libcxx has removed the experimental/coroutine include file in favor of
the C++20-standard coroutine include. If the latter is available we
use it otherwise falling back to the existing experimental version (in
which case we also disable the deprecated-experimental-coroutine warning).
(See also https://reviews.llvm.org/D108697.)
Event-triggered coroutines live in two stages: 'uncommitted' and 'ready'. First
they land in 'uncommitted', meaning they can't be resumed yet. Only after
coroutines from the 'ready' queue are resumed, the 'uncommitted' ones are moved
to the 'ready' queue, and can be resumed. This is to avoid self-triggering in
situations like waiting for an event immediately after triggering it.
However, there is an issue with `wait` statements. If you have a `wait(b)`, it's
being translated into a loop that awaits a change in `b` as long as `b` is
false. If `b` is false at first, the coroutine is put into the `uncommitted`
queue. If `b` is set to true before it's committed, the coroutine won't get
resumed.
This patch fixes that by immediately committing event controls created from
`wait` statements. That means the coroutine from the example above will get
resumed from now on.
`VlNow{}` is completely unnecessary, as coroutines are always on the
heap (unless optimized out). Also fix access of var ref passed to forked processes.
In non-static contexts like class objects or stack frames, the use of
global trigger evaluation is not feasible. The concept of dynamic
triggers allows for trigger evaluation in such cases. These triggers are
simply local variables, and coroutines are themselves responsible for
evaluating them. They await the global dynamic trigger scheduler object,
which is responsible for resuming them during the trigger evaluation
step in the 'act' eval region. Once the trigger is set, they await the
dynamic trigger scheduler once again, and then get resumed during the
resumption step in the 'act' eval region.
Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>
* Put suspended coroutine source location in a separate struct,
* Have `dump()` always print, wrap calls in `VL_DEBUG_IF`,
* Improve const correctness.
Adds timing support to Verilator. It makes it possible to use delays,
event controls within processes (not just at the start), wait
statements, and forks.
Building a design with those constructs requires a compiler that
supports C++20 coroutines (GCC 10, Clang 5).
The basic idea is to have processes and tasks with delays/event controls
implemented as C++20 coroutines. This allows us to suspend and resume
them at any time.
There are five main runtime classes responsible for managing suspended
coroutines:
* `VlCoroutineHandle`, a wrapper over C++20's `std::coroutine_handle`
with move semantics and automatic cleanup.
* `VlDelayScheduler`, for coroutines suspended by delays. It resumes
them at a proper simulation time.
* `VlTriggerScheduler`, for coroutines suspended by event controls. It
resumes them if its corresponding trigger was set.
* `VlForkSync`, used for syncing `fork..join` and `fork..join_any`
blocks.
* `VlCoroutine`, the return type of all verilated coroutines. It allows
for suspending a stack of coroutines (normally, C++ coroutines are
stackless).
There is a new visitor in `V3Timing.cpp` which:
* scales delays according to the timescale,
* simplifies intra-assignment timing controls and net delays into
regular timing controls and assignments,
* simplifies wait statements into loops with event controls,
* marks processes and tasks with timing controls in them as
suspendable,
* creates delay, trigger scheduler, and fork sync variables,
* transforms timing controls and fork joins into C++ awaits
There are new functions in `V3SchedTiming.cpp` (used by `V3Sched.cpp`)
that integrate static scheduling with timing. This involves providing
external domains for variables, so that the necessary combinational
logic gets triggered after coroutine resumption, as well as statements
that need to be injected into the design eval function to perform this
resumption at the correct time.
There is also a function that transforms forked processes into separate
functions.
See the comments in `verilated_timing.h`, `verilated_timing.cpp`,
`V3Timing.cpp`, and `V3SchedTiming.cpp`, as well as the internals
documentation for more details.
Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>