str) VL_PURE { return VL_NTOI_Q(obits, str); }
QData VL_NTOI_Q(int obits, const std::string& str) VL_PURE {
QData out = 0;
const char* const datap = str.data();
int pos = static_cast<int>(str.length()) - 1;
int bit = 0;
while (bit < obits && pos >= 0) {
out |= static_cast<QData>(datap[pos]) << VL_BITBIT_Q(bit);
bit += 8;
--pos;
}
return out & VL_MASK_Q(obits);
}
void VL_NTOI_W(int obits, WDataOutP owp, const std::string& str) VL_PURE {
const int words = VL_WORDS_I(obits);
for (int i = 0; i < words; ++i) owp[i] = 0;
const char* const datap = str.data();
int pos = static_cast<int>(str.length()) - 1;
int bit = 0;
while (bit < obits && pos >= 0) {
owp[VL_BITWORD_I(bit)] |= static_cast<EData>(datap[pos]) << VL_BITBIT_I(bit);
bit += 8;
--pos;
}
owp[words - 1] &= VL_MASK_E(obits);
}
//===========================================================================
// Readmem/writemem
static const char* memhFormat(int nBits) {
assert((nBits >= 1) && (nBits <= 32));
static thread_local char t_buf[32];
switch ((nBits - 1) / 4) {
case 0: VL_SNPRINTF(t_buf, 32, "%%01x"); break;
case 1: VL_SNPRINTF(t_buf, 32, "%%02x"); break;
case 2: VL_SNPRINTF(t_buf, 32, "%%03x"); break;
case 3: VL_SNPRINTF(t_buf, 32, "%%04x"); break;
case 4: VL_SNPRINTF(t_buf, 32, "%%05x"); break;
case 5: VL_SNPRINTF(t_buf, 32, "%%06x"); break;
case 6: VL_SNPRINTF(t_buf, 32, "%%07x"); break;
case 7: VL_SNPRINTF(t_buf, 32, "%%08x"); break;
default: assert(false); break; // LCOV_EXCL_LINE
}
return t_buf;
}
static const char* formatBinary(int nBits, uint32_t bits) {
assert((nBits >= 1) && (nBits <= 32));
static thread_local char t_buf[64];
for (int i = 0; i < nBits; i++) {
const bool isOne = bits & (1 << (nBits - 1 - i));
t_buf[i] = (isOne ? '1' : '0');
}
t_buf[nBits] = '\0';
return t_buf;
}
VlReadMem::VlReadMem(bool hex, int bits, const std::string& filename, QData start, QData end)
: m_hex{hex}
, m_bits{bits}
, m_filename(filename) // Need () or GCC 4.8 false warning
, m_end{end}
, m_addr{start} {
m_fp = std::fopen(filename.c_str(), "r");
if (VL_UNLIKELY(!m_fp)) {
// We don't report the Verilog source filename as it slow to have to pass it down
VL_WARN_MT(filename.c_str(), 0, "", "$readmem file not found");
// cppcheck-has-bug-suppress resourceLeak // m_fp is nullptr
return;
}
}
VlReadMem::~VlReadMem() {
if (m_fp) {
std::fclose(m_fp);
m_fp = nullptr;
}
}
bool VlReadMem::get(QData& addrr, std::string& valuer) {
if (VL_UNLIKELY(!m_fp)) return false;
valuer = "";
// Prep for reading
bool inData = false;
bool ignoreToEol = false;
bool ignoreToComment = false;
bool readingAddress = false;
int lastCh = ' ';
// Read the data
// We process a character at a time, as then we don't need to deal
// with changing buffer sizes dynamically, etc.
while (true) {
int c = std::fgetc(m_fp);
if (VL_UNLIKELY(c == EOF)) break;
const bool chIs4StateBin
= c == '0' || c == '1' || c == 'x' || c == 'X' || c == 'z' || c == 'Z';
const bool chIs2StateHex = std::isxdigit(c);
const bool chIs4StateHex = std::isxdigit(c) || chIs4StateBin;
// printf("%d: Got '%c' Addr%lx IN%d IgE%d IgC%d\n",
// m_linenum, c, m_addr, inData, ignoreToEol, ignoreToComment);
// See if previous data value has completed, and if so return
if (c == '_') continue; // Ignore _ e.g. inside a number
if (inData && !chIs4StateHex) {
// printf("Got data @%lx = %s\n", m_addr, valuer.c_str());
ungetc(c, m_fp);
addrr = m_addr;
++m_addr;
return true;
}
// Parse line
if (c == '\n') {
++m_linenum;
ignoreToEol = false;
readingAddress = false;
} else if (c == '\t' || c == ' ' || c == '\r' || c == '\f') {
readingAddress = false;
}
// Skip // comments and detect /* comments
else if (ignoreToComment && lastCh == '*' && c == '/') {
ignoreToComment = false;
readingAddress = false;
} else if (!ignoreToEol && !ignoreToComment) {
if (lastCh == '/' && c == '*') {
ignoreToComment = true;
} else if (lastCh == '/' && c == '/') {
ignoreToEol = true;
} else if (c == '/') { // Part of /* or //
} else if (c == '#') {
ignoreToEol = true;
} else if (c == '@') {
readingAddress = true;
m_anyAddr = true;
m_addr = 0;
} else if (readingAddress && chIs2StateHex) {
c = std::tolower(c);
const int addressValue = (c >= 'a') ? (c - 'a' + 10) : (c - '0');
m_addr = (m_addr << 4) + addressValue;
} else if (readingAddress && chIs4StateHex) {
VL_FATAL_MT(m_filename.c_str(), m_linenum, "",
"$readmem address contains 4-state characters");
} else if (chIs4StateHex) {
inData = true;
valuer += static_cast<char>(c);
if (VL_UNLIKELY(!m_hex && !chIs4StateBin)) {
VL_FATAL_MT(m_filename.c_str(), m_linenum, "",
"$readmemb (binary) file contains hex characters");
}
} else {
VL_FATAL_MT(m_filename.c_str(), m_linenum, "", "$readmem file syntax error");
}
}
lastCh = c;
}
if (VL_UNLIKELY(m_end != ~0ULL && m_addr <= m_end && !m_anyAddr)) {
VL_WARN_MT(m_filename.c_str(), m_linenum, "",
"$readmem file ended before specified final address (IEEE 1800-2023 21.4)");
}
addrr = m_addr;
return inData; // EOF
}
void VlReadMem::setData(void* valuep, const std::string& rhs) {
const QData shift = m_hex ? 4ULL : 1ULL;
bool innum = false;
// Shift value in
for (const auto& i : rhs) {
const char c = std::tolower(i);
const int value = (c == 'x' || c == 'z') ? VL_RAND_RESET_I(m_hex ? 4 : 1)
: (c >= 'a') ? (c - 'a' + 10)
: (c - '0');
if (m_bits <= 8) {
CData* const datap = reinterpret_cast<CData*>(valuep);
if (!innum) *datap = 0;
*datap = ((*datap << shift) + value) & VL_MASK_I(m_bits);
} else if (m_bits <= 16) {
SData* const datap = reinterpret_cast<SData*>(valuep);
if (!innum) *datap = 0;
*datap = ((*datap << shift) + value) & VL_MASK_I(m_bits);
} else if (m_bits <= VL_IDATASIZE) {
IData* const datap = reinterpret_cast<IData*>(valuep);
if (!innum) *datap = 0;
*datap = ((*datap << shift) + value) & VL_MASK_I(m_bits);
} else if (m_bits <= VL_QUADSIZE) {
QData* const datap = reinterpret_cast<QData*>(valuep);
if (!innum) *datap = 0;
*datap = ((*datap << static_cast<QData>(shift)) + static_cast<QData>(value))
& VL_MASK_Q(m_bits);
} else {
WDataOutP datap = reinterpret_cast<WDataOutP>(valuep);
if (!innum) VL_ZERO_W(m_bits, datap);
_vl_shiftl_inplace_w(m_bits, datap, static_cast<IData>(shift));
datap[0] |= value;
}
innum = true;
}
}
VlWriteMem::VlWriteMem(bool hex, int bits, const std::string& filename, QData start, QData end)
: m_hex{hex}
, m_bits{bits} {
if (VL_UNLIKELY(start > end)) {
VL_FATAL_MT(filename.c_str(), 0, "", "$writemem invalid address range");
return;
}
m_fp = std::fopen(filename.c_str(), "w");
if (VL_UNLIKELY(!m_fp)) {
VL_FATAL_MT(filename.c_str(), 0, "", "$writemem file not found");
// cppcheck-has-bug-suppress resourceLeak // m_fp is nullptr
return;
}
}
VlWriteMem::~VlWriteMem() {
if (m_fp) {
std::fclose(m_fp);
m_fp = nullptr;
}
}
void VlWriteMem::print(QData addr, bool addrstamp, const void* valuep) {
if (VL_UNLIKELY(!m_fp)) return;
if (addr != m_addr && addrstamp) { // Only assoc has time stamps
fprintf(m_fp, "@%" PRIx64 "\n", addr);
}
m_addr = addr + 1;
if (m_bits <= 8) {
const CData* const datap = reinterpret_cast<const CData*>(valuep);
if (m_hex) {
fprintf(m_fp, memhFormat(m_bits), VL_MASK_I(m_bits) & *datap);
fprintf(m_fp, "\n");
} else {
fprintf(m_fp, "%s\n", formatBinary(m_bits, *datap));
}
} else if (m_bits <= 16) {
const SData* const datap = reinterpret_cast<const SData*>(valuep);
if (m_hex) {
fprintf(m_fp, memhFormat(m_bits), VL_MASK_I(m_bits) & *datap);
fprintf(m_fp, "\n");
} else {
fprintf(m_fp, "%s\n", formatBinary(m_bits, *datap));
}
} else if (m_bits <= 32) {
const IData* const datap = reinterpret_cast<const IData*>(valuep);
if (m_hex) {
fprintf(m_fp, memhFormat(m_bits), VL_MASK_I(m_bits) & *datap);
fprintf(m_fp, "\n");
} else {
fprintf(m_fp, "%s\n", formatBinary(m_bits, *datap));
}
} else if (m_bits <= 64) {
const QData* const datap = reinterpret_cast<const QData*>(valuep);
const uint64_t value = VL_MASK_Q(m_bits) & *datap;
const uint32_t lo = value & 0xffffffff;
const uint32_t hi = value >> 32;
if (m_hex) {
fprintf(m_fp, memhFormat(m_bits - 32), hi);
fprintf(m_fp, "%08x\n", lo);
} else {
fprintf(m_fp, "%s", formatBinary(m_bits - 32, hi));
fprintf(m_fp, "%s\n", formatBinary(32, lo));
}
} else {
const WDataInP datap = reinterpret_cast<WDataInP>(valuep);
// output as a sequence of VL_EDATASIZE'd words
// from MSB to LSB. Mask off the MSB word which could
// contain junk above the top of valid data.
int word_idx = ((m_bits - 1) / VL_EDATASIZE);
bool first = true;
while (word_idx >= 0) {
EData data = datap[word_idx];
if (first) {
data &= VL_MASK_E(m_bits);
const int top_word_nbits = VL_BITBIT_E(m_bits - 1) + 1;
if (m_hex) {
fprintf(m_fp, memhFormat(top_word_nbits), data);
} else {
fprintf(m_fp, "%s", formatBinary(top_word_nbits, data));
}
} else {
if (m_hex) {
fprintf(m_fp, "%08x", data);
} else {
fprintf(m_fp, "%s", formatBinary(32, data));
}
}
--word_idx;
first = false;
}
fprintf(m_fp, "\n");
}
}
void VL_READMEM_N(bool hex, // Hex format, else binary
int bits, // M_Bits of each array row
QData depth, // Number of rows
int array_lsb, // Index of first row. Valid row addresses
// // range from array_lsb up to (array_lsb + depth - 1)
const std::string& filename, // Input file name
void* memp, // Array state
QData start, // First array row address to read
QData end // Last row address to read
) VL_MT_SAFE {
if (start < static_cast<QData>(array_lsb)) start = array_lsb;
VlReadMem rmem{hex, bits, filename, start, end};
if (VL_UNLIKELY(!rmem.isOpen())) return;
while (true) {
QData addr = 0;
std::string value;
if (rmem.get(addr /*ref*/, value /*ref*/)) {
// printf("readmem.get [%" PRIu64 "]=%s\n", addr, value.c_str());
if (VL_UNLIKELY(addr < static_cast<QData>(array_lsb)
|| addr >= static_cast<QData>(array_lsb + depth))) {
VL_FATAL_MT(filename.c_str(), rmem.linenum(), "",
"$readmem file address beyond bounds of array");
} else {
const QData entry = addr - array_lsb;
if (bits <= 8) {
CData* const datap = &(reinterpret_cast<CData*>(memp))[entry];
rmem.setData(datap, value);
} else if (bits <= 16) {
SData* const datap = &(reinterpret_cast<SData*>(memp))[entry];
rmem.setData(datap, value);
} else if (bits <= VL_IDATASIZE) {
IData* const datap = &(reinterpret_cast<IData*>(memp))[entry];
rmem.setData(datap, value);
} else if (bits <= VL_QUADSIZE) {
QData* const datap = &(reinterpret_cast<QData*>(memp))[entry];
rmem.setData(datap, value);
} else {
WDataOutP datap
= &(reinterpret_cast<WDataOutP>(memp))[entry * VL_WORDS_I(bits)];
rmem.setData(datap, value);
}
}
} else {
break;
}
}
}
void VL_WRITEMEM_N(bool hex, // Hex format, else binary
int bits, // Width of each array row
QData depth, // Number of rows
int array_lsb, // Index of first row. Valid row addresses
// // range from array_lsb up to (array_lsb + depth - 1)
const std::string& filename, // Output file name
const void* memp, // Array state
QData start, // First array row address to write
QData end // Last address to write, or ~0 when not specified
) VL_MT_SAFE {
const QData addr_max = array_lsb + depth - 1;
if (start < static_cast<QData>(array_lsb)) start = array_lsb;
if (end > addr_max) end = addr_max;
VlWriteMem wmem{hex, bits, filename, start, end};
if (VL_UNLIKELY(!wmem.isOpen())) return;
for (QData addr = start; addr <= end; ++addr) {
const QData row_offset = addr - array_lsb;
if (bits <= 8) {
const CData* const datap = &(reinterpret_cast<const CData*>(memp))[row_offset];
wmem.print(addr, false, datap);
} else if (bits <= 16) {
const SData* const datap = &(reinterpret_cast<const SData*>(memp))[row_offset];
wmem.print(addr, false, datap);
} else if (bits <= 32) {
const IData* const datap = &(reinterpret_cast<const IData*>(memp))[row_offset];
wmem.print(addr, false, datap);
} else if (bits <= 64) {
const QData* const datap = &(reinterpret_cast<const QData*>(memp))[row_offset];
wmem.print(addr, false, datap);
} else {
const WDataInP memDatap = reinterpret_cast<WDataInP>(memp);
const WDataInP datap = &memDatap[row_offset * VL_WORDS_I(bits)];
wmem.print(addr, false, datap);
}
}
}
//===========================================================================
// Timescale conversion
static const char* vl_time_str(int scale) VL_PURE {
static const char* const names[]
= {"100s", "10s", "1s", "100ms", "10ms", "1ms", "100us", "10us", "1us",
"100ns", "10ns", "1ns", "100ps", "10ps", "1ps", "100fs", "10fs", "1fs"};
if (VL_UNLIKELY(scale > 2 || scale < -15)) scale = 0;
return names[2 - scale];
}
double vl_time_multiplier(int scale) VL_PURE {
// Return timescale multiplier -18 to +18
// For speed, this does not check for illegal values
// cppcheck-has-bug-suppress arrayIndexOutOfBoundsCond
if (scale < 0) {
static const double neg10[] = {1.0,
0.1,
0.01,
0.001,
0.0001,
0.00001,
0.000001,
0.0000001,
0.00000001,
0.000000001,
0.0000000001,
0.00000000001,
0.000000000001,
0.0000000000001,
0.00000000000001,
0.000000000000001,
0.0000000000000001,
0.00000000000000001,
0.000000000000000001};
// cppcheck-has-bug-suppress arrayIndexOutOfBoundsCond
return neg10[-scale];
} else {
static const double pow10[] = {1.0,
10.0,
100.0,
1000.0,
10000.0,
100000.0,
1000000.0,
10000000.0,
100000000.0,
1000000000.0,
10000000000.0,
100000000000.0,
1000000000000.0,
10000000000000.0,
100000000000000.0,
1000000000000000.0,
10000000000000000.0,
100000000000000000.0,
1000000000000000000.0};
// cppcheck-has-bug-suppress arrayIndexOutOfBoundsCond
return pow10[scale];
}
}
uint64_t vl_time_pow10(int n) {
static const uint64_t pow10[20] = {
1ULL,
10ULL,
100ULL,
1000ULL,
10000ULL,
100000ULL,
1000000ULL,
10000000ULL,
100000000ULL,
1000000000ULL,
10000000000ULL,
100000000000ULL,
1000000000000ULL,
10000000000000ULL,
100000000000000ULL,
1000000000000000ULL,
10000000000000000ULL,
100000000000000000ULL,
1000000000000000000ULL,
};
return pow10[n];
}
std::string vl_timescaled_double(double value, const char* format) VL_PURE {
const char* suffixp = "s";
// clang-format off
if (value >= 1e0) { suffixp = "s"; value *= 1e0; }
else if (value >= 1e-3) { suffixp = "ms"; value *= 1e3; }
else if (value >= 1e-6) { suffixp = "us"; value *= 1e6; }
else if (value >= 1e-9) { suffixp = "ns"; value *= 1e9; }
else if (value >= 1e-12) { suffixp = "ps"; value *= 1e12; }
else if (value >= 1e-15) { suffixp = "fs"; value *= 1e15; }
else if (value >= 1e-18) { suffixp = "as"; value *= 1e18; }
// clang-format on
char valuestr[100];
VL_SNPRINTF(valuestr, 100, format, value, suffixp);
return std::string{valuestr}; // Gets converted to string, so no ref to stack
}
void VL_PRINTTIMESCALE(const char* namep, const char* timeunitp,
const VerilatedContext* contextp) VL_MT_SAFE {
VL_PRINTF_MT("Time scale of %s is %s / %s\n", namep, timeunitp,
contextp->timeprecisionString());
}
void VL_TIMEFORMAT_IINI(int units, int precision, const std::string& suffix, int width,
VerilatedContext* contextp) VL_MT_SAFE {
contextp->impp()->timeFormatUnits(units);
contextp->impp()->timeFormatPrecision(precision);
contextp->impp()->timeFormatSuffix(suffix);
contextp->impp()->timeFormatWidth(width);
}
//======================================================================
// VerilatedContext:: Methods
VerilatedContext::VerilatedContext()
: m_impdatap{new VerilatedContextImpData} {
Verilated::lastContextp(this);
Verilated::threadContextp(this);
m_ns.m_coverageFilename = "coverage.dat";
m_ns.m_profExecFilename = "profile_exec.dat";
m_ns.m_profVltFilename = "profile.vlt";
m_ns.m_solverProgram = VlOs::getenvStr("VERILATOR_SOLVER", VL_SOLVER_DEFAULT);
m_fdps.resize(31);
std::fill(m_fdps.begin(), m_fdps.end(), static_cast<FILE*>(nullptr));
m_fdFreeMct.resize(30);
IData id = 1;
for (std::size_t i = 0; i < m_fdFreeMct.size(); ++i, ++id) m_fdFreeMct[i] = id;
}
// Must declare here not in interface, as otherwise forward declarations not known
VerilatedContext::~VerilatedContext() {
checkMagic(this);
m_magic = 0x1; // Arbitrary but 0x1 is what Verilator src uses for a deleted pointer
}
void VerilatedContext::checkMagic(const VerilatedContext* contextp) {
if (VL_UNLIKELY(!contextp || contextp->m_magic != MAGIC)) {
VL_FATAL_MT("", 0, "", // LCOV_EXCL_LINE
"Attempt to create model using a bad/deleted VerilatedContext pointer");
}
}
VerilatedContext::Serialized::Serialized() {
constexpr int8_t picosecond = -12;
m_timeunit = picosecond; // Initial value until overridden by _Vconfigure
m_timeprecision = picosecond; // Initial value until overridden by _Vconfigure
}
bool VerilatedContext::assertOn() const VL_MT_SAFE { return m_s.m_assertOn; }
void VerilatedContext::assertOn(bool flag) VL_MT_SAFE {
// Set all assert and directive types when true, clear otherwise.
m_s.m_assertOn = VL_MASK_I(ASSERT_ON_WIDTH) * flag;
}
bool VerilatedContext::assertOnGet(VerilatedAssertType_t type,
VerilatedAssertDirectiveType_t directive) const VL_MT_SAFE {
// Check if selected directive type bit in the assertOn is enabled for assertion type.
// Note: it is assumed that this is checked only for one type at the time.
// Flag unspecified assertion types as disabled.
if (type == 0) return false;
// Get index of 3-bit group guarding assertion type status.
// Since the assertOnGet is generated __always__ for a single assert type, we assume that only
// a single bit will be set. Thus, ceil log2 will work fine.
VL_DEBUG_IFDEF(assert((type & (type - 1)) == 0););
const IData typeMaskPosition = VL_CLOG2_I(type);
// Check if directive type bit is enabled in corresponding assertion type bits.
return m_s.m_assertOn & (directive << (typeMaskPosition * ASSERT_DIRECTIVE_TYPE_MASK_WIDTH));
}
void VerilatedContext::assertOnSet(VerilatedAssertType_t types,
VerilatedAssertDirectiveType_t directives) VL_MT_SAFE {
// For each assertion type, set directive bits.
// Iterate through all positions of assertion type bits. If bit for this assertion type is set,
// set directive type bits mask at this group index.
for (int i = 0; i < std::numeric_limits<VerilatedAssertType_t>::digits; ++i) {
if (VL_BITISSET_I(types, i))
m_s.m_assertOn |= directives << (i * ASSERT_DIRECTIVE_TYPE_MASK_WIDTH);
}
}
void VerilatedContext::assertOnClear(VerilatedAssertType_t types,
VerilatedAssertDirectiveType_t directives) VL_MT_SAFE {
// Iterate through all positions of assertion type bits. If bit for this assertion type is set,
// clear directive type bits mask at this group index.
for (int i = 0; i < std::numeric_limits<VerilatedAssertType_t>::digits; ++i) {
if (VL_BITISSET_I(types, i))
m_s.m_assertOn &= ~(directives << (i * ASSERT_DIRECTIVE_TYPE_MASK_WIDTH));
}
}
void VerilatedContext::calcUnusedSigs(bool flag) VL_MT_SAFE {
const VerilatedLockGuard lock{m_mutex};
m_s.m_calcUnusedSigs = flag;
}
void VerilatedContext::coverageFilename(const std::string& flag) VL_MT_SAFE {
const VerilatedLockGuard lock{m_mutex};
m_ns.m_coverageFilename = flag;
}
std::string VerilatedContext::coverageFilename() const VL_MT_SAFE {
const VerilatedLockGuard lock{m_mutex};
return m_ns.m_coverageFilename;
}
void VerilatedContext::dumpfile(const std::string& flag) VL_MT_SAFE_EXCLUDES(m_timeDumpMutex) {
const VerilatedLockGuard lock{m_timeDumpMutex};
m_dumpfile = flag;
}
std::string VerilatedContext::dumpfile() const VL_MT_SAFE_EXCLUDES(m_timeDumpMutex) {
const VerilatedLockGuard lock{m_timeDumpMutex};
return m_dumpfile;
}
std::string VerilatedContext::dumpfileCheck() const VL_MT_SAFE_EXCLUDES(m_timeDumpMutex) {
std::string out = dumpfile();
if (VL_UNLIKELY(out.empty())) {
VL_PRINTF_MT("%%Warning: $dumpvar ignored as not preceded by $dumpfile\n");
return "";
}
return out;
}
void VerilatedContext::errorCount(int val) VL_MT_SAFE {
const VerilatedLockGuard lock{m_mutex};
m_s.m_errorCount = val;
}
void VerilatedContext::errorCountInc() VL_MT_SAFE {
const VerilatedLockGuard lock{m_mutex};
++m_s.m_errorCount;
}
void VerilatedContext::errorLimit(int val) VL_MT_SAFE {
const VerilatedLockGuard lock{m_mutex};
m_s.m_errorLimit = val;
}
void VerilatedContext::fatalOnError(bool flag) VL_MT_SAFE {
const VerilatedLockGuard lock{m_mutex};
m_s.m_fatalOnError = flag;
}
void VerilatedContext::fatalOnVpiError(bool flag) VL_MT_SAFE {
const VerilatedLockGuard lock{m_mutex};
m_s.m_fatalOnVpiError = flag;
}
void VerilatedContext::gotError(bool flag) VL_MT_SAFE {
const VerilatedLockGuard lock{m_mutex};
m_s.m_gotError = flag;
}
void VerilatedContext::gotFinish(bool flag) VL_MT_SAFE {
const VerilatedLockGuard lock{m_mutex};
m_s.m_gotFinish = flag;
}
void VerilatedContext::profExecStart(uint64_t flag) VL_MT_SAFE {
const VerilatedLockGuard lock{m_mutex};
m_ns.m_profExecStart = flag;
}
void VerilatedContext::profExecWindow(uint64_t flag) VL_MT_SAFE {
const VerilatedLockGuard lock{m_mutex};
m_ns.m_profExecWindow = flag;
}
void VerilatedContext::profExecFilename(const std::string& flag) VL_MT_SAFE {
const VerilatedLockGuard lock{m_mutex};
m_ns.m_profExecFilename = flag;
}
std::string VerilatedContext::profExecFilename() const VL_MT_SAFE {
const VerilatedLockGuard lock{m_mutex};
return m_ns.m_profExecFilename;
}
void VerilatedContext::profVltFilename(const std::string& flag) VL_MT_SAFE {
const VerilatedLockGuard lock{m_mutex};
m_ns.m_profVltFilename = flag;
}
std::string VerilatedContext::profVltFilename() const VL_MT_SAFE {
const VerilatedLockGuard lock{m_mutex};
return m_ns.m_profVltFilename;
}
void VerilatedContext::solverProgram(const std::string& flag) VL_MT_SAFE {
const VerilatedLockGuard lock{m_mutex};
m_ns.m_solverProgram = flag;
}
std::string VerilatedContext::solverProgram() const VL_MT_SAFE {
const VerilatedLockGuard lock{m_mutex};
return m_ns.m_solverProgram;
}
void VerilatedContext::quiet(bool flag) VL_MT_SAFE {
const VerilatedLockGuard lock{m_mutex};
m_s.m_quiet = flag;
}
void VerilatedContext::randReset(int val) VL_MT_SAFE {
const VerilatedLockGuard lock{m_mutex};
m_s.m_randReset = val;
}
void VerilatedContext::timeunit(int value) VL_MT_SAFE {
if (value < 0) value = -value; // Stored as 0..15
const VerilatedLockGuard lock{m_mutex};
m_s.m_timeunit = value;
}
const char* VerilatedContext::timeunitString() const VL_MT_SAFE { return vl_time_str(timeunit()); }
const char* VerilatedContext::timeprecisionString() const VL_MT_SAFE {
return vl_time_str(timeprecision());
}
void VerilatedContext::threads(unsigned n) {
if (n == 0) VL_FATAL_MT(__FILE__, __LINE__, "", "%Error: Simulation threads must be >= 1");
if (m_threadPool) {
VL_FATAL_MT(
__FILE__, __LINE__, "",
"%Error: Cannot set simulation threads after the thread pool has been created.");
}
if (m_threads == n) return; // To avoid unnecessary warnings
m_threads = n;
const unsigned hardwareThreadsAvailable = std::thread::hardware_concurrency();
if (m_threads > hardwareThreadsAvailable) {
VL_PRINTF_MT("%%Warning: System has %u hardware threads but simulation thread count set "
"to %u. This will likely cause significant slowdown.\n",
hardwareThreadsAvailable, m_threads);
}
}
void VerilatedContext::commandArgs(int argc, const char** argv) VL_MT_SAFE_EXCLUDES(m_argMutex) {
// Not locking m_argMutex here, it is done in impp()->commandArgsAddGuts
// m_argMutex here is the same as in impp()->commandArgsAddGuts;
// due to clang limitations, it doesn't properly check it
impp()->commandArgsGuts(argc, argv);
}
void VerilatedContext::commandArgsAdd(int argc, const char** argv)
VL_MT_SAFE_EXCLUDES(m_argMutex) {
// Not locking m_argMutex here, it is done in impp()->commandArgsAddGuts
// m_argMutex here is the same as in impp()->commandArgsAddGuts;
// due to clang limitations, it doesn't properly check it
impp()->commandArgsAddGutsLock(argc, argv);
}
const char* VerilatedContext::commandArgsPlusMatch(const char* prefixp)
VL_MT_SAFE_EXCLUDES(m_argMutex) {
const std::string& match = impp()->argPlusMatch(prefixp);
static thread_local char t_outstr[VL_VALUE_STRING_MAX_WIDTH];
if (match.empty()) return "";
char* dp = t_outstr;
for (const char* sp = match.c_str(); *sp && (dp - t_outstr) < (VL_VALUE_STRING_MAX_WIDTH - 2);)
*dp++ = *sp++;
*dp++ = '\0';
return t_outstr;
}
void VerilatedContext::internalsDump() const VL_MT_SAFE {
VL_PRINTF_MT("internalsDump:\n");
VerilatedImp::versionDump();
impp()->commandArgDump();
impp()->scopesDump();
VerilatedImp::exportsDump();
VerilatedImp::userDump();
}
void VerilatedContext::addModel(VerilatedModel* modelp) {
if (!quiet()) {
// CPU time isn't read as starting point until model creation, so that quiet() is set
// Thus if quiet(), avoids slow OS read affecting some usages that make many models
const VerilatedLockGuard lock{m_mutex};
m_ns.m_cpuTimeStart.start();
m_ns.m_wallTimeStart.start();
}
// We look for time passing, as opposed to post-eval(), as embedded
// models might get added inside initial blocks.
if (VL_UNLIKELY(time()))
VL_FATAL_MT(
"", 0, "",
"Adding model when time is non-zero. ... Suggest check time(), or for restarting"
" model use a new VerilatedContext");
threadPoolp(); // Ensure thread pool is created, so m_threads cannot change any more
m_threadsInModels += modelp->threads();
if (VL_UNLIKELY(modelp->threads() > m_threads)) {
std::ostringstream msg;
msg << "VerilatedContext has " << m_threads << " threads but model '"
<< modelp->modelName() << "' (instantiated as '" << modelp->hierName()
<< "') was Verilated with --threads " << modelp->threads() << ".\n";
const std::string str = msg.str();
VL_FATAL_MT(__FILE__, __LINE__, modelp->hierName(), str.c_str());
}
}
VerilatedVirtualBase* VerilatedContext::threadPoolp() {
if (m_threads == 1) return nullptr;
if (!m_threadPool) m_threadPool.reset(new VlThreadPool{this, m_threads - 1});
return m_threadPool.get();
}
void VerilatedContext::prepareClone() { delete m_threadPool.release(); }
VerilatedVirtualBase* VerilatedContext::threadPoolpOnClone() {
if (VL_UNLIKELY(m_threadPool)) m_threadPool.release();
m_threadPool = std::unique_ptr<VlThreadPool>(new VlThreadPool{this, m_threads - 1});
return m_threadPool.get();
}
VerilatedVirtualBase*
VerilatedContext::enableExecutionProfiler(VerilatedVirtualBase* (*construct)(VerilatedContext&)) {
if (!m_executionProfiler) m_executionProfiler.reset(construct(*this));
return m_executionProfiler.get();
}
//======================================================================
// VerilatedContextImp:: Methods - command line
void VerilatedContextImp::commandArgsGuts(int argc, const char** argv)
VL_MT_SAFE_EXCLUDES(m_argMutex) {
const VerilatedLockGuard lock{m_argMutex};
m_args.m_argVec.clear(); // Empty first, then add
commandArgsAddGuts(argc, argv);
}
void VerilatedContextImp::commandArgsAddGutsLock(int argc, const char** argv)
VL_MT_SAFE_EXCLUDES(m_argMutex) {
const VerilatedLockGuard lock{m_argMutex};
commandArgsAddGuts(argc, argv);
}
void VerilatedContextImp::commandArgsAddGuts(int argc, const char** argv) VL_REQUIRES(m_argMutex) {
if (!m_args.m_argVecLoaded) m_args.m_argVec.clear();
for (int i = 0; i < argc; ++i) {
m_args.m_argVec.emplace_back(argv[i]);
commandArgVl(argv[i]);
}
m_args.m_argVecLoaded = true; // Can't just test later for empty vector, no arguments is ok
}
void VerilatedContextImp::commandArgDump() const VL_MT_SAFE_EXCLUDES(m_argMutex) {
const VerilatedLockGuard lock{m_argMutex};
VL_PRINTF_MT(" Argv:");
for (const auto& i : m_args.m_argVec) VL_PRINTF_MT(" %s", i.c_str());
VL_PRINTF_MT("\n");
}
std::string VerilatedContextImp::argPlusMatch(const char* prefixp)
VL_MT_SAFE_EXCLUDES(m_argMutex) {
const VerilatedLockGuard lock{m_argMutex};
// Note prefixp does not include the leading "+"
const size_t len = std::strlen(prefixp);
if (VL_UNLIKELY(!m_args.m_argVecLoaded)) {
m_args.m_argVecLoaded = true; // Complain only once
VL_FATAL_MT("unknown", 0, "",
"%Error: Verilog called $test$plusargs or $value$plusargs without"
" testbench C first calling Verilated::commandArgs(argc,argv).");
}
for (const auto& i : m_args.m_argVec) {
if (i[0] == '+') {
if (0 == std::strncmp(prefixp, i.c_str() + 1, len)) return i;
}
}
return "";
}
// Return string representing current argv
// Only used by VPI so uses static storage, only supports most recent called context
std::pair<int, char**> VerilatedContextImp::argc_argv() VL_MT_SAFE_EXCLUDES(m_argMutex) {
const VerilatedLockGuard lock{m_argMutex};
static bool s_loaded = false;
static int s_argc = 0;
static char** s_argvp = nullptr;
if (VL_UNLIKELY(!s_loaded)) {
s_loaded = true;
s_argc = static_cast<int>(m_args.m_argVec.size());
s_argvp = new char*[s_argc + 1];
int in = 0;
for (const auto& i : m_args.m_argVec) {
s_argvp[in] = new char[i.length() + 1];
std::memcpy(s_argvp[in], i.c_str(), i.length() + 1);
++in;
}
s_argvp[s_argc] = nullptr;
}
return std::make_pair(s_argc, s_argvp);
}
void VerilatedContextImp::commandArgVl(const std::string& arg) {
if (0 == std::strncmp(arg.c_str(), "+verilator+", std::strlen("+verilator+"))) {
std::string str;
uint64_t u64;
if (commandArgVlString(arg, "+verilator+coverage+file+", str)) {
coverageFilename(str);
} else if (arg == "+verilator+debug") {
Verilated::debug(4);
} else if (commandArgVlUint64(arg, "+verilator+debugi+", u64, 0,
std::numeric_limits<int>::max())) {
Verilated::debug(static_cast<int>(u64));
} else if (commandArgVlUint64(arg, "+verilator+error+limit+", u64, 0,
std::numeric_limits<int>::max())) {
errorLimit(static_cast<int>(u64));
} else if (arg == "+verilator+help") {
VerilatedImp::versionDump();
VL_PRINTF_MT("For help, please see 'verilator --help'\n");
VL_FATAL_MT("COMMAND_LINE", 0, "",
"Exiting due to command line argument (not an error)");
} else if (arg == "+verilator+noassert") {
assertOn(false);
} else if (commandArgVlUint64(arg, "+verilator+prof+exec+start+", u64)) {
profExecStart(u64);
} else if (commandArgVlUint64(arg, "+verilator+prof+exec+window+", u64, 1)) {
profExecWindow(u64);
} else if (commandArgVlString(arg, "+verilator+prof+exec+file+", str)) {
profExecFilename(str);
} else if (commandArgVlString(arg, "+verilator+prof+vlt+file+", str)) {
profVltFilename(str);
} else if (arg == "+verilator+quiet") {
quiet(true);
} else if (commandArgVlUint64(arg, "+verilator+rand+reset+", u64, 0, 2)) {
randReset(static_cast<int>(u64));
} else if (commandArgVlUint64(arg, "+verilator+seed+", u64, 1,
std::numeric_limits<int>::max())) {
randSeed(static_cast<int>(u64));
} else if (arg == "+verilator+V") {
VerilatedImp::versionDump(); // Someday more info too
VL_FATAL_MT("COMMAND_LINE", 0, "",
"Exiting due to command line argument (not an error)");
} else if (arg == "+verilator+version") {
VerilatedImp::versionDump();
VL_FATAL_MT("COMMAND_LINE", 0, "",
"Exiting due to command line argument (not an error)");
} else {
const std::string msg = "Unknown runtime argument: " + arg;
VL_FATAL_MT("COMMAND_LINE", 0, "", msg.c_str());
}
}
}
bool VerilatedContextImp::commandArgVlString(const std::string& arg, const std::string& prefix,
std::string& valuer) {
const size_t len = prefix.length();
if (0 == std::strncmp(prefix.c_str(), arg.c_str(), len)) {
valuer = arg.substr(len);
return true;
} else {
return false;
}
}
bool VerilatedContextImp::commandArgVlUint64(const std::string& arg, const std::string& prefix,
uint64_t& valuer, uint64_t min, uint64_t max) {
std::string str;
if (commandArgVlString(arg, prefix, str)) {
const auto fail = [&](const std::string& extra = "") {
std::stringstream ss;
ss << "Argument '" << prefix << "' must be an unsigned integer";
if (min != std::numeric_limits<uint64_t>::min()) ss << ", greater than " << min - 1;
if (max != std::numeric_limits<uint64_t>::max()) ss << ", less than " << max + 1;
if (!extra.empty()) ss << ". " << extra;
const std::string& msg = ss.str();
VL_FATAL_MT("COMMAND_LINE", 0, "", msg.c_str());
};
if (std::any_of(str.cbegin(), str.cend(), [](int c) { return !std::isdigit(c); })) fail();
char* end;
valuer = std::strtoull(str.c_str(), &end, 10);
if (errno == ERANGE) fail("Value out of range of uint64_t");
if (valuer < min || valuer > max) fail();
return true;
}
return false;
}
//======================================================================
// VerilatedContext:: + VerilatedContextImp:: Methods - random
void VerilatedContext::randSeed(int val) VL_MT_SAFE {
// As we have per-thread state, the epoch must be static,
// and so the rand seed's mutex must also be static
const VerilatedLockGuard lock{VerilatedContextImp::s().s_randMutex};
m_s.m_randSeed = val;
const uint64_t newEpoch = VerilatedContextImp::s().s_randSeedEpoch + 1;
// Observers must see new epoch AFTER seed updated
std::atomic_signal_fence(std::memory_order_release);
VerilatedContextImp::s().s_randSeedEpoch = newEpoch;
}
uint64_t VerilatedContextImp::randSeedDefault64() const VL_MT_SAFE {
if (randSeed() != 0) {
return ((static_cast<uint64_t>(randSeed()) << 32) ^ (static_cast<uint64_t>(randSeed())));
} else {
return ((static_cast<uint64_t>(vl_sys_rand32()) << 32)
^ (static_cast<uint64_t>(vl_sys_rand32())));
}
}
//======================================================================
// VerilatedContext:: Statistics
double VerilatedContext::statCpuTimeSinceStart() const VL_MT_SAFE_EXCLUDES(m_mutex) {
const VerilatedLockGuard lock{m_mutex};
return m_ns.m_cpuTimeStart.deltaTime();
}
double VerilatedContext::statWallTimeSinceStart() const VL_MT_SAFE_EXCLUDES(m_mutex) {
const VerilatedLockGuard lock{m_mutex};
return m_ns.m_wallTimeStart.deltaTime();
}
void VerilatedContext::statsPrintSummary() VL_MT_UNSAFE {
if (quiet()) return;
VL_PRINTF("- S i m u l a t i o n R e p o r t: %s %s\n", Verilated::productName(),
Verilated::productVersion());
const std::string endwhy = gotError() ? "$stop" : gotFinish() ? "$finish" : "end";
const double simtimeInUnits = VL_TIME_Q() * vl_time_multiplier(timeunit())
* vl_time_multiplier(timeprecision() - timeunit());
const std::string simtime = vl_timescaled_double(simtimeInUnits);
const double walltime = statWallTimeSinceStart();
const double cputime = statCpuTimeSinceStart();
const std::string simtimePerf
= vl_timescaled_double((cputime != 0.0) ? (simtimeInUnits / cputime) : 0, "%0.3f %s");
VL_PRINTF("- Verilator: %s at %s; walltime %0.3f s; speed %s/s\n", endwhy.c_str(),
simtime.c_str(), walltime, simtimePerf.c_str());
const double modelMB = VlOs::memUsageBytes() / 1024.0 / 1024.0;
VL_PRINTF("- Verilator: cpu %0.3f s on %u threads; alloced %0.0f MB\n", cputime,
threadsInModels(), modelMB);
}
//======================================================================
// VerilatedContext:: Methods - scopes
void VerilatedContext::scopesDump() const VL_MT_SAFE {
const VerilatedLockGuard lock{m_impdatap->m_nameMutex};
VL_PRINTF_MT(" scopesDump:\n");
for (const auto& i : m_impdatap->m_nameMap) {
const VerilatedScope* const scopep = i.second;
scopep->scopeDump();
}
VL_PRINTF_MT("\n");
}
void VerilatedContextImp::scopeInsert(const VerilatedScope* scopep) VL_MT_SAFE {
// Slow ok - called once/scope at construction
const VerilatedLockGuard lock{m_impdatap->m_nameMutex};
const auto it = m_impdatap->m_nameMap.find(scopep->name());
if (it == m_impdatap->m_nameMap.end()) m_impdatap->m_nameMap.emplace(scopep->name(), scopep);
}
void VerilatedContextImp::scopeErase(const VerilatedScope* scopep) VL_MT_SAFE {
// Slow ok - called once/scope at destruction
const VerilatedLockGuard lock{m_impdatap->m_nameMutex};
VerilatedImp::userEraseScope(scopep);
const auto it = m_impdatap->m_nameMap.find(scopep->name());
if (it != m_impdatap->m_nameMap.end()) m_impdatap->m_nameMap.erase(it);
}
const VerilatedScope* VerilatedContext::scopeFind(const char* namep) const VL_MT_SAFE {
// Thread save only assuming this is called only after model construction completed
const VerilatedLockGuard lock{m_impdatap->m_nameMutex};
// If too slow, can assume this is only VL_MT_SAFE_POSINIT
const auto& it = m_impdatap->m_nameMap.find(namep);
if (VL_UNLIKELY(it == m_impdatap->m_nameMap.end())) return nullptr;
return it->second;
}
const VerilatedScopeNameMap* VerilatedContext::scopeNameMap() VL_MT_SAFE {
return &(impp()->m_impdatap->m_nameMap);
}
//======================================================================
// VerilatedContext:: Methods - trace
void VerilatedContext::trace(VerilatedTraceBaseC* tfp, int levels, int options) {
VL_DEBUG_IF(VL_DBG_MSGF("+ VerilatedContext::trace\n"););
if (tfp->isOpen()) {
VL_FATAL_MT("", 0, "",
"Testbench C call to 'VerilatedContext::trace()' must not be called"
" after 'VerilatedTrace*::open()'\n");
}
{
// Legacy usage may call {modela}->trace(...) then {modelb}->trace(...)
// So check for and suppress second and later calls
if (tfp->modelConnected()) return;
tfp->modelConnected(true);
}
// We rely on m_ns.m_traceBaseModelCbs being stable when trace() is called
// nope: const VerilatedLockGuard lock{m_mutex};
if (m_ns.m_traceBaseModelCbs.empty())
VL_FATAL_MT("", 0, "",
"Testbench C call to 'VerilatedContext::trace()' requires model(s) Verilated"
" with --trace or --trace-vcd option");
for (auto& cbr : m_ns.m_traceBaseModelCbs) cbr(tfp, levels, options);
}
void VerilatedContext::traceBaseModelCbAdd(traceBaseModelCb_t cb) VL_MT_SAFE {
// Model creation registering a callback for when Verilated::trace() called
const VerilatedLockGuard lock{m_mutex};
m_ns.m_traceBaseModelCbs.push_back(cb);
}
//======================================================================
// VerilatedSyms:: Methods
VerilatedSyms::VerilatedSyms(VerilatedContext* contextp)
: _vm_contextp__(contextp ? contextp : Verilated::threadContextp()) {
VerilatedContext::checkMagic(_vm_contextp__);
Verilated::threadContextp(_vm_contextp__);
// cppcheck-has-bug-suppress noCopyConstructor
__Vm_evalMsgQp = new VerilatedEvalMsgQueue;
}
VerilatedSyms::~VerilatedSyms() {
VerilatedContext::checkMagic(_vm_contextp__);
delete __Vm_evalMsgQp;
}
//===========================================================================
// Verilated:: Methods
void Verilated::debug(int level) VL_MT_SAFE {
s_debug = level;
if (level) {
#ifdef VL_DEBUG
VL_DEBUG_IF(VL_DBG_MSGF("- Verilated::debug is on."
" Message prefix indicates {<thread>,<sequence_number>}.\n"););
#else
VL_PRINTF_MT("- Verilated::debug attempted,"
" but compiled without VL_DEBUG, so messages suppressed.\n"
"- Suggest remake using 'make ... CPPFLAGS=-DVL_DEBUG'\n");
#endif
}
}
const char* Verilated::catName(const char* n1, const char* n2, const char* delimiter) VL_MT_SAFE {
// Used by symbol table creation to make module names
static thread_local char* t_strp = nullptr;
static thread_local size_t t_len = 0;
const size_t newlen = std::strlen(n1) + std::strlen(n2) + std::strlen(delimiter) + 1;
if (VL_UNLIKELY(!t_strp || newlen > t_len)) {
if (t_strp) delete[] t_strp;
t_strp = new char[newlen];
t_len = newlen;
}
char* dp = t_strp;
for (const char* sp = n1; *sp;) *dp++ = *sp++;
for (const char* sp = delimiter; *sp;) *dp++ = *sp++;
for (const char* sp = n2; *sp;) *dp++ = *sp++;
*dp++ = '\0';
return t_strp;
}
//=========================================================================
// Flush and exit callbacks
// Keeping these out of class Verilated to avoid having to include <list>
// in verilated.h (for compilation speed)
using VoidPCbList = std::list<std::pair<Verilated::VoidPCb, void*>>;
static struct {
VerilatedMutex s_flushMutex;
VoidPCbList s_flushCbs VL_GUARDED_BY(s_flushMutex);
VerilatedMutex s_exitMutex;
VoidPCbList s_exitCbs VL_GUARDED_BY(s_exitMutex);
} VlCbStatic;
static void addCbFlush(Verilated::VoidPCb cb, void* datap)
VL_MT_SAFE_EXCLUDES(VlCbStatic.s_flushMutex) {
const VerilatedLockGuard lock{VlCbStatic.s_flushMutex};
std::pair<Verilated::VoidPCb, void*> pair(cb, datap);
VlCbStatic.s_flushCbs.remove(pair); // Just in case it's a duplicate
VlCbStatic.s_flushCbs.push_back(pair);
}
static void addCbExit(Verilated::VoidPCb cb, void* datap)
VL_MT_SAFE_EXCLUDES(VlCbStatic.s_exitMutex) {
const VerilatedLockGuard lock{VlCbStatic.s_exitMutex};
std::pair<Verilated::VoidPCb, void*> pair(cb, datap);
VlCbStatic.s_exitCbs.remove(pair); // Just in case it's a duplicate
VlCbStatic.s_exitCbs.push_back(pair);
}
static void removeCbFlush(Verilated::VoidPCb cb, void* datap)
VL_MT_SAFE_EXCLUDES(VlCbStatic.s_flushMutex) {
const VerilatedLockGuard lock{VlCbStatic.s_flushMutex};
std::pair<Verilated::VoidPCb, void*> pair(cb, datap);
VlCbStatic.s_flushCbs.remove(pair);
}
static void removeCbExit(Verilated::VoidPCb cb, void* datap)
VL_MT_SAFE_EXCLUDES(VlCbStatic.s_exitMutex) {
const VerilatedLockGuard lock{VlCbStatic.s_exitMutex};
std::pair<Verilated::VoidPCb, void*> pair(cb, datap);
VlCbStatic.s_exitCbs.remove(pair);
}
static void runCallbacks(const VoidPCbList& cbs) VL_MT_SAFE {
for (const auto& i : cbs) i.first(i.second);
}
void Verilated::addFlushCb(VoidPCb cb, void* datap) VL_MT_SAFE { addCbFlush(cb, datap); }
void Verilated::removeFlushCb(VoidPCb cb, void* datap) VL_MT_SAFE { removeCbFlush(cb, datap); }
void Verilated::runFlushCallbacks() VL_MT_SAFE {
// Flush routines may call flush, so avoid mutex deadlock
static std::atomic<int> s_recursing;
if (!s_recursing++) {
const VerilatedLockGuard lock{VlCbStatic.s_flushMutex};
runCallbacks(VlCbStatic.s_flushCbs);
}
--s_recursing;
std::fflush(stderr);
std::fflush(stdout);
// When running internal code coverage (gcc --coverage, as opposed to
// verilator --coverage), dump coverage data to properly cover failing
// tests.
VL_GCOV_DUMP();
}
void Verilated::addExitCb(VoidPCb cb, void* datap) VL_MT_SAFE { addCbExit(cb, datap); }
void Verilated::removeExitCb(VoidPCb cb, void* datap) VL_MT_SAFE { removeCbExit(cb, datap); }
void Verilated::runExitCallbacks() VL_MT_SAFE {
static std::atomic<int> s_recursing;
if (!s_recursing++) {
const VerilatedLockGuard lock{VlCbStatic.s_exitMutex};
runCallbacks(VlCbStatic.s_exitCbs);
}
--s_recursing;
}
const char* Verilated::productName() VL_PURE { return VERILATOR_PRODUCT; }
const char* Verilated::productVersion() VL_PURE { return VERILATOR_VERSION; }
void Verilated::nullPointerError(const char* filename, int linenum) VL_MT_SAFE {
// Slowpath - Called only on error
VL_FATAL_MT(filename, linenum, "", "Null pointer dereferenced");
VL_UNREACHABLE;
}
void Verilated::overWidthError(const char* signame) VL_MT_SAFE {
// Slowpath - Called only when signal sets too high of a bit
const std::string msg = ("Testbench C set input '"s + signame
+ "' to value that overflows what the signal's width can fit");
VL_FATAL_MT("unknown", 0, "", msg.c_str());
VL_UNREACHABLE;
}
void Verilated::scTimePrecisionError(int sc_prec, int vl_prec) VL_MT_SAFE {
std::ostringstream msg;
msg << "SystemC's sc_set_time_resolution is 10^-" << sc_prec
<< ", which does not match Verilog timeprecision 10^-" << vl_prec
<< ". Suggest use 'sc_set_time_resolution(" << vl_time_str(vl_prec)
<< ")', or Verilator '--timescale-override " << vl_time_str(sc_prec) << "/"
<< vl_time_str(sc_prec) << "'";
const std::string msgs = msg.str();
VL_FATAL_MT("", 0, "", msgs.c_str());
VL_UNREACHABLE;
}
void Verilated::scTraceBeforeElaborationError() VL_MT_SAFE {
// Slowpath - Called only when trace file opened before SystemC elaboration
VL_FATAL_MT("unknown", 0, "",
"%Error: Verilated*Sc::open(...) was called before sc_core::sc_start(). "
"Run sc_core::sc_start(sc_core::SC_ZERO_TIME) before opening a wave file.");
VL_UNREACHABLE;
}
void Verilated::stackCheck(QData needSize) VL_MT_UNSAFE {
// Slowpath - Called only when constructing
#ifdef _VL_HAVE_GETRLIMIT
QData haveSize = 0;
rlimit rlim;
if (0 == getrlimit(RLIMIT_STACK, &rlim)) {
haveSize = rlim.rlim_cur;
if (haveSize == RLIM_INFINITY) haveSize = rlim.rlim_max;
if (haveSize == RLIM_INFINITY) haveSize = 0;
}
// VL_PRINTF_MT("-Info: stackCheck(%" PRIu64 ") have %" PRIu64 "\n", needSize, haveSize);
// Check and request for 1.5x need. This is automated so the user doesn't need to do anything.
QData requestSize = needSize + needSize / 2;
if (VL_UNLIKELY(haveSize && needSize && haveSize < requestSize)) {
// Try to increase the stack limit to the requested size
rlim.rlim_cur = requestSize;
if (
#ifdef _VL_TEST_RLIMIT_FAIL
true ||
#endif
setrlimit(RLIMIT_STACK, &rlim)) {
VL_PRINTF_MT("%%Warning: System has stack size %" PRIu64 " kb"
" which may be too small; failed to request more"
" using 'ulimit -s %" PRIu64 "'\n",
haveSize / 1024, requestSize);
}
}
#else
(void)needSize; // Unused argument
#endif
}
void Verilated::mkdir(const char* dirname) VL_MT_UNSAFE {
#if defined(_WIN32) || defined(__MINGW32__)
::mkdir(dirname);
#else
::mkdir(dirname, 0777);
#endif
}
void Verilated::quiesce() VL_MT_SAFE {
// Wait until all threads under this evaluation are quiet
// THREADED-TODO
}
int Verilated::exportFuncNum(const char* namep) VL_MT_SAFE {
return VerilatedImp::exportFind(namep);
}
void Verilated::endOfThreadMTaskGuts(VerilatedEvalMsgQueue* evalMsgQp) VL_MT_SAFE {
VL_DEBUG_IF(VL_DBG_MSGF("End of thread mtask\n"););
VerilatedThreadMsgQueue::flush(evalMsgQp);
}
void Verilated::endOfEval(VerilatedEvalMsgQueue* evalMsgQp) VL_MT_SAFE {
// It doesn't work to set endOfEvalReqd on the threadpool thread
// and then check it on the eval thread since it's thread local.
// It should be ok to call into endOfEvalGuts, it returns immediately
// if there are no transactions.
VL_DEBUG_IF(VL_DBG_MSGF("End-of-eval cleanup\n"););
VerilatedThreadMsgQueue::flush(evalMsgQp);
evalMsgQp->process();
}
//===========================================================================
// VerilatedImp:: Methods
void VerilatedImp::versionDump() VL_MT_SAFE {
VL_PRINTF_MT(" Version: %s %s\n", Verilated::productName(), Verilated::productVersion());
}
//===========================================================================
// VerilatedModel:: Methods
VerilatedModel::VerilatedModel(VerilatedContext& context)
: m_context{context} {}
std::unique_ptr<VerilatedTraceConfig> VerilatedModel::traceConfig() const { return nullptr; }
//===========================================================================
// VerilatedModule:: Methods
VerilatedModule::VerilatedModule(const char* namep)
: m_namep{strdup(namep)} {}
VerilatedModule::~VerilatedModule() {
// Memory cleanup - not called during normal operation
// NOLINTNEXTLINE(google-readability-casting)
if (m_namep) VL_DO_CLEAR(free((void*)(m_namep)), m_namep = nullptr);
}
//======================================================================
// VerilatedVar:: Methods
// cppcheck-suppress unusedFunction // Used by applications
uint32_t VerilatedVarProps::entSize() const VL_MT_SAFE {
uint32_t size = 1;
switch (vltype()) {
case VLVT_PTR: size = sizeof(void*); break;
case VLVT_UINT8: size = sizeof(CData); break;
case VLVT_UINT16: size = sizeof(SData); break;
case VLVT_UINT32: size = sizeof(IData); break;
case VLVT_UINT64: size = sizeof(QData); break;
case VLVT_WDATA: size = VL_WORDS_I(packed().elements()) * sizeof(IData); break;
default: size = 0; break; // LCOV_EXCL_LINE
}
return size;
}
size_t VerilatedVarProps::totalSize() const {
size_t size = entSize();
for (int udim = 0; udim < udims(); ++udim) size *= m_unpacked[udim].elements();
return size;
}
void* VerilatedVarProps::datapAdjustIndex(void* datap, int dim, int indx) const VL_MT_SAFE {
if (VL_UNLIKELY(dim <= 0 || dim > udims())) return nullptr;
if (VL_UNLIKELY(indx < low(dim) || indx > high(dim))) return nullptr;
const int indxAdj = indx - low(dim);
uint8_t* bytep = reinterpret_cast<uint8_t*>(datap);
// If on index 1 of a 2 index array, then each index 1 is index2sz*entsz
size_t slicesz = entSize();
for (int d = dim + 1; d <= m_udims; ++d) slicesz *= elements(d);
bytep += indxAdj * slicesz;
return bytep;
}
//======================================================================
// VerilatedScope:: Methods
VerilatedScope::~VerilatedScope() {
// Memory cleanup - not called during normal operation
Verilated::threadContextp()->impp()->scopeErase(this);
if (m_namep) VL_DO_CLEAR(delete[] m_namep, m_namep = nullptr);
if (m_callbacksp) VL_DO_CLEAR(delete[] m_callbacksp, m_callbacksp = nullptr);
if (m_varsp) VL_DO_CLEAR(delete m_varsp, m_varsp = nullptr);
m_funcnumMax = 0; // Force callback table to empty
}
void VerilatedScope::configure(VerilatedSyms* symsp, const char* prefixp, const char* suffixp,
const char* identifier, int8_t timeunit,
const Type& type) VL_MT_UNSAFE {
// Slowpath - called once/scope at construction
// We don't want the space and reference-count access overhead of strings.
m_symsp = symsp;
m_type = type;
m_timeunit = timeunit;
{
char* const namep = new char[std::strlen(prefixp) + std::strlen(suffixp) + 2];
char* dp = namep;
for (const char* sp = prefixp; *sp;) *dp++ = *sp++;
if (*prefixp && *suffixp) *dp++ = '.';
for (const char* sp = suffixp; *sp;) *dp++ = *sp++;
*dp++ = '\0';
m_namep = namep;
}
m_identifierp = identifier;
Verilated::threadContextp()->impp()->scopeInsert(this);
}
void VerilatedScope::exportInsert(int finalize, const char* namep, void* cb) VL_MT_UNSAFE {
// Slowpath - called once/scope*export at construction
// Insert a exported function into scope table
const int funcnum = VerilatedImp::exportInsert(namep);
if (!finalize) {
// Need two passes so we know array size to create
// Alternative is to dynamically stretch the array, which is more code, and slower.
if (funcnum >= m_funcnumMax) m_funcnumMax = funcnum + 1;
} else {
if (VL_UNCOVERABLE(funcnum >= m_funcnumMax)) {
VL_FATAL_MT(__FILE__, __LINE__, "", // LCOV_EXCL_LINE
"Internal: Bad funcnum vs. pre-finalize maximum");
}
if (VL_UNLIKELY(!m_callbacksp)) { // First allocation
m_callbacksp = new void*[m_funcnumMax];
std::memset(m_callbacksp, 0, m_funcnumMax * sizeof(void*));
}
m_callbacksp[funcnum] = cb;
}
}
void VerilatedScope::varInsert(int finalize, const char* namep, void* datap, bool isParam,
VerilatedVarType vltype, int vlflags, int dims, ...) VL_MT_UNSAFE {
// Grab dimensions
// In the future we may just create a large table at emit time and
// statically construct from that.
if (!finalize) return;
if (!m_varsp) m_varsp = new VerilatedVarNameMap;
VerilatedVar var(namep, datap, vltype, static_cast<VerilatedVarFlags>(vlflags), dims, isParam);
va_list ap;
va_start(ap, dims);
for (int i = 0; i < dims; ++i) {
const int msb = va_arg(ap, int);
const int lsb = va_arg(ap, int);
if (i == 0) {
var.m_packed.m_left = msb;
var.m_packed.m_right = lsb;
} else if (i >= 1 && i <= var.udims()) {
var.m_unpacked[i - 1].m_left = msb;
var.m_unpacked[i - 1].m_right = lsb;
} else {
// We could have a linked list of ranges, but really this whole thing needs
// to be generalized to support structs and unions, etc.
const std::string msg = "Unsupported multi-dimensional public varInsert: "s + namep;
VL_FATAL_MT(__FILE__, __LINE__, "", msg.c_str());
}
}
va_end(ap);
m_varsp->emplace(namep, var);
}
// cppcheck-suppress unusedFunction // Used by applications
VerilatedVar* VerilatedScope::varFind(const char* namep) const VL_MT_SAFE_POSTINIT {
if (VL_LIKELY(m_varsp)) {
const auto it = m_varsp->find(namep);
if (VL_LIKELY(it != m_varsp->end())) return &(it->second);
}
return nullptr;
}
void* VerilatedScope::exportFindNullError(int funcnum) VL_MT_SAFE {
// Slowpath - Called only when find has failed
const std::string msg = ("Testbench C called '"s + VerilatedImp::exportName(funcnum)
+ "' but scope wasn't set, perhaps due to dpi import call without "
+ "'context', or missing svSetScope. See IEEE 1800-2023 35.5.3.");
VL_FATAL_MT("unknown", 0, "", msg.c_str());
return nullptr;
}
void* VerilatedScope::exportFindError(int funcnum) const VL_MT_SAFE {
// Slowpath - Called only when find has failed
const std::string msg
= ("Testbench C called '"s + VerilatedImp::exportName(funcnum)
+ "' but this DPI export function exists only in other scopes, not scope '" + name()
+ "'");
VL_FATAL_MT("unknown", 0, "", msg.c_str());
return nullptr;
}
void VerilatedScope::scopeDump() const {
VL_PRINTF_MT(" SCOPE %p: %s\n", this, name());
for (int i = 0; i < m_funcnumMax; ++i) {
if (m_callbacksp && m_callbacksp[i]) {
VL_PRINTF_MT(" DPI-EXPORT %p: %s\n", m_callbacksp[i],
VerilatedImp::exportName(i));
}
}
if (const VerilatedVarNameMap* const varsp = this->varsp()) {
for (const auto& i : *varsp) VL_PRINTF_MT(" VAR %p: %s\n", &(i.second), i.first);
}
}
void VerilatedHierarchy::add(VerilatedScope* fromp, VerilatedScope* top) {
VerilatedImp::hierarchyAdd(fromp, top);
}
void VerilatedHierarchy::remove(VerilatedScope* fromp, VerilatedScope* top) {
VerilatedImp::hierarchyRemove(fromp, top);
}
//===========================================================================
// VerilatedOneThreaded:: Methods
#ifdef VL_DEBUG
void VerilatedAssertOneThread::fatal_different() VL_MT_SAFE {
VL_FATAL_MT(__FILE__, __LINE__, "",
"Routine called that is single threaded, but called from"
" a different thread then the expected constructing thread");
}
#endif
//===========================================================================
// VlDeleter:: Methods
void VlDeleter::deleteAll() VL_EXCLUDES(m_mutex) VL_EXCLUDES(m_deleteMutex) VL_MT_SAFE {
while (true) {
{
VerilatedLockGuard lock{m_mutex};
if (m_newGarbage.empty()) break;
m_deleteMutex.lock();
std::swap(m_newGarbage, m_deleteNow);
// m_mutex is unlocked here, so destructors can enqueue new objects
}
for (VlDeletable* const objp : m_deleteNow) delete objp;
m_deleteNow.clear();
m_deleteMutex.unlock();
}
}
//===========================================================================
// OS functions (last, so we have minimal OS dependencies above)
#define VL_ALLOW_VERILATEDOS_C
#include "verilatedos_c.h"