Only apply when there is guaranteed to be a subsequent constant folding
and elimination of some of the expression, otherwise this sometimes
interferes with the simplification of concatenations and harms overall
performance.
Before this change, a design verilated with `--timing` that does not
actually use timing features would be emitted with `eventsPending` and
`nextTimeSlot` declared in the top class. However, their definitions
would be missing, leading to linker errors during design compilation.
This patch makes Verilator always emit the definitions, which prevents
linker errors. Trying to use `nextTimeSlot` without delays in the design
will result in an error at runtime.
Also added a testing only -fno-const-before-dfg option, as otherwise
V3Const eats up a lot of the simple inputs. A lot of the things V3Const
swallows in the simple cases can make it to DFG in complex cases, or DFG
itself can create them during optimization. In any case to save
complexity of testing DFG constant folding, we use this option to turn
off V3Const prior to the DFG passes in the relevant test.
Some optimizations are only a net win if they help us remove a graph
node (or at least ensure they don't grow the graph), or yields otherwise
special logic, so try to apply them only in these cases.
Use the same style, and reuse the bulk of astgen to generate DfgVertex
related code. In particular allow for easier definition of custom
DfgVertex sub-types that do not directly correspond to an AstNode
sub-type. Also introduces specific names for the fixed arity vertices.
No functional change intended.
* Put suspended coroutine source location in a separate struct,
* Have `dump()` always print, wrap calls in `VL_DEBUG_IF`,
* Improve const correctness.
These are also used as a marker (when non-nullptr) when creating a
buffer. Reset them when they are not valid to avoid invalid write if a
buffer is created after a close (due to a subsequent re-open).
Fixes#3651.
A lot of optimizations in DFG assume a DAG, but the more things are
representable, the more likely it is that a small cyclic sub-graph is
present in an otherwise very large graph that is mostly acyclic. In
order to avoid loosing optimization opportunities, we explicitly extract
the cyclic sub-graphs (which are the strongly connected components +
anything feeing them, up to variable boundaries) and treat them
separately. This enables optimization of the remaining input.
This change introduces a custom reference-counting pointer class that
allows creating such pointers from 'this'. This lets us keep the
receiver object around even if all references to it outside of a class
method no longer exist. Useful for coroutine methods, which may outlive
all external references to the object.
The deletion of objects is deferred until the next time slot. This is to
make clearing the triggered flag on named events in classes safe
(otherwise freed memory could be accessed).
Added DfgVertexVariadic to represent DFG vetices with a varying number
of source operands. Converted DfgVar to be a variadic vertex, with each
driver corresponding to a fixed range of bits in the packed variable.
This allows us to handle AstSel on the LHS of assignments. Also added
support for AstConcat on the LHS by selecting into the RHS as
appropriate.
This improves OpenTitan ST speed by ~13%
This is only a debugging aid at this point, so compile out of the
release build. This reduces peak memory consumption by 4-5%. We still
keep the global counters to detect the tree have changed, to avoid
unnecessary dumps.