verilator/src/V3AssertPre.cpp
Krzysztof Bieganski 51691dfde5 Fix driving clocking block in Reactive
Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>
2024-09-04 07:57:51 -04:00

592 lines
28 KiB
C++

// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
// DESCRIPTION: Verilator: Collect and print statistics
//
// Code available from: https://verilator.org
//
//*************************************************************************
//
// Copyright 2005-2024 by Wilson Snyder. This program is free software; you
// can redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//*************************************************************************
// Pre steps:
// Attach clocks to each assertion
// Substitute property references by property body (IEEE 1800-2012 16.12.1).
// Transform clocking blocks into imperative logic
//*************************************************************************
#include "V3PchAstNoMT.h" // VL_MT_DISABLED_CODE_UNIT
#include "V3AssertPre.h"
#include "V3Const.h"
#include "V3Task.h"
#include "V3UniqueNames.h"
VL_DEFINE_DEBUG_FUNCTIONS;
//######################################################################
// Assert class functions
class AssertPreVisitor final : public VNVisitor {
// Removes clocks and other pre-optimizations
// Eventually inlines calls to sequences, properties, etc.
// We're not parsing the tree, or anything more complicated.
private:
// NODE STATE
const VNUser1InUse m_inuser1;
// STATE
// Current context:
AstNetlist* const m_netlistp = nullptr; // Current netlist
AstNodeModule* m_modp = nullptr; // Current module
AstClocking* m_clockingp = nullptr; // Current clocking block
// Reset each module:
AstClocking* m_defaultClockingp = nullptr; // Default clocking for the current module
// Reset each assertion:
AstSenItem* m_senip = nullptr; // Last sensitivity
// Reset each always:
AstSenItem* m_seniAlwaysp = nullptr; // Last sensitivity in always
// Reset each assertion:
AstNodeExpr* m_disablep = nullptr; // Last disable
// Other:
V3UniqueNames m_cycleDlyNames{"__VcycleDly"}; // Cycle delay counter name generator
bool m_inAssign = false; // True if in an AssignNode
bool m_inAssignDlyLhs = false; // True if in AssignDly's LHS
bool m_inSynchDrive = false; // True if in synchronous drive
std::vector<AstVarXRef*> m_xrefsp; // list of xrefs that need name fixup
// METHODS
AstSenTree* newSenTree(AstNode* nodep, AstSenTree* useTreep = nullptr) {
// Create sentree based on clocked or default clock
// Return nullptr for always
if (useTreep) return useTreep;
AstSenTree* newp = nullptr;
AstSenItem* senip = m_senip;
if (!senip && m_defaultClockingp) senip = m_defaultClockingp->sensesp();
if (!senip) senip = m_seniAlwaysp;
if (!senip) {
nodep->v3warn(E_UNSUPPORTED, "Unsupported: Unclocked assertion");
newp = new AstSenTree{nodep->fileline(), nullptr};
} else {
newp = new AstSenTree{nodep->fileline(), senip->cloneTree(true)};
}
return newp;
}
void clearAssertInfo() {
m_senip = nullptr;
m_disablep = nullptr;
}
AstPropSpec* getPropertyExprp(const AstProperty* const propp) {
// The only statements possible in AstProperty are AstPropSpec (body)
// and AstVar (arguments).
AstNode* propExprp = propp->stmtsp();
while (VN_IS(propExprp, Var)) propExprp = propExprp->nextp();
return VN_CAST(propExprp, PropSpec);
}
void replaceVarRefsWithExprRecurse(AstNode* const nodep, const AstVar* varp,
AstNode* const exprp) {
if (!nodep) return;
if (const AstVarRef* varrefp = VN_CAST(nodep, VarRef)) {
if (varp == varrefp->varp()) nodep->replaceWith(exprp->cloneTree(false));
}
replaceVarRefsWithExprRecurse(nodep->op1p(), varp, exprp);
replaceVarRefsWithExprRecurse(nodep->op2p(), varp, exprp);
replaceVarRefsWithExprRecurse(nodep->op3p(), varp, exprp);
replaceVarRefsWithExprRecurse(nodep->op4p(), varp, exprp);
}
AstPropSpec* substitutePropertyCall(AstPropSpec* nodep) {
if (AstFuncRef* const funcrefp = VN_CAST(nodep->propp(), FuncRef)) {
if (AstProperty* const propp = VN_CAST(funcrefp->taskp(), Property)) {
AstPropSpec* propExprp = getPropertyExprp(propp);
// Substitute inner property call before copying in order to not doing the same for
// each call of outer property call.
propExprp = substitutePropertyCall(propExprp);
// Clone subtree after substitution. It is needed, because property might be called
// multiple times with different arguments.
propExprp = propExprp->cloneTree(false);
// Substitute formal arguments with actual arguments
const V3TaskConnects tconnects = V3Task::taskConnects(funcrefp, propp->stmtsp());
for (const auto& tconnect : tconnects) {
const AstVar* const portp = tconnect.first;
AstArg* const argp = tconnect.second;
AstNode* const pinp = argp->exprp()->unlinkFrBack();
replaceVarRefsWithExprRecurse(propExprp, portp, pinp);
VL_DO_DANGLING(pushDeletep(pinp), pinp);
}
// Handle case with 2 disable iff statement (IEEE 1800-2023 16.12.1)
if (nodep->disablep() && propExprp->disablep()) {
nodep->v3error("disable iff expression before property call and in its "
"body is not legal");
pushDeletep(propExprp->disablep()->unlinkFrBack());
}
// If disable iff is in outer property, move it to inner
if (nodep->disablep()) {
AstNodeExpr* const disablep = nodep->disablep()->unlinkFrBack();
propExprp->disablep(disablep);
}
if (nodep->sensesp() && propExprp->sensesp()) {
nodep->v3warn(E_UNSUPPORTED,
"Unsupported: Clock event before property call and in its body");
pushDeletep(propExprp->sensesp()->unlinkFrBack());
}
// If clock event is in outer property, move it to inner
if (nodep->sensesp()) {
AstSenItem* const sensesp = nodep->sensesp();
sensesp->unlinkFrBack();
propExprp->sensesp(sensesp);
}
// Now substitute property reference with property body
nodep->replaceWith(propExprp);
return propExprp;
}
}
return nodep;
}
// VISITORS
//========== Statements
void visit(AstClocking* const nodep) override {
VL_RESTORER(m_clockingp);
m_clockingp = nodep;
UINFO(8, " CLOCKING" << nodep << endl);
iterateChildren(nodep);
if (nodep->eventp()) nodep->addNextHere(nodep->eventp()->unlinkFrBack());
VL_DO_DANGLING(pushDeletep(nodep->unlinkFrBack()), nodep);
}
void visit(AstClockingItem* const nodep) override {
// Get a ref to the sampled/driven variable
AstVar* const varp = nodep->varp();
if (!varp) {
// Unused item
pushDeletep(nodep->unlinkFrBack());
return;
}
FileLine* const flp = nodep->fileline();
V3Const::constifyEdit(nodep->skewp());
if (!VN_IS(nodep->skewp(), Const)) {
nodep->skewp()->v3error("Skew must be constant (IEEE 1800-2023 14.4)");
VL_DO_DANGLING(nodep->unlinkFrBack()->deleteTree(), nodep);
return;
}
AstConst* const skewp = VN_AS(nodep->skewp(), Const);
if (skewp->num().isNegative()) skewp->v3error("Skew cannot be negative");
AstNodeExpr* const exprp = nodep->exprp();
varp->name(m_clockingp->name() + "__DOT__" + varp->name());
m_clockingp->addNextHere(varp->unlinkFrBack());
varp->user1p(nodep);
if (nodep->direction() == VDirection::OUTPUT) {
exprp->foreach([](AstNodeVarRef* varrefp) {
// Prevent confusing BLKANDNBLK warnings on clockvars due to generated assignments
varrefp->fileline()->warnOff(V3ErrorCode::BLKANDNBLK, true);
});
AstVarRef* const skewedReadRefp = new AstVarRef{flp, varp, VAccess::READ};
skewedReadRefp->user1(true);
// Initialize the clockvar
AstVarRef* const skewedWriteRefp = new AstVarRef{flp, varp, VAccess::WRITE};
skewedWriteRefp->user1(true);
AstInitialStatic* const initClockvarp = new AstInitialStatic{
flp, new AstAssign{flp, skewedWriteRefp, exprp->cloneTreePure(false)}};
m_modp->addStmtsp(initClockvarp);
// A var to keep the previous value of the clockvar
AstVar* const prevVarp = new AstVar{
flp, VVarType::MODULETEMP, "__Vclocking_prev__" + varp->name(), exprp->dtypep()};
prevVarp->lifetime(VLifetime::STATIC);
AstInitialStatic* const initPrevClockvarp = new AstInitialStatic{
flp, new AstAssign{flp, new AstVarRef{flp, prevVarp, VAccess::WRITE},
skewedReadRefp->cloneTreePure(false)}};
m_modp->addStmtsp(prevVarp);
m_modp->addStmtsp(initPrevClockvarp);
// Assign the clockvar to the actual var; only do it if the clockvar's value has
// changed
AstAssign* const assignp
= new AstAssign{flp, exprp->cloneTreePure(false), skewedReadRefp};
AstIf* const ifp
= new AstIf{flp,
new AstNeq{flp, new AstVarRef{flp, prevVarp, VAccess::READ},
skewedReadRefp->cloneTreePure(false)},
assignp};
ifp->addThensp(new AstAssign{flp, new AstVarRef{flp, prevVarp, VAccess::WRITE},
skewedReadRefp->cloneTree(false)});
if (skewp->isZero()) {
// Drive the var in Re-NBA (IEEE 1800-2023 14.16)
AstSenTree* senTreep
= new AstSenTree{flp, m_clockingp->sensesp()->cloneTree(false)};
senTreep->addSensesp(
new AstSenItem{flp, VEdgeType::ET_CHANGED, skewedReadRefp->cloneTree(false)});
AstCMethodHard* const trigp = new AstCMethodHard{
nodep->fileline(),
new AstVarRef{flp, m_clockingp->ensureEventp(), VAccess::READ}, "isTriggered"};
trigp->dtypeSetBit();
ifp->condp(new AstLogAnd{flp, ifp->condp()->unlinkFrBack(), trigp});
m_clockingp->addNextHere(new AstAlwaysReactive{flp, senTreep, ifp});
} else if (skewp->fileline()->timingOn()) {
// Create a fork so that this AlwaysObserved can be retriggered before the
// assignment happens. Also then it can be combo, avoiding the need for creating
// new triggers.
AstFork* const forkp = new AstFork{flp, "", ifp};
forkp->joinType(VJoinType::JOIN_NONE);
// Use Observed for this to make sure we do not miss the event
m_clockingp->addNextHere(new AstAlwaysObserved{
flp, new AstSenTree{flp, m_clockingp->sensesp()->cloneTree(false)}, forkp});
if (v3Global.opt.timing().isSetTrue()) {
AstDelay* const delayp = new AstDelay{flp, skewp->unlinkFrBack(), false};
delayp->timeunit(m_modp->timeunit());
assignp->timingControlp(delayp);
} else if (v3Global.opt.timing().isSetFalse()) {
nodep->v3warn(E_NOTIMING,
"Clocking output skew greater than #0 requires --timing");
} else {
nodep->v3warn(E_NEEDTIMINGOPT,
"Use --timing or --no-timing to specify how "
"clocking output skew greater than #0 should be handled");
}
}
} else if (nodep->direction() == VDirection::INPUT) {
// Ref to the clockvar
AstVarRef* const refp = new AstVarRef{flp, varp, VAccess::WRITE};
refp->user1(true);
if (skewp->num().is1Step()) {
// Assign the sampled expression to the clockvar (IEEE 1800-2023 14.13)
AstSampled* const sampledp = new AstSampled{flp, exprp->cloneTreePure(false)};
sampledp->dtypeFrom(exprp);
m_clockingp->addNextHere(new AstAssignW{flp, refp, sampledp});
} else if (skewp->isZero()) {
// #0 means the var has to be sampled in Observed (IEEE 1800-2023 14.13)
AstAssign* const assignp = new AstAssign{flp, refp, exprp->cloneTreePure(false)};
m_clockingp->addNextHere(new AstAlwaysObserved{
flp, new AstSenTree{flp, m_clockingp->sensesp()->cloneTree(false)}, assignp});
} else {
// Create a queue where we'll store sampled values with timestamps
AstSampleQueueDType* const queueDtp
= new AstSampleQueueDType{flp, exprp->dtypep()};
m_netlistp->typeTablep()->addTypesp(queueDtp);
AstVar* const queueVarp
= new AstVar{flp, VVarType::MODULETEMP, "__Vqueue__" + varp->name(), queueDtp};
queueVarp->lifetime(VLifetime::STATIC);
m_clockingp->addNextHere(queueVarp);
// Create a process like this:
// always queue.push(<sampled var>);
AstCMethodHard* const pushp = new AstCMethodHard{
flp, new AstVarRef{flp, queueVarp, VAccess::WRITE}, "push",
new AstTime{nodep->fileline(), m_modp->timeunit()}};
pushp->addPinsp(exprp->cloneTreePure(false));
pushp->dtypeSetVoid();
m_clockingp->addNextHere(
new AstAlways{flp, VAlwaysKwd::ALWAYS, nullptr, pushp->makeStmt()});
// Create a process like this:
// always @<clocking event> queue.pop(<skew>, /*out*/<skewed var>);
AstCMethodHard* const popp = new AstCMethodHard{
flp, new AstVarRef{flp, queueVarp, VAccess::READWRITE}, "pop",
new AstTime{nodep->fileline(), m_modp->timeunit()}};
popp->addPinsp(skewp->unlinkFrBack());
popp->addPinsp(refp);
popp->dtypeSetVoid();
m_clockingp->addNextHere(
new AstAlways{flp, VAlwaysKwd::ALWAYS,
new AstSenTree{flp, m_clockingp->sensesp()->cloneTree(false)},
popp->makeStmt()});
}
} else {
nodep->v3fatal("Invalid direction");
}
VL_DO_DANGLING(pushDeletep(nodep->unlinkFrBack()), nodep);
}
void visit(AstDelay* nodep) override {
// Only cycle delays are relevant in this stage; also only process once
if (!nodep->isCycleDelay()) {
if (m_inSynchDrive) {
nodep->v3error("Only cycle delays can be used in synchronous drives"
" (IEEE 1800-2023 14.16)");
}
iterateChildren(nodep);
return;
}
if (m_inAssign && !m_inSynchDrive) {
nodep->v3error("Cycle delays not allowed as intra-assignment delays"
" (IEEE 1800-2023 14.11)");
VL_DO_DANGLING(nodep->unlinkFrBack()->deleteTree(), nodep);
return;
}
if (nodep->stmtsp()) nodep->addNextHere(nodep->stmtsp()->unlinkFrBackWithNext());
FileLine* const flp = nodep->fileline();
AstNodeExpr* valuep = V3Const::constifyEdit(nodep->lhsp()->unlinkFrBack());
AstConst* const constp = VN_CAST(valuep, Const);
if (constp->isZero()) {
nodep->v3warn(E_UNSUPPORTED, "Unsupported: ##0 delays");
VL_DO_DANGLING(nodep->unlinkFrBack()->deleteTree(), nodep);
VL_DO_DANGLING(valuep->deleteTree(), valuep);
return;
}
if (!m_defaultClockingp) {
nodep->v3error("Usage of cycle delays requires default clocking"
" (IEEE 1800-2023 14.11)");
VL_DO_DANGLING(nodep->unlinkFrBack()->deleteTree(), nodep);
VL_DO_DANGLING(valuep->deleteTree(), valuep);
return;
}
AstEventControl* const controlp = new AstEventControl{
nodep->fileline(),
new AstSenTree{flp, m_defaultClockingp->sensesp()->cloneTree(false)}, nullptr};
const std::string delayName = m_cycleDlyNames.get(nodep);
AstVar* const cntVarp = new AstVar{flp, VVarType::BLOCKTEMP, delayName + "__counter",
nodep->findBasicDType(VBasicDTypeKwd::UINT32)};
cntVarp->lifetime(VLifetime::AUTOMATIC);
cntVarp->funcLocal(true);
AstBegin* const beginp = new AstBegin{flp, delayName + "__block", cntVarp, false, true};
beginp->addStmtsp(new AstAssign{flp, new AstVarRef{flp, cntVarp, VAccess::WRITE}, valuep});
beginp->addStmtsp(new AstWhile{
nodep->fileline(),
new AstGt{flp, new AstVarRef{flp, cntVarp, VAccess::READ}, new AstConst{flp, 0}},
controlp,
new AstAssign{flp, new AstVarRef{flp, cntVarp, VAccess::WRITE},
new AstSub{flp, new AstVarRef{flp, cntVarp, VAccess::READ},
new AstConst{flp, 1}}}});
nodep->replaceWith(beginp);
VL_DO_DANGLING(nodep->deleteTree(), nodep);
}
void visit(AstSenTree* nodep) override {
if (m_inSynchDrive) {
nodep->v3error("Event controls cannot be used in "
"synchronous drives (IEEE 1800-2023 14.16)");
}
}
void visit(AstNodeVarRef* nodep) override {
UINFO(8, " -varref: " << nodep << endl);
UINFO(8, " -varref-var-back: " << nodep->varp()->backp() << endl);
UINFO(8, " -varref-var-user1: " << nodep->varp()->user1p() << endl);
if (AstClockingItem* const itemp = VN_CAST(
nodep->varp()->user1p() ? nodep->varp()->user1p() : nodep->varp()->firstAbovep(),
ClockingItem)) {
if (nodep->user1()) return;
// ensure linking still works, this has to be done only once
if (AstVarXRef* xrefp = VN_CAST(nodep, VarXRef)) {
UINFO(8, " -clockvarxref-in: " << xrefp << endl);
string dotted = xrefp->dotted();
const size_t dotPos = dotted.rfind('.');
dotted.erase(dotPos, string::npos);
xrefp->dotted(dotted);
UINFO(8, " -clockvarxref-out: " << xrefp << endl);
m_xrefsp.emplace_back(xrefp);
}
if (nodep->access().isReadOrRW() && itemp->direction() == VDirection::OUTPUT) {
nodep->v3error("Cannot read from output clockvar (IEEE 1800-2023 14.3)");
}
if (nodep->access().isWriteOrRW()) {
if (itemp->direction() == VDirection::OUTPUT) {
if (!m_inAssignDlyLhs) {
nodep->v3error("Only non-blocking assignments can write "
"to clockvars (IEEE 1800-2023 14.16)");
}
if (m_inAssign) m_inSynchDrive = true;
} else if (itemp->direction() == VDirection::INPUT) {
nodep->v3error("Cannot write to input clockvar (IEEE 1800-2023 14.3)");
}
}
nodep->user1(true);
}
}
void visit(AstMemberSel* nodep) override {
if (AstClockingItem* const itemp = VN_CAST(
nodep->varp()->user1p() ? nodep->varp()->user1p() : nodep->varp()->firstAbovep(),
ClockingItem)) {
if (nodep->access().isReadOrRW() && itemp->direction() == VDirection::OUTPUT) {
nodep->v3error("Cannot read from output clockvar (IEEE 1800-2023 14.3)");
}
if (nodep->access().isWriteOrRW()) {
if (itemp->direction() == VDirection::OUTPUT) {
if (!m_inAssignDlyLhs) {
nodep->v3error("Only non-blocking assignments can write "
"to clockvars (IEEE 1800-2023 14.16)");
}
if (m_inAssign) m_inSynchDrive = true;
} else if (itemp->direction() == VDirection::INPUT) {
nodep->v3error("Cannot write to input clockvar (IEEE 1800-2023 14.3)");
}
}
}
}
void visit(AstNodeAssign* nodep) override {
if (nodep->user1()) return;
VL_RESTORER(m_inAssign);
VL_RESTORER(m_inSynchDrive);
m_inAssign = true;
m_inSynchDrive = false;
{
VL_RESTORER(m_inAssignDlyLhs);
m_inAssignDlyLhs = VN_IS(nodep, AssignDly);
iterate(nodep->lhsp());
}
iterate(nodep->rhsp());
if (nodep->timingControlp()) {
iterate(nodep->timingControlp());
} else if (m_inSynchDrive) {
AstAssign* const assignp = new AstAssign{
nodep->fileline(), nodep->lhsp()->unlinkFrBack(), nodep->rhsp()->unlinkFrBack()};
assignp->user1(true);
nodep->replaceWith(assignp);
VL_DO_DANGLING(nodep->deleteTree(), nodep);
}
}
void visit(AstAlways* nodep) override {
iterateAndNextNull(nodep->sensesp());
if (nodep->sensesp()) m_seniAlwaysp = nodep->sensesp()->sensesp();
iterateAndNextNull(nodep->stmtsp());
m_seniAlwaysp = nullptr;
}
void visit(AstNodeCoverOrAssert* nodep) override {
if (nodep->sentreep()) return; // Already processed
clearAssertInfo();
// Find Clocking's buried under nodep->exprsp
iterateChildren(nodep);
if (!nodep->immediate()) nodep->sentreep(newSenTree(nodep));
clearAssertInfo();
}
void visit(AstFell* nodep) override {
if (nodep->user1SetOnce()) return;
iterateChildren(nodep);
FileLine* const fl = nodep->fileline();
AstNodeExpr* exprp = nodep->exprp()->unlinkFrBack();
if (exprp->width() > 1) exprp = new AstSel{fl, exprp, 0, 1};
AstSenTree* sentreep = nodep->sentreep();
if (sentreep) sentreep->unlinkFrBack();
AstNodeExpr* const past = new AstPast{fl, exprp, nullptr};
past->dtypeFrom(exprp);
exprp = new AstAnd{fl, past, new AstNot{fl, exprp->cloneTreePure(false)}};
exprp->dtypeSetBit();
nodep->replaceWith(exprp);
nodep->sentreep(newSenTree(nodep, sentreep));
VL_DO_DANGLING(pushDeletep(nodep), nodep);
}
void visit(AstPast* nodep) override {
if (nodep->sentreep()) return; // Already processed
iterateChildren(nodep);
nodep->sentreep(newSenTree(nodep));
}
void visit(AstRose* nodep) override {
if (nodep->user1SetOnce()) return;
iterateChildren(nodep);
FileLine* const fl = nodep->fileline();
AstNodeExpr* exprp = nodep->exprp()->unlinkFrBack();
if (exprp->width() > 1) exprp = new AstSel{fl, exprp, 0, 1};
AstSenTree* sentreep = nodep->sentreep();
if (sentreep) sentreep->unlinkFrBack();
AstNodeExpr* const past = new AstPast{fl, exprp, nullptr};
past->dtypeFrom(exprp);
exprp = new AstAnd{fl, new AstNot{fl, past}, exprp->cloneTreePure(false)};
exprp->dtypeSetBit();
nodep->replaceWith(exprp);
nodep->sentreep(newSenTree(nodep, sentreep));
VL_DO_DANGLING(pushDeletep(nodep), nodep);
}
void visit(AstStable* nodep) override {
if (nodep->user1SetOnce()) return;
iterateChildren(nodep);
FileLine* const fl = nodep->fileline();
AstNodeExpr* exprp = nodep->exprp()->unlinkFrBack();
AstSenTree* sentreep = nodep->sentreep();
if (sentreep) sentreep->unlinkFrBack();
AstNodeExpr* const past = new AstPast{fl, exprp, nullptr};
past->dtypeFrom(exprp);
exprp = new AstEq{fl, past, exprp->cloneTreePure(false)};
exprp->dtypeSetBit();
nodep->replaceWith(exprp);
nodep->sentreep(newSenTree(nodep, sentreep));
VL_DO_DANGLING(pushDeletep(nodep), nodep);
}
void visit(AstImplication* nodep) override {
if (nodep->sentreep()) return; // Already processed
FileLine* const fl = nodep->fileline();
AstNodeExpr* const rhsp = nodep->rhsp()->unlinkFrBack();
AstNodeExpr* lhsp = nodep->lhsp()->unlinkFrBack();
if (m_disablep) lhsp = new AstAnd{fl, new AstNot{fl, m_disablep}, lhsp};
AstNodeExpr* const past = new AstPast{fl, lhsp, nullptr};
past->dtypeFrom(lhsp);
AstNodeExpr* const exprp = new AstOr{fl, new AstNot{fl, past}, rhsp};
exprp->dtypeSetBit();
nodep->replaceWith(exprp);
nodep->sentreep(newSenTree(nodep));
VL_DO_DANGLING(pushDeletep(nodep), nodep);
}
void visit(AstPropSpec* nodep) override {
nodep = substitutePropertyCall(nodep);
// No need to iterate the body, once replace will get iterated
iterateAndNextNull(nodep->sensesp());
if (m_senip)
nodep->v3warn(E_UNSUPPORTED, "Unsupported: Only one PSL clock allowed per assertion");
// Block is the new expression to evaluate
AstNodeExpr* blockp = VN_AS(nodep->propp()->unlinkFrBack(), NodeExpr);
if (AstNodeExpr* const disablep = nodep->disablep()) {
m_disablep = disablep->cloneTreePure(false);
if (VN_IS(nodep->backp(), Cover)) {
blockp = new AstAnd{disablep->fileline(),
new AstNot{disablep->fileline(), disablep->unlinkFrBack()},
blockp};
} else {
blockp = new AstOr{disablep->fileline(), disablep->unlinkFrBack(), blockp};
}
}
// Unlink and just keep a pointer to it, convert to sentree as needed
m_senip = nodep->sensesp();
nodep->replaceWith(blockp);
VL_DO_DANGLING(pushDeletep(nodep), nodep);
}
void visit(AstNodeModule* nodep) override {
VL_RESTORER(m_defaultClockingp);
VL_RESTORER(m_modp);
m_defaultClockingp = nullptr;
nodep->foreach([&](AstClocking* const clockingp) {
if (clockingp->isDefault()) {
if (m_defaultClockingp) {
clockingp->v3error("Only one default clocking block allowed per module"
" (IEEE 1800-2023 14.12)");
}
m_defaultClockingp = clockingp;
}
});
m_modp = nodep;
iterateChildren(nodep);
}
void visit(AstProperty* nodep) override {
// The body will be visited when will be substituted in place of property reference
// (AstFuncRef)
VL_DO_DANGLING(pushDeletep(nodep->unlinkFrBack()), nodep);
}
void visit(AstNode* nodep) override { iterateChildren(nodep); }
public:
// CONSTRUCTORS
explicit AssertPreVisitor(AstNetlist* nodep)
: m_netlistp{nodep} {
clearAssertInfo();
// Process
iterate(nodep);
// Fix up varref names
for (AstVarXRef* xrefp : m_xrefsp) xrefp->name(xrefp->varp()->name());
}
~AssertPreVisitor() override = default;
};
//######################################################################
// Top Assert class
void V3AssertPre::assertPreAll(AstNetlist* nodep) {
UINFO(2, __FUNCTION__ << ": " << endl);
{ AssertPreVisitor{nodep}; } // Destruct before checking
V3Global::dumpCheckGlobalTree("assertpre", 0, dumpTreeEitherLevel() >= 3);
}