verilator/include/verilated_timing.h
Paul Bowen-Huggett 9ff06c1664
Fix 'experimental/coroutine' file not found on macOS (#5030) (#5031) (#5151)
libcxx has removed the experimental/coroutine include file in favor of
the C++20-standard coroutine include. If the latter is available we
use it otherwise falling back to the existing experimental version (in
which case we also disable the deprecated-experimental-coroutine warning).

(See also https://reviews.llvm.org/D108697.)
2024-06-08 08:33:50 -04:00

478 lines
20 KiB
C++

// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
//
// Code available from: https://verilator.org
//
// Copyright 2022 by Wilson Snyder. This program is free software; you can
// redistribute it and/or modify it under the terms of either the GNU Lesser
// General Public License Version 3 or the Perl Artistic License Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//*************************************************************************
///
/// \file
/// \brief Verilated timing header
///
/// This file is included automatically by Verilator in some of the C++ files
/// it generates if timing features are used.
///
/// This file is not part of the Verilated public-facing API.
/// It is only for internal use.
///
/// See the internals documentation docs/internals.rst for details.
///
//*************************************************************************
#ifndef VERILATOR_VERILATED_TIMING_H_
#define VERILATOR_VERILATED_TIMING_H_
#include "verilated.h"
#include <vector>
// clang-format off
// Some preprocessor magic to support both Clang and GCC coroutines with both libc++ and libstdc++
#if defined _LIBCPP_VERSION // libc++
# if defined(__has_include) && !__has_include(<coroutine>) && __has_include(<experimental/coroutine>)
# if __clang_major__ > 13 // Clang > 13 warns that coroutine types in std::experimental are deprecated
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wdeprecated-experimental-coroutine"
# endif
# include <experimental/coroutine>
namespace std {
using namespace experimental; // Bring std::experimental into the std namespace
}
# else
# include <coroutine>
# endif
#else
# if defined __clang__ && defined __GLIBCXX__ && !defined __cpp_impl_coroutine
# define __cpp_impl_coroutine 1 // Clang doesn't define this, but it's needed for libstdc++
# endif
# include <coroutine>
# if __clang_major__ < 14
namespace std { // Bring coroutine library into std::experimental, as Clang < 14 expects it to be there
namespace experimental {
using namespace std;
}
}
# endif
#endif
// clang-format on
// Placeholder for compiling with --protect-ids
#define VL_UNKNOWN "<unknown>"
//=============================================================================
// VlFileLineDebug stores a SystemVerilog source code location. Used in VlCoroutineHandle for
// debugging purposes.
class VlFileLineDebug final {
// MEMBERS
#ifdef VL_DEBUG
const char* m_filename = nullptr;
int m_lineno = 0;
#endif
public:
// CONSTRUCTORS
// Construct
VlFileLineDebug() = default;
VlFileLineDebug(const char* filename, int lineno)
#ifdef VL_DEBUG
: m_filename{filename}
, m_lineno{lineno}
#endif
{
}
// METHODS
#ifdef VL_DEBUG
const char* filename() const { return m_filename; }
int lineno() const { return m_lineno; }
#endif
};
//=============================================================================
// VlCoroutineHandle is a non-copyable (but movable) coroutine handle. On resume, the handle is
// cleared, as we assume that either the coroutine has finished and deleted itself, or, if it got
// suspended, another VlCoroutineHandle was created to manage it.
class VlCoroutineHandle final {
VL_UNCOPYABLE(VlCoroutineHandle);
// MEMBERS
std::coroutine_handle<> m_coro; // The wrapped coroutine handle
VlProcessRef m_process; // Data of the suspended process, null if not needed
VlFileLineDebug m_fileline;
public:
// CONSTRUCTORS
// Construct
// non-explicit:
// cppcheck-suppress noExplicitConstructor
VlCoroutineHandle(VlProcessRef process)
: m_coro{nullptr}
, m_process{process} {
if (m_process) m_process->state(VlProcess::WAITING);
}
VlCoroutineHandle(std::coroutine_handle<> coro, VlProcessRef process, VlFileLineDebug fileline)
: m_coro{coro}
, m_process{process}
, m_fileline{fileline} {
if (m_process) m_process->state(VlProcess::WAITING);
}
// Move the handle, leaving a nullptr
// non-explicit:
// cppcheck-suppress noExplicitConstructor
VlCoroutineHandle(VlCoroutineHandle&& moved)
: m_coro{std::exchange(moved.m_coro, nullptr)}
, m_process{std::exchange(moved.m_process, nullptr)}
, m_fileline{moved.m_fileline} {}
// Destroy if the handle isn't null
~VlCoroutineHandle() {
// Usually these coroutines should get resumed; we only need to clean up if we destroy a
// model with some coroutines suspended
if (VL_UNLIKELY(m_coro)) {
m_coro.destroy();
if (m_process && m_process->state() != VlProcess::KILLED) {
m_process->state(VlProcess::FINISHED);
}
}
}
// METHODS
// Move the handle, leaving a null handle
auto& operator=(VlCoroutineHandle&& moved) {
m_coro = std::exchange(moved.m_coro, nullptr);
m_process = std::exchange(moved.m_process, nullptr);
m_fileline = moved.m_fileline;
return *this;
}
// Resume the coroutine if the handle isn't null and the process isn't killed
void resume();
#ifdef VL_DEBUG
void dump() const;
#endif
};
enum class VlDelayPhase : bool { ACTIVE, INACTIVE };
//=============================================================================
// VlDelayScheduler stores coroutines to be resumed at a certain simulation time. If the current
// time is equal to a coroutine's resume time, the coroutine gets resumed.
class VlDelayScheduler final {
// TYPES
// Time-sorted queue of timestamps and handles
using VlDelayedCoroutineQueue = std::multimap<uint64_t, VlCoroutineHandle>;
// MEMBERS
VerilatedContext& m_context;
VlDelayedCoroutineQueue m_queue; // Coroutines to be restored at a certain simulation time
std::vector<VlCoroutineHandle> m_zeroDelayed; // Coroutines waiting for #0
std::vector<VlCoroutineHandle> m_zeroDlyResumed; // Coroutines that waited for #0 and are
// to be resumed. Kept as a field to avoid
// reallocation.
public:
// CONSTRUCTORS
explicit VlDelayScheduler(VerilatedContext& context)
: m_context{context} {}
// METHODS
// Resume coroutines waiting for the current simulation time
void resume();
// Returns the simulation time of the next time slot (aborts if there are no delayed
// coroutines)
uint64_t nextTimeSlot() const;
// Are there no delayed coroutines awaiting?
bool empty() const { return m_queue.empty() && m_zeroDelayed.empty(); }
// Are there coroutines to resume at the current simulation time?
bool awaitingCurrentTime() const {
return (!m_queue.empty() && (m_queue.cbegin()->first <= m_context.time()))
|| !m_zeroDelayed.empty();
}
#ifdef VL_DEBUG
void dump() const;
#endif
// Used by coroutines for co_awaiting a certain simulation time
auto delay(uint64_t delay, VlProcessRef process, const char* filename = VL_UNKNOWN,
int lineno = 0) {
struct Awaitable final {
VlProcessRef process; // Data of the suspended process, null if not needed
VlDelayedCoroutineQueue& queue;
std::vector<VlCoroutineHandle>& queueZeroDelay;
const uint64_t delay;
const VlDelayPhase phase;
const VlFileLineDebug fileline;
bool await_ready() const { return false; } // Always suspend
void await_suspend(std::coroutine_handle<> coro) {
if (phase == VlDelayPhase::ACTIVE) {
queue.emplace(delay, VlCoroutineHandle{coro, process, fileline});
} else {
queueZeroDelay.emplace_back(VlCoroutineHandle{coro, process, fileline});
}
}
void await_resume() const {}
};
const VlDelayPhase phase = (delay == 0) ? VlDelayPhase::INACTIVE : VlDelayPhase::ACTIVE;
#ifdef VL_DEBUG
if (phase == VlDelayPhase::INACTIVE) {
VL_WARN_MT(filename, lineno, VL_UNKNOWN,
"Encountered #0 delay. #0 scheduling support is incomplete and the "
"process will be resumed before combinational logic evaluation.");
}
#endif
return Awaitable{process, m_queue,
m_zeroDelayed, m_context.time() + delay,
phase, VlFileLineDebug{filename, lineno}};
}
};
//=============================================================================
// VlTriggerScheduler stores coroutines to be resumed by a trigger. It does not keep track of its
// trigger, relying on calling code to resume when appropriate. Coroutines are kept in two stages
// - 'uncommitted' and 'ready'. Whenever a coroutine is suspended, it lands in the 'uncommitted'
// stage. Only when commit() is called, these coroutines get moved to the 'ready' stage. That's
// when they can be resumed. This is done to avoid resuming processes before they start waiting.
class VlTriggerScheduler final {
// TYPES
using VlCoroutineVec = std::vector<VlCoroutineHandle>;
// MEMBERS
VlCoroutineVec m_uncommitted; // Coroutines suspended before commit() was called
// (not resumable)
VlCoroutineVec m_ready; // Coroutines that can be resumed (all coros from m_uncommitted are
// moved here in commit())
VlCoroutineVec m_resumeQueue; // Coroutines being resumed by resume(); kept as a field to
// avoid reallocation. Resumed coroutines are moved to
// m_resumeQueue to allow adding coroutines to m_ready
// during resume(). Outside of resume() should always be empty.
public:
// METHODS
// Resumes all coroutines from the 'ready' stage
void resume(const char* eventDescription = VL_UNKNOWN);
// Moves all coroutines from m_uncommitted to m_ready
void commit(const char* eventDescription = VL_UNKNOWN);
// Are there no coroutines awaiting?
bool empty() const { return m_ready.empty() && m_uncommitted.empty(); }
#ifdef VL_DEBUG
void dump(const char* eventDescription) const;
#endif
// Used by coroutines for co_awaiting a certain trigger
auto trigger(bool commit, VlProcessRef process, const char* eventDescription = VL_UNKNOWN,
const char* filename = VL_UNKNOWN, int lineno = 0) {
VL_DEBUG_IF(VL_DBG_MSGF(" Suspending process waiting for %s at %s:%d\n",
eventDescription, filename, lineno););
struct Awaitable final {
VlCoroutineVec& suspended; // Coros waiting on trigger
VlProcessRef process; // Data of the suspended process, null if not needed
VlFileLineDebug fileline;
bool await_ready() const { return false; } // Always suspend
void await_suspend(std::coroutine_handle<> coro) {
suspended.emplace_back(coro, process, fileline);
}
void await_resume() const {}
};
return Awaitable{commit ? m_ready : m_uncommitted, process,
VlFileLineDebug{filename, lineno}};
}
};
//=============================================================================
// VlDynamicTriggerScheduler is used for cases where triggers cannot be statically referenced and
// evaluated. Coroutines that make use of this scheduler must adhere to a certain procedure:
// __Vtrigger = 0;
// <locals and inits required for trigger eval>
// while (!__Vtrigger) {
// co_await __VdynSched.evaluation();
// <pre updates>;
// __Vtrigger = <trigger eval>;
// __VdynShed.anyTriggered(__Vtrigger);
// [optionally] co_await __VdynSched.postUpdate();
// <post updates>;
// }
// co_await __VdynSched.resumption();
// The coroutines get resumed at trigger evaluation time, evaluate their local triggers, optionally
// await the post update step, and if the trigger is set, await proper resumption in the 'act' eval
// step.
class VlDynamicTriggerScheduler final {
// TYPES
using VlCoroutineVec = std::vector<VlCoroutineHandle>;
// MEMBERS
bool m_anyTriggered = false; // If true, at least one trigger was set
VlCoroutineVec m_suspended; // Suspended coroutines awaiting trigger evaluation
VlCoroutineVec m_evaluated; // Coroutines currently being evaluated (for evaluate())
VlCoroutineVec m_triggered; // Coroutines whose triggers were set, and are awaiting resumption
VlCoroutineVec m_post; // Coroutines awaiting the post update step (only relevant for triggers
// with destructive post updates, e.g. named events)
// METHODS
auto awaitable(VlProcessRef process, VlCoroutineVec& queue, const char* filename, int lineno) {
struct Awaitable final {
VlProcessRef process; // Data of the suspended process, null if not needed
VlCoroutineVec& suspended; // Coros waiting on trigger
VlFileLineDebug fileline;
bool await_ready() const { return false; } // Always suspend
void await_suspend(std::coroutine_handle<> coro) {
suspended.emplace_back(coro, process, fileline);
}
void await_resume() const {}
};
return Awaitable{process, queue, VlFileLineDebug{filename, lineno}};
}
public:
// Evaluates all dynamic triggers (resumed coroutines that co_await evaluation())
bool evaluate();
// Called by coroutines that evaluate triggers to notify the scheduler if any triggers were set
void anyTriggered(bool triggered) { m_anyTriggered = m_anyTriggered || triggered; }
// Runs post updates for all dynamic triggers (resumes coroutines that co_await postUpdate())
void doPostUpdates();
// Resumes all coroutines whose triggers are set (those that co_await resumption())
void resume();
#ifdef VL_DEBUG
void dump() const;
#endif
// Used by coroutines for co_awaiting trigger evaluation
auto evaluation(VlProcessRef process, const char* eventDescription, const char* filename,
int lineno) {
VL_DEBUG_IF(VL_DBG_MSGF(" Suspending process waiting for %s at %s:%d\n",
eventDescription, filename, lineno););
return awaitable(process, m_suspended, filename, lineno);
}
// Used by coroutines for co_awaiting the trigger post update step
auto postUpdate(VlProcessRef process, const char* eventDescription, const char* filename,
int lineno) {
VL_DEBUG_IF(
VL_DBG_MSGF(" Process waiting for %s at %s:%d awaiting the post update step\n",
eventDescription, filename, lineno););
return awaitable(process, m_post, filename, lineno);
}
// Used by coroutines for co_awaiting the resumption step (in 'act' eval)
auto resumption(VlProcessRef process, const char* eventDescription, const char* filename,
int lineno) {
VL_DEBUG_IF(VL_DBG_MSGF(" Process waiting for %s at %s:%d awaiting resumption\n",
eventDescription, filename, lineno););
return awaitable(process, m_triggered, filename, lineno);
}
};
//=============================================================================
// VlForever is a helper awaitable type for suspending coroutines forever. Used for constant
// wait statements.
struct VlForever final {
bool await_ready() const { return false; } // Always suspend
void await_suspend(std::coroutine_handle<> coro) const { coro.destroy(); }
void await_resume() const {}
};
//=============================================================================
// VlForkSync is used to manage fork..join and fork..join_any constructs.
class VlForkSync final {
// VlJoin stores the handle of a suspended coroutine that did a fork..join or fork..join_any.
// If the counter reaches 0, the suspended coroutine shall be resumed.
struct VlJoin final {
size_t m_counter = 0; // When reaches 0, resume suspended coroutine
VlCoroutineHandle m_susp; // Coroutine to resume
};
// The join info is shared among all forked processes
std::shared_ptr<VlJoin> m_join;
public:
// Create the join object and set the counter to the specified number
void init(size_t count, VlProcessRef process) { m_join.reset(new VlJoin{count, {process}}); }
// Called whenever any of the forked processes finishes. If the join counter reaches 0, the
// main process gets resumed
void done(const char* filename = VL_UNKNOWN, int lineno = 0);
// Used by coroutines for co_awaiting a join
auto join(VlProcessRef process, const char* filename = VL_UNKNOWN, int lineno = 0) {
assert(m_join);
VL_DEBUG_IF(
VL_DBG_MSGF(" Awaiting join of fork at: %s:%d\n", filename, lineno););
struct Awaitable final {
VlProcessRef process; // Data of the suspended process, null if not needed
const std::shared_ptr<VlJoin> join; // Join to await on
VlFileLineDebug fileline;
bool await_ready() { return join->m_counter == 0; } // Suspend if join still exists
void await_suspend(std::coroutine_handle<> coro) {
join->m_susp = {coro, process, fileline};
}
void await_resume() const {}
};
return Awaitable{process, m_join, VlFileLineDebug{filename, lineno}};
}
};
//=============================================================================
// VlCoroutine
// Return value of a coroutine. Used for chaining coroutine suspension/resumption.
class VlCoroutine final {
private:
// TYPES
struct VlPromise final {
std::coroutine_handle<> m_continuation; // Coroutine to resume after this one finishes
VlCoroutine* m_corop = nullptr; // Pointer to the coroutine return object
~VlPromise();
VlCoroutine get_return_object() { return {this}; }
// Never suspend at the start of the coroutine
std::suspend_never initial_suspend() const { return {}; }
// Never suspend at the end of the coroutine (thanks to this, the coroutine will clean up
// after itself)
std::suspend_never final_suspend() noexcept;
void unhandled_exception() const { std::abort(); }
void return_void() const {}
};
// MEMBERS
VlPromise* m_promisep; // The promise created for this coroutine
public:
// TYPES
using promise_type = VlPromise; // promise_type has to be public
// CONSTRUCTORS
// Construct
// cppcheck-suppress noExplicitConstructor
VlCoroutine(VlPromise* promisep)
: m_promisep{promisep} {
m_promisep->m_corop = this;
}
// Move. Update the pointers each time the return object is moved
// cppcheck-suppress noExplicitConstructor
VlCoroutine(VlCoroutine&& other)
: m_promisep{std::exchange(other.m_promisep, nullptr)} {
if (m_promisep) m_promisep->m_corop = this;
}
~VlCoroutine() {
// Indicate to the promise that the return object is gone
if (m_promisep) m_promisep->m_corop = nullptr;
}
// METHODS
// Suspend the awaiter if the coroutine is suspended (the promise exists)
bool await_ready() const noexcept { return !m_promisep; }
// Set the awaiting coroutine as the continuation of the current coroutine
void await_suspend(std::coroutine_handle<> coro) { m_promisep->m_continuation = coro; }
void await_resume() const noexcept {}
};
#endif // Guard