verilator/include/verilated_vpi.cpp

2412 lines
96 KiB
C++
Raw Normal View History

// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
//
// Code available from: https://verilator.org
//
2023-01-01 15:18:39 +00:00
// Copyright 2009-2023 by Wilson Snyder. This program is free software; you can
// redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//=========================================================================
///
/// \file
/// \brief Verilated VPI implementation code
///
/// This file must be compiled and linked against all Verilated objects
/// that use the VPI.
///
/// Use "verilator --vpi" to add this to the Makefile for the linker.
///
/// For documentation on the exported functions (named vpi_*) that are
/// implemented here, refer to the IEEE DPI chapter.
///
//=========================================================================
#define VERILATOR_VERILATED_VPI_CPP_
#include "verilated_vpi.h"
#include "verilated.h"
#include "verilated_imp.h"
#include <list>
#include <map>
#include <set>
#include <string>
#include <unordered_set>
#include <utility>
#include <vector>
//======================================================================
// Internal constants
#define VL_DEBUG_IF_PLI VL_DEBUG_IF
constexpr unsigned VL_VPI_LINE_SIZE_ = 8192;
//======================================================================
// Internal macros
#define VL_VPI_INTERNAL_ VerilatedVpiImp::error_info()->setMessage(vpiInternal)->setMessage
#define VL_VPI_SYSTEM_ VerilatedVpiImp::error_info()->setMessage(vpiSystem)->setMessage
#define VL_VPI_ERROR_ VerilatedVpiImp::error_info()->setMessage(vpiError)->setMessage
#define VL_VPI_WARNING_ VerilatedVpiImp::error_info()->setMessage(vpiWarning)->setMessage
#define VL_VPI_NOTICE_ VerilatedVpiImp::error_info()->setMessage(vpiNotice)->setMessage
#define VL_VPI_ERROR_RESET_ VerilatedVpiImp::error_info()->resetError
// Not supported yet
#define VL_VPI_UNIMP_() \
(VL_VPI_ERROR_(__FILE__, __LINE__, Verilated::catName("Unsupported VPI function: ", __func__)))
//======================================================================
// Implementation
// Base VPI handled object
class VerilatedVpio VL_NOT_FINAL {
// CONSTANTS
// Magic value stored in front of object to detect double free etc
// Must be odd, as aligned pointer can never be odd
static constexpr uint32_t activeMagic() VL_PURE { return 0xfeed100f; }
// MEM MANGLEMENT
// Internal note: Globals may multi-construct, see verilated.cpp top.
static thread_local uint8_t* t_freeHeadp;
public:
// CONSTRUCTORS
VerilatedVpio() = default;
virtual ~VerilatedVpio() = default;
static void* operator new(size_t size) VL_MT_SAFE {
// We new and delete tons of vpi structures, so keep them around
// To simplify our free list, we use a size large enough for all derived types
// We reserve word zero for the next pointer, as that's safer in case a
// dangling reference to the original remains around.
static constexpr size_t CHUNK_SIZE = 96;
if (VL_UNCOVERABLE(size > CHUNK_SIZE))
VL_FATAL_MT(__FILE__, __LINE__, "", "increase CHUNK_SIZE");
if (VL_LIKELY(t_freeHeadp)) {
uint8_t* const newp = t_freeHeadp;
t_freeHeadp = *(reinterpret_cast<uint8_t**>(newp));
*(reinterpret_cast<uint32_t*>(newp)) = activeMagic();
return newp + 8;
}
// +8: 8 bytes for next
uint8_t* newp = reinterpret_cast<uint8_t*>(::operator new(CHUNK_SIZE + 8));
*(reinterpret_cast<uint32_t*>(newp)) = activeMagic();
return newp + 8;
}
static void operator delete(void* obj, size_t /*size*/) VL_MT_SAFE {
uint8_t* const oldp = (static_cast<uint8_t*>(obj)) - 8;
if (VL_UNLIKELY(*(reinterpret_cast<uint32_t*>(oldp)) != activeMagic())) {
VL_FATAL_MT(__FILE__, __LINE__, "",
"vpi_release_handle() called on same object twice, or on non-Verilator "
"VPI object");
}
#ifdef VL_VPI_IMMEDIATE_FREE // Define to aid in finding leaky handles
::operator delete(oldp);
#else
*(reinterpret_cast<void**>(oldp)) = t_freeHeadp;
t_freeHeadp = oldp;
#endif
}
// MEMBERS
static VerilatedVpio* castp(vpiHandle h) {
return dynamic_cast<VerilatedVpio*>(reinterpret_cast<VerilatedVpio*>(h));
}
vpiHandle castVpiHandle() { return reinterpret_cast<vpiHandle>(this); }
// ACCESSORS
virtual const char* name() const { return "<null>"; }
virtual const char* fullname() const { return "<null>"; }
virtual const char* defname() const { return "<null>"; }
virtual uint32_t type() const { return 0; }
virtual uint32_t size() const { return 0; }
virtual const VerilatedRange* rangep() const { return nullptr; }
virtual vpiHandle dovpi_scan() { return nullptr; }
virtual PLI_INT32 dovpi_remove_cb() { return 0; }
};
class VerilatedVpioReasonCb final : public VerilatedVpio {
// A handle to a timed or non-timed callback created with vpi_register_cb
// User can call vpi_remove_cb or vpi_release_handle on it
const uint64_t m_id; // Unique id/sequence number to find schedule's event
const QData m_time; // Scheduled time, or 0 = not timed
const PLI_INT32 m_reason; // VPI callback reason code
public:
// cppcheck-suppress uninitVar // m_value
VerilatedVpioReasonCb(uint64_t id, QData time, PLI_INT32 reason)
: m_id{id}
, m_time{time}
, m_reason{reason} {}
~VerilatedVpioReasonCb() override = default;
static VerilatedVpioReasonCb* castp(vpiHandle h) {
return dynamic_cast<VerilatedVpioReasonCb*>(reinterpret_cast<VerilatedVpioReasonCb*>(h));
}
uint32_t type() const override { return vpiCallback; }
PLI_INT32 dovpi_remove_cb() override;
};
class VerilatedVpioConst final : public VerilatedVpio {
const int32_t m_num;
public:
explicit VerilatedVpioConst(int32_t num)
: m_num{num} {}
~VerilatedVpioConst() override = default;
static VerilatedVpioConst* castp(vpiHandle h) {
return dynamic_cast<VerilatedVpioConst*>(reinterpret_cast<VerilatedVpio*>(h));
}
uint32_t type() const override { return vpiConstant; }
int32_t num() const { return m_num; }
};
2021-04-21 17:46:13 +00:00
class VerilatedVpioVarBase VL_NOT_FINAL : public VerilatedVpio {
protected:
const VerilatedVar* m_varp = nullptr;
const VerilatedScope* m_scopep = nullptr;
std::string m_fullname;
2021-04-21 17:46:13 +00:00
const VerilatedRange& get_range() const {
// Determine number of dimensions and return outermost
return (m_varp->dims() > 1) ? m_varp->unpacked() : m_varp->packed();
}
public:
2021-04-21 17:46:13 +00:00
VerilatedVpioVarBase(const VerilatedVar* varp, const VerilatedScope* scopep)
: m_varp{varp}
, m_scopep{scopep}
, m_fullname{std::string{m_scopep->name()} + '.' + m_varp->name()} {}
2021-04-21 17:46:13 +00:00
explicit VerilatedVpioVarBase(const VerilatedVpioVarBase* varp) {
if (varp) {
m_varp = varp->m_varp;
m_scopep = varp->m_scopep;
m_fullname = varp->m_fullname;
2021-04-21 17:46:13 +00:00
}
}
static VerilatedVpioVarBase* castp(vpiHandle h) {
return dynamic_cast<VerilatedVpioVarBase*>(reinterpret_cast<VerilatedVpio*>(h));
}
const VerilatedVar* varp() const { return m_varp; }
const VerilatedScope* scopep() const { return m_scopep; }
uint32_t size() const override { return get_range().elements(); }
const VerilatedRange* rangep() const override { return &get_range(); }
const char* name() const override { return m_varp->name(); }
const char* fullname() const override { return m_fullname.c_str(); }
};
2021-04-21 17:46:13 +00:00
class VerilatedVpioParam final : public VerilatedVpioVarBase {
public:
VerilatedVpioParam(const VerilatedVar* varp, const VerilatedScope* scopep)
: VerilatedVpioVarBase{varp, scopep} {}
~VerilatedVpioParam() override = default;
2021-04-21 17:46:13 +00:00
static VerilatedVpioParam* castp(vpiHandle h) {
return dynamic_cast<VerilatedVpioParam*>(reinterpret_cast<VerilatedVpio*>(h));
}
uint32_t type() const override { return vpiParameter; }
2021-04-21 17:46:13 +00:00
void* varDatap() const { return m_varp->datap(); }
};
class VerilatedVpioRange final : public VerilatedVpio {
const VerilatedRange* const m_rangep;
public:
explicit VerilatedVpioRange(const VerilatedRange* rangep)
: m_rangep{rangep} {}
~VerilatedVpioRange() override = default;
static VerilatedVpioRange* castp(vpiHandle h) {
return dynamic_cast<VerilatedVpioRange*>(reinterpret_cast<VerilatedVpio*>(h));
}
uint32_t type() const override { return vpiRange; }
uint32_t size() const override { return m_rangep->elements(); }
const VerilatedRange* rangep() const override { return m_rangep; }
};
class VerilatedVpioRangeIter final : public VerilatedVpio {
// Only supports 1 dimension
const VerilatedRange* const m_rangep;
bool m_done = false;
public:
explicit VerilatedVpioRangeIter(const VerilatedRange* rangep)
: m_rangep{rangep} {}
~VerilatedVpioRangeIter() override = default;
static VerilatedVpioRangeIter* castp(vpiHandle h) {
return dynamic_cast<VerilatedVpioRangeIter*>(reinterpret_cast<VerilatedVpio*>(h));
}
uint32_t type() const override { return vpiIterator; }
vpiHandle dovpi_scan() override {
if (VL_UNLIKELY(m_done)) {
delete this; // IEEE 37.2.2 vpi_scan at end does a vpi_release_handle
return nullptr;
}
m_done = true;
return ((new VerilatedVpioRange{m_rangep})->castVpiHandle());
}
};
class VerilatedVpioScope VL_NOT_FINAL : public VerilatedVpio {
protected:
const VerilatedScope* const m_scopep;
public:
explicit VerilatedVpioScope(const VerilatedScope* scopep)
: m_scopep{scopep} {}
~VerilatedVpioScope() override = default;
static VerilatedVpioScope* castp(vpiHandle h) {
return dynamic_cast<VerilatedVpioScope*>(reinterpret_cast<VerilatedVpio*>(h));
}
uint32_t type() const override { return vpiScope; }
const VerilatedScope* scopep() const { return m_scopep; }
const char* name() const override { return m_scopep->name(); }
const char* fullname() const override { return m_scopep->name(); }
};
2021-04-21 17:46:13 +00:00
class VerilatedVpioVar VL_NOT_FINAL : public VerilatedVpioVarBase {
uint8_t* m_prevDatap = nullptr; // Previous value of data, for cbValueChange
union {
uint8_t u8[4];
uint32_t u32;
} m_mask; // memoized variable mask
uint32_t m_entSize = 0; // memoized variable size
protected:
void* m_varDatap = nullptr; // varp()->datap() adjusted for array entries
int32_t m_index = 0;
public:
VerilatedVpioVar(const VerilatedVar* varp, const VerilatedScope* scopep)
: VerilatedVpioVarBase{varp, scopep} {
m_mask.u32 = VL_MASK_I(varp->packed().elements());
m_entSize = varp->entSize();
m_varDatap = varp->datap();
}
2021-04-21 17:46:13 +00:00
explicit VerilatedVpioVar(const VerilatedVpioVar* varp)
: VerilatedVpioVarBase{varp} {
if (varp) {
m_mask.u32 = varp->m_mask.u32;
m_entSize = varp->m_entSize;
m_varDatap = varp->m_varDatap;
m_index = varp->m_index;
// Not copying m_prevDatap, must be nullptr
} else {
m_mask.u32 = 0;
}
}
~VerilatedVpioVar() override {
if (m_prevDatap) VL_DO_CLEAR(delete[] m_prevDatap, m_prevDatap = nullptr);
}
static VerilatedVpioVar* castp(vpiHandle h) {
return dynamic_cast<VerilatedVpioVar*>(reinterpret_cast<VerilatedVpio*>(h));
}
uint32_t mask() const { return m_mask.u32; }
uint8_t mask_byte(int idx) const { return m_mask.u8[idx & 3]; }
uint32_t entSize() const { return m_entSize; }
uint32_t index() const { return m_index; }
uint32_t type() const override {
return (varp()->dims() > 1) ? vpiMemory : vpiReg; // but might be wire, logic
}
void* prevDatap() const { return m_prevDatap; }
void* varDatap() const { return m_varDatap; }
void createPrevDatap() {
if (VL_UNLIKELY(!m_prevDatap)) {
m_prevDatap = new uint8_t[entSize()];
std::memcpy(prevDatap(), varp()->datap(), entSize());
}
}
};
class VerilatedVpioMemoryWord final : public VerilatedVpioVar {
public:
VerilatedVpioMemoryWord(const VerilatedVar* varp, const VerilatedScope* scopep, int32_t index,
int offset)
: VerilatedVpioVar{varp, scopep} {
m_index = index;
m_varDatap = (static_cast<uint8_t*>(varp->datap())) + entSize() * offset;
}
~VerilatedVpioMemoryWord() override = default;
static VerilatedVpioMemoryWord* castp(vpiHandle h) {
return dynamic_cast<VerilatedVpioMemoryWord*>(reinterpret_cast<VerilatedVpio*>(h));
}
uint32_t type() const override { return vpiMemoryWord; }
uint32_t size() const override { return varp()->packed().elements(); }
const VerilatedRange* rangep() const override { return &(varp()->packed()); }
const char* fullname() const override {
static thread_local std::string t_out;
constexpr size_t LEN_MAX_INDEX = 25;
char num[LEN_MAX_INDEX];
VL_SNPRINTF(num, LEN_MAX_INDEX, "%d", m_index);
t_out = std::string{scopep()->name()} + "." + name() + "[" + num + "]";
return t_out.c_str();
}
};
class VerilatedVpioVarIter final : public VerilatedVpio {
const VerilatedScope* const m_scopep;
VerilatedVarNameMap::const_iterator m_it;
bool m_started = false;
public:
explicit VerilatedVpioVarIter(const VerilatedScope* scopep)
: m_scopep{scopep} {}
~VerilatedVpioVarIter() override = default;
static VerilatedVpioVarIter* castp(vpiHandle h) {
return dynamic_cast<VerilatedVpioVarIter*>(reinterpret_cast<VerilatedVpio*>(h));
}
uint32_t type() const override { return vpiIterator; }
vpiHandle dovpi_scan() override {
if (VL_LIKELY(m_scopep->varsp())) {
const VerilatedVarNameMap* const varsp = m_scopep->varsp();
if (VL_UNLIKELY(!m_started)) {
m_it = varsp->begin();
m_started = true;
} else if (VL_UNLIKELY(m_it == varsp->end())) {
delete this; // IEEE 37.2.2 vpi_scan at end does a vpi_release_handle
return nullptr;
} else {
++m_it;
}
if (VL_UNLIKELY(m_it == varsp->end())) {
delete this; // IEEE 37.2.2 vpi_scan at end does a vpi_release_handle
return nullptr;
}
return ((new VerilatedVpioVar{&(m_it->second), m_scopep})->castVpiHandle());
}
delete this; // IEEE 37.2.2 vpi_scan at end does a vpi_release_handle
return nullptr; // End of list - only one deep
}
};
class VerilatedVpioMemoryWordIter final : public VerilatedVpio {
const vpiHandle m_handle;
const VerilatedVar* const m_varp;
int32_t m_iteration;
const int32_t m_direction;
bool m_done = false;
public:
VerilatedVpioMemoryWordIter(const vpiHandle handle, const VerilatedVar* varp)
: m_handle{handle}
, m_varp{varp}
, m_iteration{varp->unpacked().right()}
, m_direction{VL_LIKELY(varp->unpacked().left() > varp->unpacked().right()) ? 1 : -1} {}
~VerilatedVpioMemoryWordIter() override = default;
static VerilatedVpioMemoryWordIter* castp(vpiHandle h) {
return dynamic_cast<VerilatedVpioMemoryWordIter*>(reinterpret_cast<VerilatedVpio*>(h));
}
uint32_t type() const override { return vpiIterator; }
void iterationInc() {
if (!(m_done = (m_iteration == m_varp->unpacked().left()))) m_iteration += m_direction;
}
vpiHandle dovpi_scan() override {
if (VL_UNLIKELY(m_done)) {
delete this; // IEEE 37.2.2 vpi_scan at end does a vpi_release_handle
return nullptr;
}
const vpiHandle result = vpi_handle_by_index(m_handle, m_iteration);
iterationInc();
return result;
}
};
class VerilatedVpioModule final : public VerilatedVpioScope {
const char* m_name;
const char* m_fullname;
public:
explicit VerilatedVpioModule(const VerilatedScope* modulep)
: VerilatedVpioScope{modulep} {
m_fullname = m_scopep->name();
if (std::strncmp(m_fullname, "TOP.", 4) == 0) m_fullname += 4;
m_name = m_scopep->identifier();
}
static VerilatedVpioModule* castp(vpiHandle h) {
return dynamic_cast<VerilatedVpioModule*>(reinterpret_cast<VerilatedVpio*>(h));
}
uint32_t type() const override { return vpiModule; }
const char* name() const override { return m_name; }
const char* fullname() const override { return m_fullname; }
};
class VerilatedVpioModuleIter final : public VerilatedVpio {
const std::vector<const VerilatedScope*>* m_vec;
std::vector<const VerilatedScope*>::const_iterator m_it;
public:
explicit VerilatedVpioModuleIter(const std::vector<const VerilatedScope*>& vec)
: m_vec{&vec} {
m_it = m_vec->begin();
}
~VerilatedVpioModuleIter() override = default;
static VerilatedVpioModuleIter* castp(vpiHandle h) {
return dynamic_cast<VerilatedVpioModuleIter*>(reinterpret_cast<VerilatedVpio*>(h));
}
uint32_t type() const override { return vpiIterator; }
vpiHandle dovpi_scan() override {
if (m_it == m_vec->end()) {
delete this; // IEEE 37.2.2 vpi_scan at end does a vpi_release_handle
return nullptr;
}
const VerilatedScope* const modp = *m_it++;
return (new VerilatedVpioModule{modp})->castVpiHandle();
}
};
//======================================================================
using VerilatedPliCb = PLI_INT32 (*)(struct t_cb_data*);
class VerilatedVpiCbHolder final {
// Holds information needed to call a callback
uint64_t m_id; // Unique id/sequence number to find schedule's event, 0 = invalid
s_cb_data m_cbData;
s_vpi_value m_value;
VerilatedVpioVar m_varo; // If a cbValueChange callback, the object we will return
public:
// cppcheck-suppress uninitVar // m_value
VerilatedVpiCbHolder(uint64_t id, const s_cb_data* cbDatap, const VerilatedVpioVar* varop)
: m_id{id}
, m_cbData{*cbDatap}
, m_varo{varop} {
m_value.format = cbDatap->value ? cbDatap->value->format : vpiSuppressVal;
m_cbData.value = &m_value;
if (varop) {
m_cbData.obj = m_varo.castVpiHandle();
m_varo.createPrevDatap();
} else {
m_cbData.obj = nullptr;
}
}
~VerilatedVpiCbHolder() = default;
VerilatedPliCb cb_rtnp() const { return m_cbData.cb_rtn; }
s_cb_data* cb_datap() { return &m_cbData; }
uint64_t id() const { return m_id; }
bool invalid() const { return !m_id; }
void invalidate() { m_id = 0; }
};
struct VerilatedVpiTimedCbsCmp {
// Ordering sets keyed by time, then callback unique id
bool operator()(const std::pair<QData, uint64_t>& a,
const std::pair<QData, uint64_t>& b) const {
2020-06-02 03:16:02 +00:00
if (a.first < b.first) return true;
if (a.first > b.first) return false;
return a.second < b.second;
}
};
class VerilatedVpiError;
class VerilatedVpiImp final {
2022-12-26 09:30:41 +00:00
enum { CB_ENUM_MAX_VALUE = cbAtEndOfSimTime + 1 }; // Maximum callback reason
using VpioCbList = std::list<VerilatedVpiCbHolder>;
using VpioFutureCbs = std::map<std::pair<QData, uint64_t>, VerilatedVpiCbHolder>;
// All only medium-speed, so use singleton function
// Callbacks that are past or at current timestamp
std::array<VpioCbList, CB_ENUM_MAX_VALUE> m_cbCurrentLists;
VpioFutureCbs m_futureCbs; // Time based callbacks for future timestamps
VpioFutureCbs m_nextCbs; // cbNextSimTime callbacks
VerilatedVpiError* m_errorInfop = nullptr; // Container for vpi error info
VerilatedAssertOneThread m_assertOne; // Assert only called from single thread
uint64_t m_nextCallbackId = 1; // Id to identify callback
static VerilatedVpiImp& s() { // Singleton
static VerilatedVpiImp s_s;
return s_s;
}
public:
static void assertOneCheck() { s().m_assertOne.check(); }
static uint64_t nextCallbackId() { return ++s().m_nextCallbackId; }
static void cbCurrentAdd(uint64_t id, const s_cb_data* cb_data_p) {
// The passed cb_data_p was property of the user, so need to recreate
if (VL_UNCOVERABLE(cb_data_p->reason >= CB_ENUM_MAX_VALUE)) {
VL_FATAL_MT(__FILE__, __LINE__, "", "vpi bb reason too large");
}
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_register_cb reason=%d id=%" PRId64 " obj=%p\n",
cb_data_p->reason, id, cb_data_p->obj););
VerilatedVpioVar* varop = nullptr;
if (cb_data_p->reason == cbValueChange) varop = VerilatedVpioVar::castp(cb_data_p->obj);
s().m_cbCurrentLists[cb_data_p->reason].emplace_back(id, cb_data_p, varop);
}
static void cbFutureAdd(uint64_t id, const s_cb_data* cb_data_p, QData time) {
// The passed cb_data_p was property of the user, so need to recreate
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_register_cb reason=%d id=%" PRId64 " time=%" PRIu64
" obj=%p\n",
cb_data_p->reason, id, time, cb_data_p->obj););
s().m_futureCbs.emplace(std::piecewise_construct,
std::forward_as_tuple(std::make_pair(time, id)),
std::forward_as_tuple(id, cb_data_p, nullptr));
}
static void cbNextAdd(uint64_t id, const s_cb_data* cb_data_p, QData time) {
// The passed cb_data_p was property of the user, so need to recreate
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_register_cb reason=%d(NEXT) id=%" PRId64
" time=%" PRIu64 " obj=%p\n",
cb_data_p->reason, id, time, cb_data_p->obj););
s().m_nextCbs.emplace(std::piecewise_construct,
std::forward_as_tuple(std::make_pair(time, id)),
std::forward_as_tuple(id, cb_data_p, nullptr));
}
static void cbReasonRemove(uint64_t id, uint32_t reason, QData time) {
// Id might no longer exist, if already removed due to call after event, or teardown
// We do not remove it now as we may be iterating the list,
// instead set to nullptr and will cleanup later
// Remove from cbCurrent queue
for (auto& ir : s().m_cbCurrentLists[reason]) {
if (ir.id() == id) {
ir.invalidate();
return; // Once found, it won't also be in m_futureCbs
}
}
{ // Remove from cbFuture queue
const auto it = s().m_futureCbs.find(std::make_pair(time, id));
if (it != s().m_futureCbs.end()) {
it->second.invalidate();
return;
}
}
{ // Remove from cbNext
const auto it = s().m_nextCbs.find(std::make_pair(time, id));
if (it != s().m_nextCbs.end()) {
it->second.invalidate();
return;
}
}
}
static void moveFutureCbs() VL_MT_UNSAFE_ONE {
// For any events past current time, move from cbFuture queue to cbCurrent queue
if (s().m_futureCbs.empty() && s().m_nextCbs.empty()) return;
// VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: moveFutureCbs\n"); dumpCbs(); );
const QData time = VL_TIME_Q();
for (auto it = s().m_futureCbs.begin(); //
VL_UNLIKELY(it != s().m_futureCbs.end() && it->first.first <= time);) {
VerilatedVpiCbHolder& hor = it->second;
const auto last_it = it;
++it;
if (VL_UNLIKELY(!hor.invalid())) {
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: moveFutureCbs id=%" PRId64 "\n", hor.id()););
s().m_cbCurrentLists[hor.cb_datap()->reason].emplace_back(hor);
}
s().m_futureCbs.erase(last_it);
}
for (auto it = s().m_nextCbs.begin(); //
VL_UNLIKELY(it != s().m_nextCbs.end() && it->first.first < time);) {
VerilatedVpiCbHolder& hor = it->second;
const auto last_it = it;
++it;
if (VL_UNLIKELY(!hor.invalid())) {
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: moveFutureCbs id=%" PRId64 "\n", hor.id()););
s().m_cbCurrentLists[hor.cb_datap()->reason].emplace_back(hor);
}
s().m_nextCbs.erase(last_it);
}
}
static QData cbNextDeadline() {
const auto it = s().m_futureCbs.cbegin();
if (VL_LIKELY(it != s().m_futureCbs.cend())) return it->first.first;
return ~0ULL; // maxquad
}
static bool callCbs(const uint32_t reason) VL_MT_UNSAFE_ONE {
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: callCbs reason=%u\n", reason););
assertOneCheck();
moveFutureCbs();
if (s().m_cbCurrentLists[reason].empty()) return false;
// Iterate on old list, making new list empty, to prevent looping over newly added elements
VpioCbList cbObjList;
std::swap(s().m_cbCurrentLists[reason], cbObjList);
bool called = false;
for (VerilatedVpiCbHolder& ihor : cbObjList) {
// cbReasonRemove sets to nullptr, so we know on removal the old end() will still exist
if (VL_LIKELY(!ihor.invalid())) { // Not deleted earlier
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: reason_callback reason=%d id=%" PRId64 "\n",
reason, ihor.id()););
ihor.invalidate(); // Timed callbacks are one-shot
(ihor.cb_rtnp())(ihor.cb_datap());
called = true;
}
}
return called;
}
static bool callValueCbs() VL_MT_UNSAFE_ONE {
assertOneCheck();
VpioCbList& cbObjList = s().m_cbCurrentLists[cbValueChange];
bool called = false;
std::unordered_set<VerilatedVpioVar*> update; // set of objects to update after callbacks
if (cbObjList.empty()) return called;
const auto last = std::prev(cbObjList.end()); // prevent looping over newly added elements
for (auto it = cbObjList.begin(); true;) {
// cbReasonRemove sets to nullptr, so we know on removal the old end() will still exist
const bool was_last = it == last;
if (VL_UNLIKELY(it->invalid())) { // Deleted earlier, cleanup
it = cbObjList.erase(it);
if (was_last) break;
continue;
}
VerilatedVpiCbHolder& ho = *it++;
2023-05-02 11:29:45 +00:00
VerilatedVpioVar* const varop
= reinterpret_cast<VerilatedVpioVar*>(ho.cb_datap()->obj);
void* const newDatap = varop->varDatap();
2023-05-02 11:29:45 +00:00
void* const prevDatap = varop->prevDatap(); // Was malloced when we added the callback
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: value_test %s v[0]=%d/%d %p %p\n",
varop->fullname(), *(static_cast<CData*>(newDatap)),
2023-05-02 11:29:45 +00:00
*(static_cast<CData*>(prevDatap)), newDatap, prevDatap););
if (std::memcmp(prevDatap, newDatap, varop->entSize()) != 0) {
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: value_callback %" PRId64 " %s v[0]=%d\n",
ho.id(), varop->fullname(),
*(static_cast<CData*>(newDatap))););
update.insert(varop);
vpi_get_value(ho.cb_datap()->obj, ho.cb_datap()->value);
(ho.cb_rtnp())(ho.cb_datap());
called = true;
}
if (was_last) break;
}
for (const auto& ip : update) {
std::memcpy(ip->prevDatap(), ip->varDatap(), ip->entSize());
}
return called;
}
static void dumpCbs() VL_MT_UNSAFE_ONE;
static VerilatedVpiError* error_info() VL_MT_UNSAFE_ONE; // getter for vpi error info
};
//======================================================================
// Statics
// Internal note: Globals may multi-construct, see verilated.cpp top.
thread_local uint8_t* VerilatedVpio::t_freeHeadp = nullptr;
//======================================================================
// VerilatedVpiError
// Internal container for vpi error info
class VerilatedVpiError final {
t_vpi_error_info m_errorInfo;
bool m_flag = false;
char m_buff[VL_VPI_LINE_SIZE_];
void setError(PLI_BYTE8* message, PLI_BYTE8* code, PLI_BYTE8* file, PLI_INT32 line) {
m_errorInfo.message = message;
m_errorInfo.file = file;
m_errorInfo.line = line;
m_errorInfo.code = code;
do_callbacks();
}
void do_callbacks() {
if (getError()->level >= vpiError && Verilated::threadContextp()->fatalOnVpiError()) {
// Stop on vpi error/unsupported
vpi_unsupported();
}
// We need to run above code first because in the case that the
// callback executes further vpi functions we will loose the error
// as it will be overwritten.
VerilatedVpiImp::callCbs(cbPLIError);
}
public:
VerilatedVpiError() {
m_buff[0] = '\0';
m_errorInfo.product = const_cast<PLI_BYTE8*>(Verilated::productName());
}
~VerilatedVpiError() = default;
static void selfTest() VL_MT_UNSAFE_ONE;
VerilatedVpiError* setMessage(PLI_INT32 level) {
m_flag = true;
m_errorInfo.level = level;
return this;
}
void setMessage(const std::string& file, PLI_INT32 line, const char* message, ...) {
2018-06-13 01:14:20 +00:00
// message cannot be a const string& as va_start cannot use a reference
static thread_local std::string t_filehold;
va_list args;
va_start(args, message);
2018-06-13 01:14:20 +00:00
VL_VSNPRINTF(m_buff, sizeof(m_buff), message, args);
va_end(args);
m_errorInfo.state = vpiPLI;
t_filehold = file;
setError(static_cast<PLI_BYTE8*>(m_buff), nullptr,
const_cast<PLI_BYTE8*>(t_filehold.c_str()), line);
}
p_vpi_error_info getError() {
if (m_flag) return &m_errorInfo;
return nullptr;
}
void resetError() { m_flag = false; }
static void vpi_unsupported() {
// Not supported yet
const p_vpi_error_info error_info_p = VerilatedVpiImp::error_info()->getError();
if (error_info_p) {
VL_FATAL_MT(error_info_p->file, error_info_p->line, "", error_info_p->message);
return;
}
VL_FATAL_MT(__FILE__, __LINE__, "", "vpi_unsupported called without error info set");
}
static const char* strFromVpiVal(PLI_INT32 vpiVal) VL_PURE;
static const char* strFromVpiObjType(PLI_INT32 vpiVal) VL_PURE;
static const char* strFromVpiMethod(PLI_INT32 vpiVal) VL_PURE;
static const char* strFromVpiCallbackReason(PLI_INT32 vpiVal) VL_PURE;
static const char* strFromVpiProp(PLI_INT32 vpiVal) VL_PURE;
};
//======================================================================
// VerilatedVpi implementation
bool VerilatedVpi::callCbs(uint32_t reason) VL_MT_UNSAFE_ONE {
return VerilatedVpiImp::callCbs(reason);
}
// Historical, before we had multiple kinds of timed callbacks
void VerilatedVpi::callTimedCbs() VL_MT_UNSAFE_ONE { VerilatedVpiImp::callCbs(cbAfterDelay); }
bool VerilatedVpi::callValueCbs() VL_MT_UNSAFE_ONE { return VerilatedVpiImp::callValueCbs(); }
QData VerilatedVpi::cbNextDeadline() VL_MT_UNSAFE_ONE { return VerilatedVpiImp::cbNextDeadline(); }
void VerilatedVpi::dumpCbs() VL_MT_UNSAFE_ONE { VerilatedVpiImp::dumpCbs(); }
PLI_INT32 VerilatedVpioReasonCb::dovpi_remove_cb() {
VerilatedVpiImp::cbReasonRemove(m_id, m_reason, m_time);
delete this; // IEEE 37.2.2 a vpi_remove_cb does a vpi_release_handle
return 1;
}
//======================================================================
// VerilatedVpiImp implementation
void VerilatedVpiImp::dumpCbs() VL_MT_UNSAFE_ONE {
assertOneCheck();
VL_DBG_MSGF("- vpi: dumpCbs\n");
for (uint32_t reason = 0; reason < CB_ENUM_MAX_VALUE; ++reason) {
VpioCbList& cbObjList = s().m_cbCurrentLists[reason];
for (auto& ho : cbObjList) {
if (VL_UNLIKELY(!ho.invalid())) {
VL_DBG_MSGF("- vpi: reason=%d=%s id=%" PRId64 "\n", reason,
VerilatedVpiError::strFromVpiCallbackReason(reason), ho.id());
}
}
}
for (auto& ifuture : s().m_nextCbs) {
const QData time = ifuture.first.first;
VerilatedVpiCbHolder& ho = ifuture.second;
if (VL_UNLIKELY(!ho.invalid())) {
VL_DBG_MSGF("- vpi: time=%" PRId64 "(NEXT) reason=%d=%s id=%" PRId64 "\n", time,
ho.cb_datap()->reason,
VerilatedVpiError::strFromVpiCallbackReason(ho.cb_datap()->reason),
ho.id());
}
}
for (auto& ifuture : s().m_futureCbs) {
const QData time = ifuture.first.first;
VerilatedVpiCbHolder& ho = ifuture.second;
if (VL_UNLIKELY(!ho.invalid())) {
VL_DBG_MSGF("- vpi: time=%" PRId64 " reason=%d=%s id=%" PRId64 "\n", time,
ho.cb_datap()->reason,
VerilatedVpiError::strFromVpiCallbackReason(ho.cb_datap()->reason),
ho.id());
}
}
}
VerilatedVpiError* VerilatedVpiImp::error_info() VL_MT_UNSAFE_ONE {
VerilatedVpiImp::assertOneCheck();
if (VL_UNLIKELY(!s().m_errorInfop)) s().m_errorInfop = new VerilatedVpiError;
return s().m_errorInfop;
}
//======================================================================
// VerilatedVpiError Methods
const char* VerilatedVpiError::strFromVpiVal(PLI_INT32 vpiVal) VL_PURE {
// clang-format off
static const char* const names[] = {
"*undefined*",
"vpiBinStrVal",
"vpiOctStrVal",
"vpiDecStrVal",
"vpiHexStrVal",
"vpiScalarVal",
"vpiIntVal",
"vpiRealVal",
"vpiStringVal",
"vpiVectorVal",
"vpiStrengthVal",
"vpiTimeVal",
"vpiObjTypeVal",
"vpiSuppressVal",
"vpiShortIntVal",
"vpiLongIntVal",
"vpiShortRealVal",
"vpiRawTwoStateVal",
"vpiRawFourStateVal",
};
// clang-format on
if (VL_UNCOVERABLE(vpiVal < 0)) return names[0];
return names[(vpiVal <= vpiRawFourStateVal) ? vpiVal : 0];
}
const char* VerilatedVpiError::strFromVpiObjType(PLI_INT32 vpiVal) VL_PURE {
// clang-format off
static const char* const names[] = {
"*undefined*",
"vpiAlways",
"vpiAssignStmt",
"vpiAssignment",
"vpiBegin",
"vpiCase",
"vpiCaseItem",
"vpiConstant",
"vpiContAssign",
"vpiDeassign",
"vpiDefParam",
"vpiDelayControl",
"vpiDisable",
"vpiEventControl",
"vpiEventStmt",
"vpiFor",
"vpiForce",
"vpiForever",
"vpiFork",
"vpiFuncCall",
"vpiFunction",
"vpiGate",
"vpiIf",
"vpiIfElse",
"vpiInitial",
"vpiIntegerVar",
"vpiInterModPath",
"vpiIterator",
"vpiIODecl",
"vpiMemory",
"vpiMemoryWord",
"vpiModPath",
"vpiModule",
"vpiNamedBegin",
"vpiNamedEvent",
"vpiNamedFork",
"vpiNet",
"vpiNetBit",
"vpiNullStmt",
"vpiOperation",
"vpiParamAssign",
"vpiParameter",
"vpiPartSelect",
"vpiPathTerm",
"vpiPort",
"vpiPortBit",
"vpiPrimTerm",
"vpiRealVar",
"vpiReg",
"vpiRegBit",
"vpiRelease",
"vpiRepeat",
"vpiRepeatControl",
"vpiSchedEvent",
"vpiSpecParam",
"vpiSwitch",
"vpiSysFuncCall",
"vpiSysTaskCall",
"vpiTableEntry",
"vpiTask",
"vpiTaskCall",
"vpiTchk",
"vpiTchkTerm",
"vpiTimeVar",
"vpiTimeQueue",
"vpiUdp",
"vpiUdpDefn",
"vpiUserSystf",
"vpiVarSelect",
"vpiWait",
"vpiWhile",
2021-04-21 12:09:19 +00:00
"vpiCondition",
"vpiDelay",
"vpiElseStmt",
"vpiForIncStmt",
"vpiForInitStmt",
"vpiHighConn",
"vpiLhs",
"vpiIndex",
"vpiLeftRange",
"vpiLowConn",
"vpiParent",
"vpiRhs",
"vpiRightRange",
"vpiScope",
"vpiSysTfCall",
"vpiTchkDataTerm",
"vpiTchkNotifier",
"vpiTchkRefTerm",
"vpiArgument",
"vpiBit",
"vpiDriver",
"vpiInternalScope",
"vpiLoad",
"vpiModDataPathIn",
"vpiModPathIn",
"vpiModPathOut",
"vpiOperand",
"vpiPortInst",
"vpiProcess",
"vpiVariables",
"vpiUse",
"vpiExpr",
"vpiPrimitive",
"vpiStmt",
"vpiAttribute",
"vpiBitSelect",
"vpiCallback",
"vpiDelayTerm",
"vpiDelayDevice",
"vpiFrame",
"vpiGateArray",
"vpiModuleArray",
"vpiPrimitiveArray",
"vpiNetArray",
"vpiRange",
"vpiRegArray",
"vpiSwitchArray",
"vpiUdpArray",
2021-04-21 12:09:19 +00:00
"vpiActiveTimeFormat",
"vpiInTerm",
"vpiInstanceArray",
"vpiLocalDriver",
"vpiLocalLoad",
"vpiOutTerm",
"vpiPorts",
"vpiSimNet",
"vpiTaskFunc",
"vpiContAssignBit",
"vpiNamedEventArray",
"vpiIndexedPartSelect",
2021-04-21 12:09:19 +00:00
"vpiBaseExpr",
"vpiWidthExpr",
"vpiGenScopeArray",
"vpiGenScope",
2021-04-21 12:09:19 +00:00
"vpiGenVar",
"vpiAutomatics"
};
// clang-format on
if (VL_UNCOVERABLE(vpiVal < 0)) return names[0];
2021-04-21 12:09:19 +00:00
return names[(vpiVal <= vpiAutomatics) ? vpiVal : 0];
}
const char* VerilatedVpiError::strFromVpiMethod(PLI_INT32 vpiVal) VL_PURE {
// clang-format off
static const char* const names[] = {
"vpiCondition",
"vpiDelay",
"vpiElseStmt",
"vpiForIncStmt",
"vpiForInitStmt",
"vpiHighConn",
"vpiLhs",
"vpiIndex",
"vpiLeftRange",
"vpiLowConn",
"vpiParent",
"vpiRhs",
"vpiRightRange",
"vpiScope",
"vpiSysTfCall",
"vpiTchkDataTerm",
"vpiTchkNotifier",
"vpiTchkRefTerm",
"vpiArgument",
"vpiBit",
"vpiDriver",
"vpiInternalScope",
"vpiLoad",
"vpiModDataPathIn",
"vpiModPathIn",
"vpiModPathOut",
"vpiOperand",
"vpiPortInst",
"vpiProcess",
"vpiVariables",
"vpiUse",
"vpiExpr",
"vpiPrimitive",
"vpiStmt"
};
// clang-format on
if (vpiVal > vpiStmt || vpiVal < vpiCondition) return "*undefined*";
return names[vpiVal - vpiCondition];
}
const char* VerilatedVpiError::strFromVpiCallbackReason(PLI_INT32 vpiVal) VL_PURE {
// clang-format off
static const char* const names[] = {
"*undefined*",
"cbValueChange",
"cbStmt",
"cbForce",
"cbRelease",
"cbAtStartOfSimTime",
"cbReadWriteSynch",
"cbReadOnlySynch",
"cbNextSimTime",
"cbAfterDelay",
"cbEndOfCompile",
"cbStartOfSimulation",
"cbEndOfSimulation",
"cbError",
"cbTchkViolation",
"cbStartOfSave",
"cbEndOfSave",
"cbStartOfRestart",
"cbEndOfRestart",
"cbStartOfReset",
"cbEndOfReset",
"cbEnterInteractive",
"cbExitInteractive",
"cbInteractiveScopeChange",
"cbUnresolvedSystf",
"cbAssign",
"cbDeassign",
"cbDisable",
"cbPLIError",
"cbSignal",
"cbNBASynch",
"cbAtEndOfSimTime"
};
// clang-format on
if (VL_UNCOVERABLE(vpiVal < 0)) return names[0];
return names[(vpiVal <= cbAtEndOfSimTime) ? vpiVal : 0];
}
const char* VerilatedVpiError::strFromVpiProp(PLI_INT32 vpiVal) VL_PURE {
// clang-format off
static const char* const names[] = {
"*undefined or other*",
"vpiType",
"vpiName",
"vpiFullName",
"vpiSize",
"vpiFile",
"vpiLineNo",
"vpiTopModule",
"vpiCellInstance",
"vpiDefName",
"vpiProtected",
"vpiTimeUnit",
"vpiTimePrecision",
"vpiDefNetType",
"vpiUnconnDrive",
"vpiDefFile",
"vpiDefLineNo",
"vpiScalar",
"vpiVector",
"vpiExplicitName",
"vpiDirection",
"vpiConnByName",
"vpiNetType",
"vpiExplicitScalared",
"vpiExplicitVectored",
"vpiExpanded",
"vpiImplicitDecl",
"vpiChargeStrength",
"vpiArray",
"vpiPortIndex",
"vpiTermIndex",
"vpiStrength0",
"vpiStrength1",
"vpiPrimType",
"vpiPolarity",
"vpiDataPolarity",
"vpiEdge",
"vpiPathType",
"vpiTchkType",
"vpiOpType",
"vpiConstType",
"vpiBlocking",
"vpiCaseType",
"vpiFuncType",
"vpiNetDeclAssign",
"vpiUserDefn",
"vpiScheduled",
"*undefined*",
"*undefined*",
"vpiActive",
"vpiAutomatic",
"vpiCell",
"vpiConfig",
"vpiConstantSelect",
"vpiDecompile",
"vpiDefAttribute",
"vpiDelayType",
"vpiIteratorType",
"vpiLibrary",
"*undefined*",
"vpiOffset",
"vpiResolvedNetType",
"vpiSaveRestartID",
"vpiSaveRestartLocation",
"vpiValid",
"vpiSigned",
"vpiStop",
"vpiFinish",
"vpiReset",
"vpiSetInteractiveScope",
"vpiLocalParam",
"vpiModPathHasIfNone",
"vpiIndexedPartSelectType",
"vpiIsMemory",
"vpiIsProtected"
};
// clang-format on
if (vpiVal == vpiUndefined) return "vpiUndefined";
return names[(vpiVal <= vpiIsProtected) ? vpiVal : 0];
}
#define SELF_CHECK_RESULT_CSTR(got, exp) \
if (0 != std::strcmp((got), (exp))) { \
const std::string msg \
= std::string{"%Error: "} + "GOT = '" + (got) + "'" + " EXP = '" + (exp) + "'"; \
VL_FATAL_MT(__FILE__, __LINE__, "", msg.c_str()); \
}
#define SELF_CHECK_ENUM_STR(fn, enumn) \
do { \
const char* const strVal = VerilatedVpiError::fn(enumn); \
SELF_CHECK_RESULT_CSTR(strVal, #enumn); \
} while (0)
void VerilatedVpi::selfTest() VL_MT_UNSAFE_ONE { VerilatedVpiError::selfTest(); }
void VerilatedVpiError::selfTest() VL_MT_UNSAFE_ONE {
VerilatedVpiImp::assertOneCheck();
SELF_CHECK_ENUM_STR(strFromVpiVal, vpiBinStrVal);
SELF_CHECK_ENUM_STR(strFromVpiVal, vpiRawFourStateVal);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiAlways);
2021-04-21 12:09:19 +00:00
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiAssignStmt);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiAssignment);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiBegin);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiCase);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiCaseItem);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiConstant);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiContAssign);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiDeassign);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiDefParam);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiDelayControl);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiDisable);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiEventControl);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiEventStmt);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiFor);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiForce);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiForever);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiFork);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiFuncCall);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiFunction);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiGate);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiIf);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiIfElse);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiInitial);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiIntegerVar);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiInterModPath);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiIterator);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiIODecl);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiMemory);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiMemoryWord);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiModPath);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiModule);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiNamedBegin);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiNamedEvent);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiNamedFork);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiNet);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiNetBit);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiNullStmt);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiOperation);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiParamAssign);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiParameter);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiPartSelect);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiPathTerm);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiPort);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiPortBit);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiPrimTerm);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiRealVar);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiReg);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiRegBit);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiRelease);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiRepeat);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiRepeatControl);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiSchedEvent);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiSpecParam);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiSwitch);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiSysFuncCall);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiSysTaskCall);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTableEntry);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTask);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTaskCall);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTchk);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTchkTerm);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTimeVar);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTimeQueue);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiUdp);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiUdpDefn);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiUserSystf);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiVarSelect);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiWait);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiWhile);
2021-04-21 12:09:19 +00:00
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiCondition);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiDelay);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiElseStmt);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiForIncStmt);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiForInitStmt);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiHighConn);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiLhs);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiIndex);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiLeftRange);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiLowConn);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiParent);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiRhs);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiRightRange);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiScope);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiSysTfCall);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTchkDataTerm);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTchkNotifier);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTchkRefTerm);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiArgument);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiBit);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiDriver);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiInternalScope);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiLoad);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiModDataPathIn);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiModPathIn);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiModPathOut);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiOperand);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiPortInst);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiProcess);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiVariables);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiUse);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiExpr);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiPrimitive);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiStmt);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiAttribute);
2021-04-21 12:09:19 +00:00
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiBitSelect);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiCallback);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiDelayTerm);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiDelayDevice);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiFrame);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiGateArray);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiModuleArray);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiPrimitiveArray);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiNetArray);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiRange);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiRegArray);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiSwitchArray);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiUdpArray);
2021-04-21 12:09:19 +00:00
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiActiveTimeFormat);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiInTerm);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiInstanceArray);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiLocalDriver);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiLocalLoad);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiOutTerm);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiPorts);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiSimNet);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTaskFunc);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiContAssignBit);
2021-04-21 12:09:19 +00:00
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiNamedEventArray);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiIndexedPartSelect);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiBaseExpr);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiWidthExpr);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiGenScopeArray);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiGenScope);
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiGenVar);
2021-04-21 12:09:19 +00:00
SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiAutomatics);
SELF_CHECK_ENUM_STR(strFromVpiMethod, vpiCondition);
SELF_CHECK_ENUM_STR(strFromVpiMethod, vpiStmt);
SELF_CHECK_ENUM_STR(strFromVpiCallbackReason, cbValueChange);
SELF_CHECK_ENUM_STR(strFromVpiCallbackReason, cbAtEndOfSimTime);
SELF_CHECK_ENUM_STR(strFromVpiProp, vpiType);
SELF_CHECK_ENUM_STR(strFromVpiProp, vpiProtected);
SELF_CHECK_ENUM_STR(strFromVpiProp, vpiDirection);
SELF_CHECK_ENUM_STR(strFromVpiProp, vpiTermIndex);
SELF_CHECK_ENUM_STR(strFromVpiProp, vpiConstType);
SELF_CHECK_ENUM_STR(strFromVpiProp, vpiAutomatic);
SELF_CHECK_ENUM_STR(strFromVpiProp, vpiOffset);
SELF_CHECK_ENUM_STR(strFromVpiProp, vpiStop);
SELF_CHECK_ENUM_STR(strFromVpiProp, vpiIsProtected);
}
#undef SELF_CHECK_ENUM_STR
#undef SELF_CHECK_RESULT_CSTR
//======================================================================
// callback related
vpiHandle vpi_register_cb(p_cb_data cb_data_p) {
// Returns handle so user can remove the callback, user must vpi_release_handle it
// Don't confuse with the callback-activated t_cb_data object handle
// which is the object causing the callback rather than the callback itself
VerilatedVpiImp::assertOneCheck();
VL_VPI_ERROR_RESET_();
2015-10-04 02:33:06 +00:00
// cppcheck-suppress nullPointer
if (VL_UNLIKELY(!cb_data_p)) {
VL_VPI_WARNING_(__FILE__, __LINE__, "%s : callback data pointer is null", __func__);
return nullptr;
}
const PLI_INT32 reason = cb_data_p->reason;
switch (reason) {
case cbAfterDelay: // FALLTHRU // One-shot; time relative
case cbAtEndOfSimTime: // FALLTHRU // One-shot; time absolute; supported via vlt_main.cpp
case cbAtStartOfSimTime: // FALLTHRU // One-shot; time absolute; supported via vlt_main.cpp
case cbReadOnlySynch: // FALLTHRU // One-shot; time relative; supported via vlt_main.cpp
case cbReadWriteSynch: { // One-shot; time relative; supported via vlt_main.cpp
const bool abs = reason == cbAtStartOfSimTime || reason == cbAtEndOfSimTime;
const QData time = VL_TIME_Q();
QData abstime = 0;
if (cb_data_p->time) {
if (abs) {
abstime = VL_SET_QII(cb_data_p->time->high, cb_data_p->time->low);
} else {
abstime = time + VL_SET_QII(cb_data_p->time->high, cb_data_p->time->low);
}
}
const uint64_t id = VerilatedVpiImp::nextCallbackId();
VerilatedVpioReasonCb* const vop = new VerilatedVpioReasonCb{id, abstime, reason};
if (abstime <= time) {
VerilatedVpiImp::cbCurrentAdd(id, cb_data_p);
} else {
VerilatedVpiImp::cbFutureAdd(id, cb_data_p, abstime);
}
return vop->castVpiHandle();
}
case cbNextSimTime: { // One-shot; time always next; supported via vlt_main.cpp
const QData time = VL_TIME_Q();
const uint64_t id = VerilatedVpiImp::nextCallbackId();
VerilatedVpioReasonCb* const vop = new VerilatedVpioReasonCb{id, 0, reason};
VerilatedVpiImp::cbNextAdd(id, cb_data_p, time);
return vop->castVpiHandle();
}
case cbEndOfSimulation: // FALLTHRU // One-shot; time ignored; supported via vlt_main.cpp
case cbEnterInteractive: // FALLTHRU // NOP, but need to return handle, so make object
case cbExitInteractive: // FALLTHRU // NOP, but need to return handle, so make object
case cbInteractiveScopeChange: // FALLTHRU // NOP, but need to return handle, so make object
case cbPLIError: // FALLTHRU // NOP, but need to return handle, so make object
case cbStartOfSimulation: // FALLTHRU // One-shot; time ignored; supported via vlt_main.cpp
case cbValueChange: { // Multi-shot; supported via vlt_main.cpp
const uint64_t id = VerilatedVpiImp::nextCallbackId();
VerilatedVpioReasonCb* const vop = new VerilatedVpioReasonCb{id, 0, reason};
VerilatedVpiImp::cbCurrentAdd(id, cb_data_p);
return vop->castVpiHandle();
}
default:
VL_VPI_WARNING_(__FILE__, __LINE__, "%s: Unsupported callback type %s", __func__,
VerilatedVpiError::strFromVpiCallbackReason(reason));
return nullptr;
}
}
PLI_INT32 vpi_remove_cb(vpiHandle cb_obj) {
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_remove_cb %p\n", cb_obj););
VerilatedVpiImp::assertOneCheck();
VL_VPI_ERROR_RESET_();
VerilatedVpio* const vop = VerilatedVpio::castp(cb_obj);
if (VL_UNLIKELY(!vop)) return 0;
return vop->dovpi_remove_cb();
}
void vpi_get_cb_info(vpiHandle /*object*/, p_cb_data /*cb_data_p*/) { VL_VPI_UNIMP_(); }
vpiHandle vpi_register_systf(p_vpi_systf_data /*systf_data_p*/) {
VL_VPI_UNIMP_();
return nullptr;
}
void vpi_get_systf_info(vpiHandle /*object*/, p_vpi_systf_data /*systf_data_p*/) {
VL_VPI_UNIMP_();
}
// for obtaining handles
vpiHandle vpi_handle_by_name(PLI_BYTE8* namep, vpiHandle scope) {
VerilatedVpiImp::assertOneCheck();
VL_VPI_ERROR_RESET_();
if (VL_UNLIKELY(!namep)) return nullptr;
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_handle_by_name %s %p\n", namep, scope););
const VerilatedVar* varp = nullptr;
const VerilatedScope* scopep;
const VerilatedVpioScope* const voScopep = VerilatedVpioScope::castp(scope);
std::string scopeAndName = namep;
if (voScopep) {
scopeAndName = std::string{voScopep->fullname()} + "." + namep;
namep = const_cast<PLI_BYTE8*>(scopeAndName.c_str());
}
{
// This doesn't yet follow the hierarchy in the proper way
scopep = Verilated::threadContextp()->scopeFind(namep);
if (scopep) { // Whole thing found as a scope
if (scopep->type() == VerilatedScope::SCOPE_MODULE) {
return (new VerilatedVpioModule{scopep})->castVpiHandle();
} else {
return (new VerilatedVpioScope{scopep})->castVpiHandle();
}
}
const char* baseNamep = scopeAndName.c_str();
std::string scopename;
const char* const dotp = std::strrchr(namep, '.');
if (VL_LIKELY(dotp)) {
baseNamep = dotp + 1;
const size_t len = dotp - namep;
scopename = std::string{namep, len};
}
if (scopename.find('.') == std::string::npos) {
// This is a toplevel, hence search in our TOP ports first.
scopep = Verilated::threadContextp()->scopeFind("TOP");
if (scopep) varp = scopep->varFind(baseNamep);
}
if (!varp) {
scopep = Verilated::threadContextp()->scopeFind(scopename.c_str());
if (!scopep) return nullptr;
varp = scopep->varFind(baseNamep);
}
}
if (!varp) return nullptr;
if (varp->isParam()) {
return (new VerilatedVpioParam{varp, scopep})->castVpiHandle();
} else {
return (new VerilatedVpioVar{varp, scopep})->castVpiHandle();
}
}
vpiHandle vpi_handle_by_index(vpiHandle object, PLI_INT32 indx) {
// Used to get array entries
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_handle_by_index %p %d\n", object, indx););
VerilatedVpiImp::assertOneCheck();
VL_VPI_ERROR_RESET_();
// Memory words are not indexable
const VerilatedVpioMemoryWord* const vop = VerilatedVpioMemoryWord::castp(object);
if (VL_UNLIKELY(vop)) return nullptr;
const VerilatedVpioVar* const varop = VerilatedVpioVar::castp(object);
if (VL_LIKELY(varop)) {
if (varop->varp()->dims() < 2) return nullptr;
if (VL_LIKELY(varop->varp()->unpacked().left() >= varop->varp()->unpacked().right())) {
if (VL_UNLIKELY(indx > varop->varp()->unpacked().left()
|| indx < varop->varp()->unpacked().right()))
return nullptr;
return (new VerilatedVpioMemoryWord{varop->varp(), varop->scopep(), indx,
indx - varop->varp()->unpacked().right()})
->castVpiHandle();
}
if (VL_UNLIKELY(indx < varop->varp()->unpacked().left()
|| indx > varop->varp()->unpacked().right()))
return nullptr;
return (new VerilatedVpioMemoryWord{varop->varp(), varop->scopep(), indx,
indx - varop->varp()->unpacked().left()})
->castVpiHandle();
}
VL_VPI_INTERNAL_(__FILE__, __LINE__, "%s : can't resolve handle", __func__);
return nullptr;
}
// for traversing relationships
vpiHandle vpi_handle(PLI_INT32 type, vpiHandle object) {
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_handle %d %p\n", type, object););
VerilatedVpiImp::assertOneCheck();
VL_VPI_ERROR_RESET_();
switch (type) {
case vpiLeftRange: {
if (const VerilatedVpioVarBase* const vop = VerilatedVpioVarBase::castp(object)) {
if (VL_UNLIKELY(!vop->rangep())) return nullptr;
return (new VerilatedVpioConst{vop->rangep()->left()})->castVpiHandle();
} else if (const VerilatedVpioRange* const vop = VerilatedVpioRange::castp(object)) {
if (VL_UNLIKELY(!vop->rangep())) return nullptr;
return (new VerilatedVpioConst{vop->rangep()->left()})->castVpiHandle();
}
VL_VPI_WARNING_(__FILE__, __LINE__,
"%s: Unsupported vpiHandle (%p) for type %s, nothing will be returned",
__func__, object, VerilatedVpiError::strFromVpiMethod(type));
return nullptr;
}
case vpiRightRange: {
if (const VerilatedVpioVarBase* const vop = VerilatedVpioVarBase::castp(object)) {
if (VL_UNLIKELY(!vop->rangep())) return nullptr;
return (new VerilatedVpioConst{vop->rangep()->right()})->castVpiHandle();
} else if (const VerilatedVpioRange* const vop = VerilatedVpioRange::castp(object)) {
if (VL_UNLIKELY(!vop->rangep())) return nullptr;
return (new VerilatedVpioConst{vop->rangep()->right()})->castVpiHandle();
}
VL_VPI_WARNING_(__FILE__, __LINE__,
"%s: Unsupported vpiHandle (%p) for type %s, nothing will be returned",
__func__, object, VerilatedVpiError::strFromVpiMethod(type));
return nullptr;
}
case vpiIndex: {
const VerilatedVpioVar* const vop = VerilatedVpioVar::castp(object);
if (VL_UNLIKELY(!vop)) return nullptr;
const int32_t val = vop->index();
return (new VerilatedVpioConst{val})->castVpiHandle();
}
case vpiScope: {
const VerilatedVpioVarBase* const vop = VerilatedVpioVarBase::castp(object);
if (VL_UNLIKELY(!vop)) return nullptr;
return (new VerilatedVpioScope{vop->scopep()})->castVpiHandle();
}
case vpiParent: {
const VerilatedVpioMemoryWord* const vop = VerilatedVpioMemoryWord::castp(object);
if (VL_UNLIKELY(!vop)) return nullptr;
return (new VerilatedVpioVar{vop->varp(), vop->scopep()})->castVpiHandle();
}
default:
VL_VPI_WARNING_(__FILE__, __LINE__, "%s: Unsupported type %s, nothing will be returned",
__func__, VerilatedVpiError::strFromVpiMethod(type));
return nullptr;
}
}
vpiHandle vpi_handle_multi(PLI_INT32 /*type*/, vpiHandle /*refHandle1*/, vpiHandle /*refHandle2*/,
...) {
VL_VPI_UNIMP_();
return nullptr;
}
vpiHandle vpi_iterate(PLI_INT32 type, vpiHandle object) {
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_iterate %d %p\n", type, object););
VerilatedVpiImp::assertOneCheck();
VL_VPI_ERROR_RESET_();
switch (type) {
case vpiMemoryWord: {
const VerilatedVpioVar* const vop = VerilatedVpioVar::castp(object);
if (VL_UNLIKELY(!vop)) return nullptr;
if (vop->varp()->dims() < 2) return nullptr;
if (vop->varp()->dims() > 2) {
VL_VPI_WARNING_(__FILE__, __LINE__,
"%s: %s, object %s has unsupported number of indices (%d)", __func__,
VerilatedVpiError::strFromVpiMethod(type), vop->fullname(),
vop->varp()->dims());
}
return (new VerilatedVpioMemoryWordIter{object, vop->varp()})->castVpiHandle();
}
case vpiRange: {
const VerilatedVpioVar* const vop = VerilatedVpioVar::castp(object);
if (VL_UNLIKELY(!vop)) return nullptr;
if (vop->varp()->dims() < 2) return nullptr;
// Unsupported is multidim list
if (vop->varp()->dims() > 2) {
VL_VPI_WARNING_(__FILE__, __LINE__,
"%s: %s, object %s has unsupported number of indices (%d)", __func__,
VerilatedVpiError::strFromVpiMethod(type), vop->fullname(),
vop->varp()->dims());
}
return ((new VerilatedVpioRangeIter{vop->rangep()})->castVpiHandle());
}
case vpiReg: {
const VerilatedVpioScope* const vop = VerilatedVpioScope::castp(object);
if (VL_UNLIKELY(!vop)) return nullptr;
return ((new VerilatedVpioVarIter{vop->scopep()})->castVpiHandle());
}
case vpiModule: {
const VerilatedVpioModule* const vop = VerilatedVpioModule::castp(object);
const VerilatedHierarchyMap* const map = VerilatedImp::hierarchyMap();
const VerilatedScope* const modp = vop ? vop->scopep() : nullptr;
const auto it = vlstd::as_const(map)->find(const_cast<VerilatedScope*>(modp));
if (it == map->end()) return nullptr;
return ((new VerilatedVpioModuleIter{it->second})->castVpiHandle());
}
default:
VL_VPI_WARNING_(__FILE__, __LINE__, "%s: Unsupported type %s, nothing will be returned",
__func__, VerilatedVpiError::strFromVpiObjType(type));
return nullptr;
}
}
vpiHandle vpi_scan(vpiHandle object) {
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_scan %p\n", object););
VerilatedVpiImp::assertOneCheck();
VL_VPI_ERROR_RESET_();
VerilatedVpio* const vop = VerilatedVpio::castp(object);
if (VL_UNLIKELY(!vop)) return nullptr;
return vop->dovpi_scan();
}
// for processing properties
PLI_INT32 vpi_get(PLI_INT32 property, vpiHandle object) {
// Leave this in the header file - in many cases the compiler can constant propagate "object"
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_get %d %p\n", property, object););
VerilatedVpiImp::assertOneCheck();
VL_VPI_ERROR_RESET_();
switch (property) {
case vpiTimePrecision: {
return Verilated::threadContextp()->timeprecision();
}
case vpiTimeUnit: {
const VerilatedVpioScope* const vop = VerilatedVpioScope::castp(object);
if (!vop)
return Verilated::threadContextp()->timeunit(); // Null asks for global, not unlikely
return vop->scopep()->timeunit();
}
case vpiType: {
const VerilatedVpio* const vop = VerilatedVpio::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
return vop->type();
}
case vpiDirection: {
2022-12-26 09:30:41 +00:00
// By forethought, the directions already are vpi enumerated
const VerilatedVpioVarBase* const vop = VerilatedVpioVarBase::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
return vop->varp()->vldir();
}
case vpiScalar: // FALLTHRU
case vpiVector: {
const VerilatedVpioVarBase* const vop = VerilatedVpioVarBase::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
return (property == vpiVector) ^ (vop->varp()->dims() == 0);
}
case vpiSize: {
const VerilatedVpioVarBase* const vop = VerilatedVpioVarBase::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
return vop->size();
}
default:
VL_VPI_WARNING_(__FILE__, __LINE__, "%s: Unsupported type %s, nothing will be returned",
__func__, VerilatedVpiError::strFromVpiProp(property));
return 0;
}
}
PLI_INT64 vpi_get64(PLI_INT32 /*property*/, vpiHandle /*object*/) {
VL_VPI_UNIMP_();
return 0;
}
PLI_BYTE8* vpi_get_str(PLI_INT32 property, vpiHandle object) {
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_get_str %d %p\n", property, object););
VerilatedVpiImp::assertOneCheck();
const VerilatedVpio* const vop = VerilatedVpio::castp(object);
VL_VPI_ERROR_RESET_();
if (VL_UNLIKELY(!vop)) return nullptr;
switch (property) {
case vpiName: {
return const_cast<PLI_BYTE8*>(vop->name());
}
case vpiFullName: {
return const_cast<PLI_BYTE8*>(vop->fullname());
}
case vpiDefName: {
return const_cast<PLI_BYTE8*>(vop->defname());
}
case vpiType: {
return const_cast<PLI_BYTE8*>(VerilatedVpiError::strFromVpiObjType(vop->type()));
}
default:
VL_VPI_WARNING_(__FILE__, __LINE__, "%s: Unsupported type %s, nothing will be returned",
__func__, VerilatedVpiError::strFromVpiProp(property));
return nullptr;
}
}
// delay processing
void vpi_get_delays(vpiHandle /*object*/, p_vpi_delay /*delay_p*/) { VL_VPI_UNIMP_(); }
void vpi_put_delays(vpiHandle /*object*/, p_vpi_delay /*delay_p*/) { VL_VPI_UNIMP_(); }
// value processing
bool vl_check_format(const VerilatedVar* varp, const p_vpi_value valuep, const char* fullname,
bool isGetValue) {
bool status = true;
if ((valuep->format == vpiVectorVal) || (valuep->format == vpiBinStrVal)
|| (valuep->format == vpiOctStrVal) || (valuep->format == vpiHexStrVal)) {
switch (varp->vltype()) {
case VLVT_UINT8:
case VLVT_UINT16:
case VLVT_UINT32:
case VLVT_UINT64:
case VLVT_WDATA: return status;
default: status = false;
}
} else if (valuep->format == vpiDecStrVal) {
switch (varp->vltype()) {
case VLVT_UINT8:
case VLVT_UINT16:
case VLVT_UINT32:
case VLVT_UINT64: return status;
default: status = false;
}
} else if (valuep->format == vpiStringVal) {
switch (varp->vltype()) {
case VLVT_UINT8:
case VLVT_UINT16:
case VLVT_UINT32:
case VLVT_UINT64:
case VLVT_WDATA: return status;
case VLVT_STRING:
if (isGetValue) {
return status;
} else {
status = false;
break;
}
default: status = false;
}
} else if (valuep->format == vpiIntVal) {
switch (varp->vltype()) {
case VLVT_UINT8:
case VLVT_UINT16:
case VLVT_UINT32: return status;
default: status = false;
}
} else if (valuep->format == vpiSuppressVal) {
return status;
} else {
status = false;
}
VL_VPI_ERROR_(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s", __func__,
VerilatedVpiError::strFromVpiVal(valuep->format), fullname);
return status;
}
void vl_get_value(const VerilatedVar* varp, void* varDatap, p_vpi_value valuep,
const char* fullname) {
if (!vl_check_format(varp, valuep, fullname, true)) return;
// Maximum required size is for binary string, one byte per bit plus null termination
static thread_local char t_outStr[VL_VALUE_STRING_MAX_WORDS * VL_EDATASIZE + 1];
// cppcheck-suppress variableScope
static const thread_local int t_outStrSz = sizeof(t_outStr) - 1;
// We used to presume vpiValue.format = vpiIntVal or if single bit vpiScalarVal
// This may cause backward compatibility issues with older code.
if (valuep->format == vpiVectorVal) {
// Vector pointer must come from our memory pool
// It only needs to persist until the next vpi_get_value
static thread_local t_vpi_vecval t_out[VL_VALUE_STRING_MAX_WORDS * 2];
valuep->value.vector = t_out;
if (varp->vltype() == VLVT_UINT8) {
t_out[0].aval = *(reinterpret_cast<CData*>(varDatap));
t_out[0].bval = 0;
return;
} else if (varp->vltype() == VLVT_UINT16) {
t_out[0].aval = *(reinterpret_cast<SData*>(varDatap));
t_out[0].bval = 0;
return;
} else if (varp->vltype() == VLVT_UINT32) {
t_out[0].aval = *(reinterpret_cast<IData*>(varDatap));
t_out[0].bval = 0;
return;
} else if (varp->vltype() == VLVT_UINT64) {
const QData data = *(reinterpret_cast<QData*>(varDatap));
t_out[1].aval = static_cast<IData>(data >> 32ULL);
t_out[1].bval = 0;
t_out[0].aval = static_cast<IData>(data);
t_out[0].bval = 0;
return;
} else if (varp->vltype() == VLVT_WDATA) {
const int words = VL_WORDS_I(varp->packed().elements());
if (VL_UNCOVERABLE(words >= VL_VALUE_STRING_MAX_WORDS)) {
VL_FATAL_MT(__FILE__, __LINE__, "",
"vpi_get_value with more than VL_VALUE_STRING_MAX_WORDS; increase and "
"recompile");
}
const WDataInP datap = (reinterpret_cast<EData*>(varDatap));
for (int i = 0; i < words; ++i) {
t_out[i].aval = datap[i];
t_out[i].bval = 0;
}
return;
}
} else if (valuep->format == vpiBinStrVal) {
valuep->value.str = t_outStr;
int bits = varp->packed().elements();
const CData* datap = (reinterpret_cast<CData*>(varDatap));
int i;
if (bits > t_outStrSz) {
// limit maximum size of output to size of buffer to prevent overrun.
VL_VPI_WARNING_(
__FILE__, __LINE__,
"%s: Truncating string value of %s for %s"
" as buffer size (%d, VL_VALUE_STRING_MAX_WORDS=%d) is less than required (%d)",
__func__, VerilatedVpiError::strFromVpiVal(valuep->format), fullname, t_outStrSz,
VL_VALUE_STRING_MAX_WORDS, bits);
bits = t_outStrSz;
}
for (i = 0; i < bits; ++i) {
const char val = (datap[i >> 3] >> (i & 7)) & 1;
t_outStr[bits - i - 1] = val ? '1' : '0';
}
t_outStr[i] = '\0';
return;
} else if (valuep->format == vpiOctStrVal) {
valuep->value.str = t_outStr;
int chars = (varp->packed().elements() + 2) / 3;
const int bytes = VL_BYTES_I(varp->packed().elements());
const CData* datap = (reinterpret_cast<CData*>(varDatap));
int i;
if (chars > t_outStrSz) {
// limit maximum size of output to size of buffer to prevent overrun.
VL_VPI_WARNING_(
__FILE__, __LINE__,
"%s: Truncating string value of %s for %s"
" as buffer size (%d, VL_VALUE_STRING_MAX_WORDS=%d) is less than required (%d)",
__func__, VerilatedVpiError::strFromVpiVal(valuep->format), fullname, t_outStrSz,
VL_VALUE_STRING_MAX_WORDS, chars);
chars = t_outStrSz;
}
for (i = 0; i < chars; ++i) {
const div_t idx = div(i * 3, 8);
int val = datap[idx.quot];
if ((idx.quot + 1) < bytes) {
// if the next byte is valid or that in
// for when the required 3 bits straddle adjacent bytes
val |= datap[idx.quot + 1] << 8;
}
// align so least significant 3 bits represent octal char
val >>= idx.rem;
if (i == (chars - 1)) {
// most significant char, mask off nonexistent bits when vector
// size is not a multiple of 3
const unsigned int rem = varp->packed().elements() % 3;
if (rem) {
// generate bit mask & zero nonexistent bits
val &= (1 << rem) - 1;
}
}
t_outStr[chars - i - 1] = '0' + (val & 7);
}
t_outStr[i] = '\0';
return;
} else if (valuep->format == vpiDecStrVal) {
valuep->value.str = t_outStr;
// outStrSz does not include nullptr termination so add one
if (varp->vltype() == VLVT_UINT8) {
VL_SNPRINTF(t_outStr, t_outStrSz + 1, "%hhu",
static_cast<unsigned char>(*(reinterpret_cast<CData*>(varDatap))));
return;
} else if (varp->vltype() == VLVT_UINT16) {
VL_SNPRINTF(t_outStr, t_outStrSz + 1, "%hu",
static_cast<unsigned short>(*(reinterpret_cast<SData*>(varDatap))));
return;
} else if (varp->vltype() == VLVT_UINT32) {
VL_SNPRINTF(t_outStr, t_outStrSz + 1, "%u",
static_cast<unsigned int>(*(reinterpret_cast<IData*>(varDatap))));
return;
} else if (varp->vltype() == VLVT_UINT64) {
VL_SNPRINTF(t_outStr, t_outStrSz + 1, "%llu",
static_cast<unsigned long long>(*(reinterpret_cast<QData*>(varDatap))));
return;
}
} else if (valuep->format == vpiHexStrVal) {
valuep->value.str = t_outStr;
int chars = (varp->packed().elements() + 3) >> 2;
const CData* datap = (reinterpret_cast<CData*>(varDatap));
int i;
if (chars > t_outStrSz) {
// limit maximum size of output to size of buffer to prevent overrun.
VL_VPI_WARNING_(
__FILE__, __LINE__,
"%s: Truncating string value of %s for %s"
" as buffer size (%d, VL_VALUE_STRING_MAX_WORDS=%d) is less than required (%d)",
__func__, VerilatedVpiError::strFromVpiVal(valuep->format), fullname, t_outStrSz,
VL_VALUE_STRING_MAX_WORDS, chars);
chars = t_outStrSz;
}
for (i = 0; i < chars; ++i) {
char val = (datap[i >> 1] >> ((i & 1) << 2)) & 15;
if (i == (chars - 1)) {
// most significant char, mask off nonexistent bits when vector
// size is not a multiple of 4
const unsigned int rem = varp->packed().elements() & 3;
if (rem) {
// generate bit mask & zero nonexistent bits
val &= (1 << rem) - 1;
}
}
t_outStr[chars - i - 1] = "0123456789abcdef"[static_cast<int>(val)];
}
t_outStr[i] = '\0';
return;
} else if (valuep->format == vpiStringVal) {
if (varp->vltype() == VLVT_STRING) {
valuep->value.str = reinterpret_cast<char*>(varDatap);
return;
} else {
valuep->value.str = t_outStr;
int bytes = VL_BYTES_I(varp->packed().elements());
const CData* datap = (reinterpret_cast<CData*>(varDatap));
int i;
if (bytes > t_outStrSz) {
// limit maximum size of output to size of buffer to prevent overrun.
VL_VPI_WARNING_(__FILE__, __LINE__,
"%s: Truncating string value of %s for %s"
" as buffer size (%d, VL_VALUE_STRING_MAX_WORDS=%d) is less than "
"required (%d)",
__func__, VerilatedVpiError::strFromVpiVal(valuep->format),
fullname, t_outStrSz, VL_VALUE_STRING_MAX_WORDS, bytes);
bytes = t_outStrSz;
}
for (i = 0; i < bytes; ++i) {
const char val = datap[bytes - i - 1];
// other simulators replace [leading?] zero chars with spaces, replicate here.
t_outStr[i] = val ? val : ' ';
}
t_outStr[i] = '\0';
return;
}
} else if (valuep->format == vpiIntVal) {
if (varp->vltype() == VLVT_UINT8) {
valuep->value.integer = *(reinterpret_cast<CData*>(varDatap));
return;
} else if (varp->vltype() == VLVT_UINT16) {
valuep->value.integer = *(reinterpret_cast<SData*>(varDatap));
return;
} else if (varp->vltype() == VLVT_UINT32) {
valuep->value.integer = *(reinterpret_cast<IData*>(varDatap));
return;
}
} else if (valuep->format == vpiSuppressVal) {
return;
}
VL_VPI_ERROR_(__FILE__, __LINE__, "%s: Unsupported format (%s) as requested for %s", __func__,
VerilatedVpiError::strFromVpiVal(valuep->format), fullname);
}
void vpi_get_value(vpiHandle object, p_vpi_value valuep) {
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_get_value %p\n", object););
VerilatedVpiImp::assertOneCheck();
VL_VPI_ERROR_RESET_();
if (VL_UNLIKELY(!valuep)) return;
if (const VerilatedVpioVar* const vop = VerilatedVpioVar::castp(object)) {
vl_get_value(vop->varp(), vop->varDatap(), valuep, vop->fullname());
return;
} else if (const VerilatedVpioParam* const vop = VerilatedVpioParam::castp(object)) {
vl_get_value(vop->varp(), vop->varDatap(), valuep, vop->fullname());
return;
} else if (const VerilatedVpioConst* const vop = VerilatedVpioConst::castp(object)) {
if (valuep->format == vpiIntVal) {
valuep->value.integer = vop->num();
return;
}
VL_VPI_ERROR_(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s", __func__,
VerilatedVpiError::strFromVpiVal(valuep->format), vop->fullname());
return;
}
VL_VPI_ERROR_(__FILE__, __LINE__, "%s: Unsupported vpiHandle (%p)", __func__, object);
}
vpiHandle vpi_put_value(vpiHandle object, p_vpi_value valuep, p_vpi_time /*time_p*/,
PLI_INT32 /*flags*/) {
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_put_value %p %p\n", object, valuep););
VerilatedVpiImp::assertOneCheck();
VL_VPI_ERROR_RESET_();
if (VL_UNLIKELY(!valuep)) {
VL_VPI_WARNING_(__FILE__, __LINE__, "Ignoring vpi_put_value with nullptr value pointer");
return nullptr;
}
if (const VerilatedVpioVar* const vop = VerilatedVpioVar::castp(object)) {
VL_DEBUG_IF_PLI(
VL_DBG_MSGF("- vpi: vpi_put_value name=%s fmt=%d vali=%d\n", vop->fullname(),
valuep->format, valuep->value.integer);
VL_DBG_MSGF("- vpi: varp=%p putatp=%p\n", vop->varp()->datap(), vop->varDatap()););
if (VL_UNLIKELY(!vop->varp()->isPublicRW())) {
VL_VPI_WARNING_(__FILE__, __LINE__,
"Ignoring vpi_put_value to signal marked read-only,"
" use public_flat_rw instead: %s",
vop->fullname());
return nullptr;
}
if (!vl_check_format(vop->varp(), valuep, vop->fullname(), false)) return nullptr;
if (valuep->format == vpiVectorVal) {
if (VL_UNLIKELY(!valuep->value.vector)) return nullptr;
if (vop->varp()->vltype() == VLVT_UINT8) {
*(reinterpret_cast<CData*>(vop->varDatap()))
= valuep->value.vector[0].aval & vop->mask();
return object;
} else if (vop->varp()->vltype() == VLVT_UINT16) {
*(reinterpret_cast<SData*>(vop->varDatap()))
= valuep->value.vector[0].aval & vop->mask();
return object;
} else if (vop->varp()->vltype() == VLVT_UINT32) {
*(reinterpret_cast<IData*>(vop->varDatap()))
= valuep->value.vector[0].aval & vop->mask();
return object;
} else if (vop->varp()->vltype() == VLVT_UINT64) {
*(reinterpret_cast<QData*>(vop->varDatap())) = VL_SET_QII(
valuep->value.vector[1].aval & vop->mask(), valuep->value.vector[0].aval);
return object;
} else if (vop->varp()->vltype() == VLVT_WDATA) {
const int words = VL_WORDS_I(vop->varp()->packed().elements());
WDataOutP datap = (reinterpret_cast<EData*>(vop->varDatap()));
for (int i = 0; i < words; ++i) {
datap[i] = valuep->value.vector[i].aval;
if (i == (words - 1)) datap[i] &= vop->mask();
}
return object;
}
} else if (valuep->format == vpiBinStrVal) {
const int bits = vop->varp()->packed().elements();
const int len = std::strlen(valuep->value.str);
CData* const datap = (reinterpret_cast<CData*>(vop->varDatap()));
for (int i = 0; i < bits; ++i) {
const char set = (i < len) ? (valuep->value.str[len - i - 1] == '1') : 0;
// zero bits 7:1 of byte when assigning to bit 0, else
// or in 1 if bit set
if (i & 7) {
datap[i >> 3] |= set << (i & 7);
} else {
datap[i >> 3] = set;
}
}
return object;
} else if (valuep->format == vpiOctStrVal) {
const int chars = (vop->varp()->packed().elements() + 2) / 3;
const int bytes = VL_BYTES_I(vop->varp()->packed().elements());
const int len = std::strlen(valuep->value.str);
CData* const datap = (reinterpret_cast<CData*>(vop->varDatap()));
div_t idx;
datap[0] = 0; // reset zero'th byte
for (int i = 0; i < chars; ++i) {
union {
char byte[2];
uint16_t half;
} val;
idx = div(i * 3, 8);
if (i < len) {
// ignore illegal chars
const char digit = valuep->value.str[len - i - 1];
if (digit >= '0' && digit <= '7') {
val.half = digit - '0';
} else {
VL_VPI_WARNING_(__FILE__, __LINE__,
"%s: Non octal character '%c' in '%s' as value %s for %s",
__func__, digit, valuep->value.str,
VerilatedVpiError::strFromVpiVal(valuep->format),
vop->fullname());
val.half = 0;
}
} else {
val.half = 0;
}
// align octal character to position within vector, note that
// the three bits may straddle a byte boundary so two byte wide
// assignments are made to adjacent bytes - but not if the least
// significant byte of the aligned value is the most significant
// byte of the destination.
val.half <<= idx.rem;
datap[idx.quot] |= val.byte[0]; // or in value
if ((idx.quot + 1) < bytes) {
datap[idx.quot + 1] = val.byte[1]; // this also resets
// all bits to 0 prior to or'ing above
}
}
// mask off non-existent bits in the most significant byte
if (idx.quot == (bytes - 1)) {
datap[idx.quot] &= vop->mask_byte(idx.quot);
} else if (idx.quot + 1 == (bytes - 1)) {
datap[idx.quot + 1] &= vop->mask_byte(idx.quot + 1);
}
// zero off remaining top bytes
for (int i = idx.quot + 2; i < bytes; ++i) datap[i] = 0;
return object;
} else if (valuep->format == vpiDecStrVal) {
char remainder[16];
unsigned long long val;
const int success = std::sscanf(valuep->value.str, "%30llu%15s", &val, remainder);
if (success < 1) {
VL_VPI_ERROR_(__FILE__, __LINE__, "%s: Parsing failed for '%s' as value %s for %s",
__func__, valuep->value.str,
VerilatedVpiError::strFromVpiVal(valuep->format), vop->fullname());
return nullptr;
}
if (success > 1) {
VL_VPI_WARNING_(__FILE__, __LINE__,
"%s: Trailing garbage '%s' in '%s' as value %s for %s", __func__,
remainder, valuep->value.str,
VerilatedVpiError::strFromVpiVal(valuep->format), vop->fullname());
}
if (vop->varp()->vltype() == VLVT_UINT8) {
*(reinterpret_cast<CData*>(vop->varDatap())) = val & vop->mask();
return object;
} else if (vop->varp()->vltype() == VLVT_UINT16) {
*(reinterpret_cast<SData*>(vop->varDatap())) = val & vop->mask();
return object;
} else if (vop->varp()->vltype() == VLVT_UINT32) {
*(reinterpret_cast<IData*>(vop->varDatap())) = val & vop->mask();
return object;
} else if (vop->varp()->vltype() == VLVT_UINT64) {
*(reinterpret_cast<QData*>(vop->varDatap())) = val;
(reinterpret_cast<IData*>(vop->varDatap()))[1] &= vop->mask();
return object;
}
} else if (valuep->format == vpiHexStrVal) {
const int chars = (vop->varp()->packed().elements() + 3) >> 2;
CData* const datap = (reinterpret_cast<CData*>(vop->varDatap()));
const char* val = valuep->value.str;
// skip hex ident if one is detected at the start of the string
if (val[0] == '0' && (val[1] == 'x' || val[1] == 'X')) val += 2;
const int len = std::strlen(val);
for (int i = 0; i < chars; ++i) {
char hex;
// compute hex digit value
if (i < len) {
const char digit = val[len - i - 1];
if (digit >= '0' && digit <= '9') {
hex = digit - '0';
} else if (digit >= 'a' && digit <= 'f') {
hex = digit - 'a' + 10;
} else if (digit >= 'A' && digit <= 'F') {
hex = digit - 'A' + 10;
} else {
VL_VPI_WARNING_(__FILE__, __LINE__,
"%s: Non hex character '%c' in '%s' as value %s for %s",
__func__, digit, valuep->value.str,
VerilatedVpiError::strFromVpiVal(valuep->format),
vop->fullname());
hex = 0;
}
} else {
hex = 0;
}
// assign hex digit value to destination
if (i & 1) {
datap[i >> 1] |= hex << 4;
} else {
datap[i >> 1] = hex; // this also resets all
// bits to 0 prior to or'ing above of the msb
}
}
// apply bit mask to most significant byte
datap[(chars - 1) >> 1] &= vop->mask_byte((chars - 1) >> 1);
return object;
} else if (valuep->format == vpiStringVal) {
const int bytes = VL_BYTES_I(vop->varp()->packed().elements());
const int len = std::strlen(valuep->value.str);
CData* const datap = (reinterpret_cast<CData*>(vop->varDatap()));
for (int i = 0; i < bytes; ++i) {
// prepend with 0 values before placing string the least significant bytes
datap[i] = (i < len) ? valuep->value.str[len - i - 1] : 0;
}
return object;
} else if (valuep->format == vpiIntVal) {
if (vop->varp()->vltype() == VLVT_UINT8) {
*(reinterpret_cast<CData*>(vop->varDatap())) = vop->mask() & valuep->value.integer;
return object;
} else if (vop->varp()->vltype() == VLVT_UINT16) {
*(reinterpret_cast<SData*>(vop->varDatap())) = vop->mask() & valuep->value.integer;
return object;
} else if (vop->varp()->vltype() == VLVT_UINT32) {
*(reinterpret_cast<IData*>(vop->varDatap())) = vop->mask() & valuep->value.integer;
return object;
}
}
VL_VPI_ERROR_(__FILE__, __LINE__, "%s: Unsupported format (%s) as requested for %s",
__func__, VerilatedVpiError::strFromVpiVal(valuep->format), vop->fullname());
return nullptr;
} else if (const VerilatedVpioParam* const vop = VerilatedVpioParam::castp(object)) {
VL_VPI_WARNING_(__FILE__, __LINE__, "%s: Ignoring vpi_put_value to vpiParameter: %s",
__func__, vop->fullname());
return nullptr;
} else if (const VerilatedVpioConst* const vop = VerilatedVpioConst::castp(object)) {
VL_VPI_WARNING_(__FILE__, __LINE__, "%s: Ignoring vpi_put_value to vpiConstant: %s",
__func__, vop->fullname());
return nullptr;
}
VL_VPI_ERROR_(__FILE__, __LINE__, "%s: Unsupported vpiHandle (%p)", __func__, object);
return nullptr;
}
void vpi_get_value_array(vpiHandle /*object*/, p_vpi_arrayvalue /*arrayvalue_p*/,
PLI_INT32* /*index_p*/, PLI_UINT32 /*num*/) {
VL_VPI_UNIMP_();
}
void vpi_put_value_array(vpiHandle /*object*/, p_vpi_arrayvalue /*arrayvalue_p*/,
PLI_INT32* /*index_p*/, PLI_UINT32 /*num*/) {
VL_VPI_UNIMP_();
}
// time processing
void vpi_get_time(vpiHandle object, p_vpi_time time_p) {
VerilatedVpiImp::assertOneCheck();
VL_VPI_ERROR_RESET_();
2017-11-23 15:43:34 +00:00
// cppcheck-suppress nullPointer
if (VL_UNLIKELY(!time_p)) {
VL_VPI_WARNING_(__FILE__, __LINE__, "Ignoring vpi_get_time with nullptr value pointer");
return;
}
if (time_p->type == vpiSimTime) {
const QData qtime = VL_TIME_Q();
VlWide<2> itime;
VL_SET_WQ(itime, qtime);
time_p->low = itime[0];
time_p->high = itime[1];
return;
} else if (time_p->type == vpiScaledRealTime) {
double dtime = VL_TIME_D();
if (const VerilatedVpioScope* const vop = VerilatedVpioScope::castp(object)) {
const int scalePow10
= Verilated::threadContextp()->timeprecision() - vop->scopep()->timeunit();
const double scale = vl_time_multiplier(scalePow10); // e.g. 0.0001
dtime *= scale;
}
time_p->real = dtime;
return;
}
VL_VPI_ERROR_(__FILE__, __LINE__, "%s: Unsupported type (%d)", __func__, time_p->type);
}
// I/O routines
PLI_UINT32 vpi_mcd_open(PLI_BYTE8* filenamep) {
VerilatedVpiImp::assertOneCheck();
VL_VPI_ERROR_RESET_();
return VL_FOPEN_NN(filenamep, "wb");
}
PLI_UINT32 vpi_mcd_close(PLI_UINT32 mcd) {
VerilatedVpiImp::assertOneCheck();
VL_VPI_ERROR_RESET_();
VL_FCLOSE_I(mcd);
return 0;
}
PLI_BYTE8* vpi_mcd_name(PLI_UINT32 /*mcd*/) {
VL_VPI_UNIMP_();
return nullptr;
}
PLI_INT32 vpi_mcd_printf(PLI_UINT32 mcd, PLI_BYTE8* formatp, ...) {
VerilatedVpiImp::assertOneCheck();
VL_VPI_ERROR_RESET_();
va_list ap;
va_start(ap, formatp);
const int chars = vpi_mcd_vprintf(mcd, formatp, ap);
va_end(ap);
return chars;
}
PLI_INT32 vpi_printf(PLI_BYTE8* formatp, ...) {
VerilatedVpiImp::assertOneCheck();
VL_VPI_ERROR_RESET_();
va_list ap;
va_start(ap, formatp);
const int chars = vpi_vprintf(formatp, ap);
va_end(ap);
return chars;
}
PLI_INT32 vpi_vprintf(PLI_BYTE8* formatp, va_list ap) {
VerilatedVpiImp::assertOneCheck();
VL_VPI_ERROR_RESET_();
return VL_VPRINTF(formatp, ap);
}
PLI_INT32 vpi_mcd_vprintf(PLI_UINT32 mcd, PLI_BYTE8* format, va_list ap) {
VerilatedVpiImp::assertOneCheck();
FILE* const fp = VL_CVT_I_FP(mcd);
VL_VPI_ERROR_RESET_();
2015-10-04 02:33:06 +00:00
// cppcheck-suppress nullPointer
if (VL_UNLIKELY(!fp)) return 0;
const int chars = vfprintf(fp, format, ap);
return chars;
}
PLI_INT32 vpi_flush(void) {
VerilatedVpiImp::assertOneCheck();
VL_VPI_ERROR_RESET_();
Verilated::runFlushCallbacks();
return 0; // Gcc coverage bug // LCOV_EXCL_LINE
}
PLI_INT32 vpi_mcd_flush(PLI_UINT32 mcd) {
VerilatedVpiImp::assertOneCheck();
FILE* const fp = VL_CVT_I_FP(mcd);
VL_VPI_ERROR_RESET_();
if (VL_UNLIKELY(!fp)) return 1;
std::fflush(fp);
return 0;
}
// utility routines
PLI_INT32 vpi_compare_objects(vpiHandle /*object1*/, vpiHandle /*object2*/) {
VL_VPI_UNIMP_();
return 0;
}
PLI_INT32 vpi_chk_error(p_vpi_error_info error_info_p) {
// executing vpi_chk_error does not reset error
// error_info_p can be nullptr, so only return level in that case
VerilatedVpiImp::assertOneCheck();
p_vpi_error_info const _error_info_p = VerilatedVpiImp::error_info()->getError();
if (error_info_p && _error_info_p) *error_info_p = *_error_info_p;
if (!_error_info_p) return 0; // no error occurred
return _error_info_p->level; // return error severity level
}
#ifndef VL_NO_LEGACY
PLI_INT32 vpi_free_object(vpiHandle object) {
// vpi_free_object is IEEE deprecated, use vpi_release_handle
return vpi_release_handle(object);
}
#endif
PLI_INT32 vpi_release_handle(vpiHandle object) {
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_release_handle %p\n", object););
VerilatedVpiImp::assertOneCheck();
VerilatedVpio* const vop = VerilatedVpio::castp(object);
VL_VPI_ERROR_RESET_();
if (VL_UNLIKELY(!vop)) return 0;
VL_DO_DANGLING(delete vop, vop);
return 1;
}
PLI_INT32 vpi_get_vlog_info(p_vpi_vlog_info vlog_info_p) {
// This is VL_MT_SAFE, but not marked as can't indicate it in the standardized header file
VerilatedVpiImp::assertOneCheck();
VL_VPI_ERROR_RESET_();
const auto argc_argv = Verilated::threadContextp()->impp()->argc_argv();
vlog_info_p->argc = argc_argv.first;
vlog_info_p->argv = argc_argv.second;
vlog_info_p->product = const_cast<PLI_BYTE8*>(Verilated::productName());
vlog_info_p->version = const_cast<PLI_BYTE8*>(Verilated::productVersion());
return 1;
}
// routines added with 1364-2001
PLI_INT32 vpi_get_data(PLI_INT32 /*id*/, PLI_BYTE8* /*dataLoc*/, PLI_INT32 /*numOfBytes*/) {
VL_VPI_UNIMP_();
return 0;
}
PLI_INT32 vpi_put_data(PLI_INT32 /*id*/, PLI_BYTE8* /*dataLoc*/, PLI_INT32 /*numOfBytes*/) {
VL_VPI_UNIMP_();
return 0;
}
void* vpi_get_userdata(vpiHandle /*obj*/) {
VL_VPI_UNIMP_();
return nullptr;
}
PLI_INT32 vpi_put_userdata(vpiHandle /*obj*/, void* /*userdata*/) {
VL_VPI_UNIMP_();
return 0;
}
PLI_INT32 vpi_control(PLI_INT32 operation, ...) {
VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_control %d\n", operation););
VerilatedVpiImp::assertOneCheck();
VL_VPI_ERROR_RESET_();
switch (operation) {
case vpiFinish: {
2020-05-16 22:02:54 +00:00
VL_FINISH_MT("", 0, "*VPI*");
return 1;
}
case vpiStop: {
2020-05-16 22:02:54 +00:00
VL_STOP_MT("", 0, "*VPI*");
return 1; // LCOV_EXCL_LINE
}
2020-06-02 03:16:02 +00:00
default: {
VL_VPI_WARNING_(__FILE__, __LINE__, "%s: Unsupported type %s, ignoring", __func__,
2020-06-02 03:16:02 +00:00
VerilatedVpiError::strFromVpiProp(operation));
return 0;
}
}
}
vpiHandle vpi_handle_by_multi_index(vpiHandle /*obj*/, PLI_INT32 /*num_index*/,
PLI_INT32* /*index_array*/) {
VL_VPI_UNIMP_();
return nullptr;
}