Commit Graph

9 Commits

Author SHA1 Message Date
Geza Lore
47bce4157d
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.

This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.

The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.

For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.

The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.

Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 16:46:22 +01:00
Wilson Snyder
c678e7ec3e Format: perltidy spacing cleanup. No functional change. 2021-09-07 23:50:28 -04:00
Tim Snyder
a57262d6e7
Fix use /usr/bin/env perl in lieu of /usr/bin/perl (#2306)
Enables scripts to work where perl is not installed at /usr/bin/perl
2020-05-04 18:42:15 -04:00
Wilson Snyder
1ce360ed5b Add SPDX license identifiers. No functional change. 2020-03-21 11:24:24 -04:00
Wilson Snyder
f818ddc71c Internals: Detab and fix spacing style issues in tests and scripts. No functional change. 2019-05-07 22:34:09 -04:00
Wilson Snyder
e97dbf9537 Add UNOPTTHREADS, for threads branch. 2018-07-22 12:09:27 -04:00
Wilson Snyder
c29e7619eb Tests: Support multiple scenario testing. 2018-05-07 20:42:28 -04:00
Wilson Snyder
a265417727 Tests: Cleanup Perl indentations. No functional change. 2018-05-06 22:39:18 -04:00
Wilson Snyder
71fcf45d73 Fix gate optimization out of memory, add --gate-stmts, bug1260. 2018-01-27 15:06:51 -05:00