verilator/include/verilated_vpi.cpp

1406 lines
47 KiB
C++
Raw Normal View History

// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
//
2017-01-15 17:09:59 +00:00
// Copyright 2009-2017 by Wilson Snyder. This program is free software; you can
// redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License.
// Version 2.0.
//
// Verilator is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
//=========================================================================
///
/// \file
/// \brief Verilator: VPI implementation code
///
/// This file must be compiled and linked against all objects
/// created from Verilator or called by Verilator that use the VPI.
///
/// Use "verilator --vpi" to add this to the Makefile for the linker.
///
/// Code available from: http://www.veripool.org/verilator
///
//=========================================================================
#if VM_SC
# include "verilated_sc.h"
#endif
#include "verilated.h"
#include "verilated_vpi.h"
//======================================================================
VerilatedVpi VerilatedVpi::s_s; // Singleton
vluint8_t* VerilatedVpio::s_freeHead = NULL;
//======================================================================
// VerilatedVpi Methods
VerilatedVpiError* VerilatedVpi::error_info() {
if (s_s.m_errorInfop == NULL) {
s_s.m_errorInfop = new VerilatedVpiError();
}
return s_s.m_errorInfop;
}
//======================================================================
// VerilatedVpiError Methods
const char* VerilatedVpiError::strFromVpiVal(PLI_INT32 vpiVal) {
static const char *names[] = {
"*undefined*",
"vpiBinStrVal",
"vpiOctStrVal",
"vpiDecStrVal",
"vpiHexStrVal",
"vpiScalarVal",
"vpiIntVal",
"vpiRealVal",
"vpiStringVal",
"vpiVectorVal",
"vpiStrengthVal",
"vpiTimeVal",
"vpiObjTypeVal",
"vpiSuppressVal",
"vpiShortIntVal",
"vpiLongIntVal",
"vpiShortRealVal",
"vpiRawTwoStateVal",
"vpiRawFourStateVal",
};
if (vpiVal < 0) return names[0];
return names[(vpiVal<=vpiRawFourStateVal)?vpiVal:0];
}
const char* VerilatedVpiError::strFromVpiObjType(PLI_INT32 vpiVal) {
static const char *names[] = {
"*undefined*",
"vpiAlways",
"vpiAssignStmt",
"vpiAssignment",
"vpiBegin",
"vpiCase",
"vpiCaseItem",
"vpiConstant",
"vpiContAssign",
"vpiDeassign",
"vpiDefParam",
"vpiDelayControl",
"vpiDisable",
"vpiEventControl",
"vpiEventStmt",
"vpiFor",
"vpiForce",
"vpiForever",
"vpiFork",
"vpiFuncCall",
"vpiFunction",
"vpiGate",
"vpiIf",
"vpiIfElse",
"vpiInitial",
"vpiIntegerVar",
"vpiInterModPath",
"vpiIterator",
"vpiIODecl",
"vpiMemory",
"vpiMemoryWord",
"vpiModPath",
"vpiModule",
"vpiNamedBegin",
"vpiNamedEvent",
"vpiNamedFork",
"vpiNet",
"vpiNetBit",
"vpiNullStmt",
"vpiOperation",
"vpiParamAssign",
"vpiParameter",
"vpiPartSelect",
"vpiPathTerm",
"vpiPort",
"vpiPortBit",
"vpiPrimTerm",
"vpiRealVar",
"vpiReg",
"vpiRegBit",
"vpiRelease",
"vpiRepeat",
"vpiRepeatControl",
"vpiSchedEvent",
"vpiSpecParam",
"vpiSwitch",
"vpiSysFuncCall",
"vpiSysTaskCall",
"vpiTableEntry",
"vpiTask",
"vpiTaskCall",
"vpiTchk",
"vpiTchkTerm",
"vpiTimeVar",
"vpiTimeQueue",
"vpiUdp",
"vpiUdpDefn",
"vpiUserSystf",
"vpiVarSelect",
"vpiWait",
"vpiWhile",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"vpiAttribute",
"vpiBitSelect",
"vpiCallback",
"vpiDelayTerm",
"vpiDelayDevice",
"vpiFrame",
"vpiGateArray",
"vpiModuleArray",
"vpiPrimitiveArray",
"vpiNetArray",
"vpiRange",
"vpiRegArray",
"vpiSwitchArray",
"vpiUdpArray",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"*undefined*",
"vpiContAssignBit",
"vpiNamedEventArray",
"vpiIndexedPartSelect",
"*undefined*",
"*undefined*",
"vpiGenScopeArray",
"vpiGenScope",
"vpiGenVar"
};
if (vpiVal < 0) return names[0];
return names[(vpiVal<=vpiGenVar)?vpiVal:0];
}
const char* VerilatedVpiError::strFromVpiMethod(PLI_INT32 vpiVal) {
static const char *names[] = {
"vpiCondition",
"vpiDelay",
"vpiElseStmt",
"vpiForIncStmt",
"vpiForInitStmt",
"vpiHighConn",
"vpiLhs",
"vpiIndex",
"vpiLeftRange",
"vpiLowConn",
"vpiParent",
"vpiRhs",
"vpiRightRange",
"vpiScope",
"vpiSysTfCall",
"vpiTchkDataTerm",
"vpiTchkNotifier",
"vpiTchkRefTerm",
"vpiArgument",
"vpiBit",
"vpiDriver",
"vpiInternalScope",
"vpiLoad",
"vpiModDataPathIn",
"vpiModPathIn",
"vpiModPathOut",
"vpiOperand",
"vpiPortInst",
"vpiProcess",
"vpiVariables",
"vpiUse",
"vpiExpr",
"vpiPrimitive",
"vpiStmt"
};
if (vpiVal>vpiStmt || vpiVal<vpiCondition) {
return "*undefined*";
}
return names[vpiVal-vpiCondition];
}
const char* VerilatedVpiError::strFromVpiCallbackReason(PLI_INT32 vpiVal) {
static const char *names[] = {
"*undefined*",
"cbValueChange",
"cbStmt",
"cbForce",
"cbRelease",
"cbAtStartOfSimTime",
"cbReadWriteSynch",
"cbReadOnlySynch",
"cbNextSimTime",
"cbAfterDelay",
"cbEndOfCompile",
"cbStartOfSimulation",
"cbEndOfSimulation",
"cbError",
"cbTchkViolation",
"cbStartOfSave",
"cbEndOfSave",
"cbStartOfRestart",
"cbEndOfRestart",
"cbStartOfReset",
"cbEndOfReset",
"cbEnterInteractive",
"cbExitInteractive",
"cbInteractiveScopeChange",
"cbUnresolvedSystf",
"cbAssign",
"cbDeassign",
"cbDisable",
"cbPLIError",
"cbSignal",
"cbNBASynch",
"cbAtEndOfSimTime"
};
if (vpiVal < 0) return names[0];
return names[(vpiVal<=cbAtEndOfSimTime)?vpiVal:0];
}
const char* VerilatedVpiError::strFromVpiProp(PLI_INT32 vpiVal) {
static const char *names[] = {
"*undefined or other*",
"vpiType",
"vpiName",
"vpiFullName",
"vpiSize",
"vpiFile",
"vpiLineNo",
"vpiTopModule",
"vpiCellInstance",
"vpiDefName",
"vpiProtected",
"vpiTimeUnit",
"vpiTimePrecision",
"vpiDefNetType",
"vpiUnconnDrive",
"vpiDefFile",
"vpiDefLineNo",
"vpiScalar",
"vpiVector",
"vpiExplicitName",
"vpiDirection",
"vpiConnByName",
"vpiNetType",
"vpiExplicitScalared",
"vpiExplicitVectored",
"vpiExpanded",
"vpiImplicitDecl",
"vpiChargeStrength",
"vpiArray",
"vpiPortIndex",
"vpiTermIndex",
"vpiStrength0",
"vpiStrength1",
"vpiPrimType",
"vpiPolarity",
"vpiDataPolarity",
"vpiEdge",
"vpiPathType",
"vpiTchkType",
"vpiOpType",
"vpiConstType",
"vpiBlocking",
"vpiCaseType",
"vpiFuncType",
"vpiNetDeclAssign",
"vpiUserDefn",
"vpiScheduled",
"*undefined*",
"*undefined*",
"vpiActive",
"vpiAutomatic",
"vpiCell",
"vpiConfig",
"vpiConstantSelect",
"vpiDecompile",
"vpiDefAttribute",
"vpiDelayType",
"vpiIteratorType",
"vpiLibrary",
"*undefined*",
"vpiOffset",
"vpiResolvedNetType",
"vpiSaveRestartID",
"vpiSaveRestartLocation",
"vpiValid",
"vpiSigned",
"vpiStop",
"vpiFinish",
"vpiReset",
"vpiSetInteractiveScope",
"vpiLocalParam",
"vpiModPathHasIfNone",
"vpiIndexedPartSelectType",
"vpiIsMemory",
"vpiIsProtected"
};
if (vpiVal == vpiUndefined) {
return "vpiUndefined";
}
return names[(vpiVal<=vpiIsProtected)?vpiVal:0];
}
#define CHECK_RESULT_CSTR(got, exp) \
if (strcmp((got),(exp))) { \
string msg = string("%Error: ") \
+ "GOT = '"+((got)?(got):"<null>")+"'" \
+ " EXP = '"+((exp)?(exp):"<null>")+"'"; \
vl_fatal(__FILE__,__LINE__,"",msg.c_str()); \
}
#define CHECK_ENUM_STR(fn, enum) \
do { \
const char* strVal = VerilatedVpiError::fn(enum); \
CHECK_RESULT_CSTR(strVal, #enum); \
} while (0)
void VerilatedVpiError::selfTest() {
CHECK_ENUM_STR(strFromVpiVal, vpiBinStrVal);
CHECK_ENUM_STR(strFromVpiVal, vpiRawFourStateVal);
CHECK_ENUM_STR(strFromVpiObjType, vpiAlways);
CHECK_ENUM_STR(strFromVpiObjType, vpiWhile);
CHECK_ENUM_STR(strFromVpiObjType, vpiAttribute);
CHECK_ENUM_STR(strFromVpiObjType, vpiUdpArray);
CHECK_ENUM_STR(strFromVpiObjType, vpiContAssignBit);
CHECK_ENUM_STR(strFromVpiObjType, vpiGenVar);
CHECK_ENUM_STR(strFromVpiMethod, vpiCondition);
CHECK_ENUM_STR(strFromVpiMethod, vpiStmt);
CHECK_ENUM_STR(strFromVpiCallbackReason, cbValueChange);
CHECK_ENUM_STR(strFromVpiCallbackReason, cbAtEndOfSimTime);
CHECK_ENUM_STR(strFromVpiProp, vpiType);
CHECK_ENUM_STR(strFromVpiProp, vpiProtected);
CHECK_ENUM_STR(strFromVpiProp, vpiDirection);
CHECK_ENUM_STR(strFromVpiProp, vpiTermIndex);
CHECK_ENUM_STR(strFromVpiProp, vpiConstType);
CHECK_ENUM_STR(strFromVpiProp, vpiAutomatic);
CHECK_ENUM_STR(strFromVpiProp, vpiOffset);
CHECK_ENUM_STR(strFromVpiProp, vpiStop);
CHECK_ENUM_STR(strFromVpiProp, vpiIsProtected);
}
#undef CHECK_ENUM_STR
#undef CHECK_RESULT_CSTR
//======================================================================
// callback related
vpiHandle vpi_register_cb(p_cb_data cb_data_p) {
_VL_VPI_ERROR_RESET(); // reset vpi error status
2015-10-04 02:33:06 +00:00
// cppcheck-suppress nullPointer
if (VL_UNLIKELY(!cb_data_p)) {
_VL_VPI_WARNING(__FILE__, __LINE__, "%s : callback data pointer is null", VL_FUNC);
return NULL;
}
switch (cb_data_p->reason) {
case cbAfterDelay: {
QData time = 0;
if (cb_data_p->time) time = _VL_SET_QII(cb_data_p->time->high, cb_data_p->time->low);
VerilatedVpioCb* vop = new VerilatedVpioCb(cb_data_p, VL_TIME_Q()+time);
2015-10-04 02:33:06 +00:00
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_register_cb %d %p delay=%" VL_PRI64 "u\n",cb_data_p->reason,vop,time););
VerilatedVpi::cbTimedAdd(vop);
return vop->castVpiHandle();
}
case cbReadWriteSynch: // FALLTHRU // Supported via vlt_main.cpp
case cbReadOnlySynch: // FALLTHRU // Supported via vlt_main.cpp
case cbNextSimTime: // FALLTHRU // Supported via vlt_main.cpp
case cbStartOfSimulation: // FALLTHRU // Supported via vlt_main.cpp
case cbEndOfSimulation: // FALLTHRU // Supported via vlt_main.cpp
case cbValueChange: // FALLTHRU // Supported via vlt_main.cpp
case cbPLIError: // FALLTHRU // NOP, but need to return handle, so make object
case cbEnterInteractive: // FALLTHRU // NOP, but need to return handle, so make object
case cbExitInteractive: // FALLTHRU // NOP, but need to return handle, so make object
case cbInteractiveScopeChange: { // FALLTHRU // NOP, but need to return handle, so make object
VerilatedVpioCb* vop = new VerilatedVpioCb(cb_data_p, 0);
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_register_cb %d %p\n",cb_data_p->reason,vop););
VerilatedVpi::cbReasonAdd(vop);
return vop->castVpiHandle();
}
default:
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: Unsupported callback type %s",
VL_FUNC, VerilatedVpiError::strFromVpiCallbackReason(cb_data_p->reason));
return NULL;
};
}
PLI_INT32 vpi_remove_cb(vpiHandle object) {
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_remove_cb %p\n",object););
VerilatedVpioCb* vop = VerilatedVpioCb::castp(object);
_VL_VPI_ERROR_RESET(); // reset vpi error status
if (VL_UNLIKELY(!vop)) return 0;
if (vop->cb_datap()->reason == cbAfterDelay) {
VerilatedVpi::cbTimedRemove(vop);
} else {
VerilatedVpi::cbReasonRemove(vop);
}
return 1;
}
void vpi_get_cb_info(vpiHandle object, p_cb_data cb_data_p) {
_VL_VPI_UNIMP(); return;
}
vpiHandle vpi_register_systf(p_vpi_systf_data systf_data_p) {
_VL_VPI_UNIMP(); return 0;
}
void vpi_get_systf_info(vpiHandle object, p_vpi_systf_data systf_data_p) {
_VL_VPI_UNIMP(); return;
}
// for obtaining handles
vpiHandle vpi_handle_by_name(PLI_BYTE8* namep, vpiHandle scope) {
_VL_VPI_ERROR_RESET(); // reset vpi error status
if (VL_UNLIKELY(!namep)) return NULL;
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_handle_by_name %s %p\n",namep,scope););
VerilatedVpioScope* voScopep = VerilatedVpioScope::castp(scope);
const VerilatedVar* varp;
const VerilatedScope* scopep;
string scopeAndName = namep;
if (voScopep) {
scopeAndName = string(voScopep->fullname()) + "." + namep;
namep = (PLI_BYTE8*)scopeAndName.c_str();
}
{
// This doesn't yet follow the hierarchy in the proper way
scopep = Verilated::scopeFind(namep);
if (scopep) { // Whole thing found as a scope
return (new VerilatedVpioScope(scopep))->castVpiHandle();
}
const char* baseNamep = scopeAndName.c_str();
string scopename;
const char* dotp = strrchr(namep, '.');
if (VL_LIKELY(dotp)) {
baseNamep = dotp+1;
scopename = string(namep,dotp-namep);
}
scopep = Verilated::scopeFind(scopename.c_str());
if (!scopep) return NULL;
varp = scopep->varFind(baseNamep);
}
if (!varp) return NULL;
return (new VerilatedVpioVar(varp, scopep))->castVpiHandle();
}
vpiHandle vpi_handle_by_index(vpiHandle object, PLI_INT32 indx) {
// Used to get array entries
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_handle_by_index %p %d\n",object, indx););
VerilatedVpioVar* varop = VerilatedVpioVar::castp(object);
_VL_VPI_ERROR_RESET(); // reset vpi error status
if (VL_LIKELY(varop)) {
if (varop->varp()->dims()<2) return 0;
if (VL_LIKELY(varop->varp()->array().left() >= varop->varp()->array().right())) {
if (VL_UNLIKELY(indx > varop->varp()->array().left() || indx < varop->varp()->array().right())) return 0;
return (new VerilatedVpioMemoryWord(varop->varp(), varop->scopep(), indx,
indx - varop->varp()->array().right()))
->castVpiHandle();
} else {
if (VL_UNLIKELY(indx < varop->varp()->array().left() || indx > varop->varp()->array().right())) return 0;
return (new VerilatedVpioMemoryWord(varop->varp(), varop->scopep(), indx,
indx - varop->varp()->array().left()))
->castVpiHandle();
}
} else {
_VL_VPI_INTERNAL(__FILE__, __LINE__, "%s : can't resolve handle", VL_FUNC);
return 0;
}
}
// for traversing relationships
vpiHandle vpi_handle(PLI_INT32 type, vpiHandle object) {
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_handle %d %p\n",type,object););
_VL_VPI_ERROR_RESET(); // reset vpi error status
switch (type) {
case vpiLeftRange: {
VerilatedVpioVar* vop = VerilatedVpioVar::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
if (VL_UNLIKELY(!vop->rangep())) return 0;
return (new VerilatedVpioConst(vop->rangep()->left()))->castVpiHandle();
}
case vpiRightRange: {
VerilatedVpioVar* vop = VerilatedVpioVar::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
if (VL_UNLIKELY(!vop->rangep())) return 0;
return (new VerilatedVpioConst(vop->rangep()->right()))->castVpiHandle();
}
case vpiIndex: {
VerilatedVpioVar* vop = VerilatedVpioVar::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
return (new VerilatedVpioConst(vop->index()))->castVpiHandle();
}
case vpiScope: {
VerilatedVpioVar* vop = VerilatedVpioVar::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
return (new VerilatedVpioScope(vop->scopep()))->castVpiHandle();
}
case vpiParent: {
VerilatedVpioMemoryWord* vop = VerilatedVpioMemoryWord::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
return (new VerilatedVpioVar(vop->varp(), vop->scopep()))->castVpiHandle();
}
default:
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: Unsupported type %s, nothing will be returned",
VL_FUNC, VerilatedVpiError::strFromVpiMethod(type));
return 0;
}
}
vpiHandle vpi_handle_multi(PLI_INT32 type, vpiHandle refHandle1, vpiHandle refHandle2, ... ) {
_VL_VPI_UNIMP(); return 0;
}
vpiHandle vpi_iterate(PLI_INT32 type, vpiHandle object) {
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_iterate %d %p\n",type,object););
_VL_VPI_ERROR_RESET(); // reset vpi error status
switch (type) {
case vpiMemoryWord: {
VerilatedVpioVar* vop = VerilatedVpioVar::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
if (vop->varp()->dims() < 2) return 0;
if (vop->varp()->dims() > 2) {
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: %s, object %s has unsupported number of indices (%d)",
VL_FUNC, VerilatedVpiError::strFromVpiMethod(type), vop->fullname() , vop->varp()->dims());
}
return (new VerilatedVpioMemoryWordIter(object, vop->varp()))->castVpiHandle();
}
case vpiRange: {
VerilatedVpioVar* vop = VerilatedVpioVar::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
if (vop->varp()->dims() < 2) return 0;
// Unsupported is multidim list
if (vop->varp()->dims() > 2) {
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: %s, object %s has unsupported number of indices (%d)",
VL_FUNC, VerilatedVpiError::strFromVpiMethod(type), vop->fullname() , vop->varp()->dims());
}
return ((new VerilatedVpioRange(vop->rangep()))->castVpiHandle());
}
case vpiReg: {
VerilatedVpioScope* vop = VerilatedVpioScope::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
return ((new VerilatedVpioVarIter(vop->scopep()))
->castVpiHandle());
}
default:
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: Unsupported type %s, nothing will be returned",
VL_FUNC, VerilatedVpiError::strFromVpiObjType(type));
return 0;
}
}
vpiHandle vpi_scan(vpiHandle object) {
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_scan %p\n",object););
_VL_VPI_ERROR_RESET(); // reset vpi error status
VerilatedVpio* vop = VerilatedVpio::castp(object);
if (VL_UNLIKELY(!vop)) return NULL;
return vop->dovpi_scan();
}
// for processing properties
PLI_INT32 vpi_get(PLI_INT32 property, vpiHandle object) {
// Leave this in the header file - in many cases the compiler can constant propagate "object"
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_get %d %p\n",property,object););
_VL_VPI_ERROR_RESET(); // reset vpi error status
switch (property) {
case vpiTimePrecision: {
return VL_TIME_PRECISION;
}
case vpiType: {
VerilatedVpio* vop = VerilatedVpioVar::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
return vop->type();
}
case vpiDirection: {
// By forthought, the directions already are vpi enumerated
VerilatedVpioVar* vop = VerilatedVpioVar::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
return vop->varp()->vldir();
}
case vpiScalar: // FALLTHRU
case vpiVector: {
VerilatedVpioVar* vop = VerilatedVpioVar::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
return (property==vpiVector)^(vop->varp()->dims()==0);
}
case vpiSize: {
VerilatedVpioVar* vop = VerilatedVpioVar::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
return vop->size();
}
default:
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: Unsupported type %s, nothing will be returned",
VL_FUNC, VerilatedVpiError::strFromVpiProp(property));
return 0;
}
}
PLI_INT64 vpi_get64(PLI_INT32 property, vpiHandle object) {
_VL_VPI_UNIMP();
return 0;
}
PLI_BYTE8 *vpi_get_str(PLI_INT32 property, vpiHandle object) {
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_get_str %d %p\n",property,object););
VerilatedVpio* vop = VerilatedVpio::castp(object);
_VL_VPI_ERROR_RESET(); // reset vpi error status
if (VL_UNLIKELY(!vop)) return NULL;
switch (property) {
case vpiName: {
return (PLI_BYTE8*)vop->name();
}
case vpiFullName: {
return (PLI_BYTE8*)vop->fullname();
}
case vpiDefName: {
return (PLI_BYTE8*)vop->defname();
}
default:
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: Unsupported type %s, nothing will be returned",
VL_FUNC, VerilatedVpiError::strFromVpiProp(property));
return 0;
}
}
// delay processing
void vpi_get_delays(vpiHandle object, p_vpi_delay delay_p) {
_VL_VPI_UNIMP();
return;
}
void vpi_put_delays(vpiHandle object, p_vpi_delay delay_p) {
_VL_VPI_UNIMP();
return;
}
// value processing
void vpi_get_value(vpiHandle object, p_vpi_value value_p) {
static VL_THREAD char outStr[1+VL_MULS_MAX_WORDS*32]; // Maximum required size is for binary string, one byte per bit plus null termination
// cppcheck-suppress variableScope
static VL_THREAD int outStrSz = sizeof(outStr)-1;
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_get_value %p\n",object););
_VL_VPI_ERROR_RESET(); // reset vpi error status
if (VL_UNLIKELY(!value_p)) return;
if (VerilatedVpioVar* vop = VerilatedVpioVar::castp(object)) {
// We used to presume vpiValue.format = vpiIntVal or if single bit vpiScalarVal
// This may cause backward compatability issues with older code.
if (value_p->format == vpiVectorVal) {
// Vector pointer must come from our memory pool
// It only needs to persist until the next vpi_get_value
static VL_THREAD t_vpi_vecval out[VL_MULS_MAX_WORDS*2];
value_p->value.vector = out;
switch (vop->varp()->vltype()) {
case VLVT_UINT8:
out[0].aval = *((CData*)(vop->varDatap()));
out[0].bval = 0;
return;
case VLVT_UINT16:
out[0].aval = *((SData*)(vop->varDatap()));
out[0].bval = 0;
return;
case VLVT_UINT32:
out[0].aval = *((IData*)(vop->varDatap()));
out[0].bval = 0;
return;
case VLVT_WDATA: {
int words = VL_WORDS_I(vop->varp()->range().elements());
if (VL_UNLIKELY(words >= VL_MULS_MAX_WORDS)) {
vl_fatal(__FILE__,__LINE__,"", "vpi_get_value with more than VL_MULS_MAX_WORDS; increase and recompile");
}
WDataInP datap = ((IData*)(vop->varDatap()));
for (int i=0; i<words; ++i) {
out[i].aval = datap[i];
out[i].bval = 0;
}
return;
}
case VLVT_UINT64: {
QData data = *((QData*)(vop->varDatap()));
out[1].aval = (IData)(data>>VL_ULL(32));
out[1].bval = 0;
out[0].aval = (IData)(data);
out[0].bval = 0;
return;
}
default: {
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
return;
}
}
} else if (value_p->format == vpiBinStrVal) {
value_p->value.str = outStr;
switch (vop->varp()->vltype()) {
case VLVT_UINT8 :
case VLVT_UINT16:
case VLVT_UINT32:
case VLVT_UINT64:
case VLVT_WDATA: {
int bits = vop->varp()->range().elements();
CData* datap = ((CData*)(vop->varDatap()));
int i;
if (bits > outStrSz) {
// limit maximum size of output to size of buffer to prevent overrun.
bits = outStrSz;
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: Truncating string value of %s for %s as buffer size (%d, VL_MULS_MAX_WORDS=%d) is less than required (%d)",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname(), outStrSz, VL_MULS_MAX_WORDS, bits);
}
for (i=0; i<bits; ++i) {
char val = (datap[i>>3]>>(i&7))&1;
outStr[bits-i-1] = val?'1':'0';
}
outStr[i]=0; // NULL terminate
return;
}
default:
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
return;
}
} else if (value_p->format == vpiOctStrVal) {
value_p->value.str = outStr;
switch (vop->varp()->vltype()) {
case VLVT_UINT8 :
case VLVT_UINT16:
case VLVT_UINT32:
case VLVT_UINT64:
case VLVT_WDATA: {
int chars = (vop->varp()->range().elements()+2)/3;
int bytes = VL_BYTES_I(vop->varp()->range().elements());
CData* datap = ((CData*)(vop->varDatap()));
int i;
if (chars > outStrSz) {
// limit maximum size of output to size of buffer to prevent overrun.
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: Truncating string value of %s for %s as buffer size (%d, VL_MULS_MAX_WORDS=%d) is less than required (%d)",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname(), outStrSz, VL_MULS_MAX_WORDS, chars);
chars = outStrSz;
}
for (i=0; i<chars; ++i) {
div_t idx = div(i*3, 8);
int val = datap[idx.quot];
if ((idx.quot+1)<bytes) {
// if the next byte is valid or that in
// for when the required 3 bits straddle adjacent bytes
val |= datap[idx.quot+1]<<8;
}
// align so least significant 3 bits represent octal char
val >>= idx.rem;
if (i==(chars-1)) {
// most signifcant char, mask off non existant bits when vector
// size is not a multiple of 3
unsigned int rem = vop->varp()->range().elements() % 3;
if (rem) {
// generate bit mask & zero non existant bits
val &= (1<<rem)-1;
}
}
outStr[chars-i-1] = '0' + (val&7);
}
outStr[i]=0; // NULL terminate
return;
}
default:
strcpy(outStr, "0");
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
return;
}
} else if (value_p->format == vpiDecStrVal) {
value_p->value.str = outStr;
switch (vop->varp()->vltype()) {
// outStrSz does not include NULL termination so add one
case VLVT_UINT8 : VL_SNPRINTF(outStr, outStrSz+1, "%hhu", (unsigned char )*((CData*)(vop->varDatap()))); return;
case VLVT_UINT16: VL_SNPRINTF(outStr, outStrSz+1, "%hu", (unsigned short)*((SData*)(vop->varDatap()))); return;
case VLVT_UINT32: VL_SNPRINTF(outStr, outStrSz+1, "%u", (unsigned int )*((IData*)(vop->varDatap()))); return;
case VLVT_UINT64: VL_SNPRINTF(outStr, outStrSz+1, "%llu", (unsigned long long)*((QData*)(vop->varDatap()))); return;
default:
strcpy(outStr, "-1");
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s, maximum limit is 64 bits",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
return;
}
} else if (value_p->format == vpiHexStrVal) {
value_p->value.str = outStr;
switch (vop->varp()->vltype()) {
case VLVT_UINT8 :
case VLVT_UINT16:
case VLVT_UINT32:
case VLVT_UINT64:
case VLVT_WDATA: {
int chars = (vop->varp()->range().elements()+3)>>2;
CData* datap = ((CData*)(vop->varDatap()));
int i;
if (chars > outStrSz) {
// limit maximum size of output to size of buffer to prevent overrun.
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: Truncating string value of %s for %s as buffer size (%d, VL_MULS_MAX_WORDS=%d) is less than required (%d)",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname(), outStrSz, VL_MULS_MAX_WORDS, chars);
chars = outStrSz;
}
for (i=0; i<chars; ++i) {
char val = (datap[i>>1]>>((i&1)<<2))&15;
static char hex[] = "0123456789abcdef";
if (i==(chars-1)) {
// most signifcant char, mask off non existant bits when vector
// size is not a multiple of 4
unsigned int rem = vop->varp()->range().elements() & 3;
if (rem) {
// generate bit mask & zero non existant bits
val &= (1<<rem)-1;
}
}
outStr[chars-i-1] = hex[static_cast<int>(val)];
}
outStr[i]=0; // NULL terminate
return;
}
default:
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
return;
}
} else if (value_p->format == vpiStringVal) {
value_p->value.str = outStr;
switch (vop->varp()->vltype()) {
case VLVT_UINT8 :
case VLVT_UINT16:
case VLVT_UINT32:
case VLVT_UINT64:
case VLVT_WDATA: {
int bytes = VL_BYTES_I(vop->varp()->range().elements());
CData* datap = ((CData*)(vop->varDatap()));
int i;
if (bytes > outStrSz) {
// limit maximum size of output to size of buffer to prevent overrun.
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: Truncating string value of %s for %s as buffer size (%d, VL_MULS_MAX_WORDS=%d) is less than required (%d)",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format),
vop->fullname(), outStrSz, VL_MULS_MAX_WORDS, bytes);
bytes = outStrSz;
}
for (i=0; i<bytes; ++i) {
char val = datap[bytes-i-1];
// other simulators replace [leading?] zero chars with spaces, replicate here.
outStr[i] = val?val:' ';
}
outStr[i]=0; // NULL terminate
return;
}
default:
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
return;
}
} else if (value_p->format == vpiIntVal) {
switch (vop->varp()->vltype()) {
case VLVT_UINT8:
value_p->value.integer = *((CData*)(vop->varDatap()));
return;
case VLVT_UINT16:
value_p->value.integer = *((SData*)(vop->varDatap()));
return;
case VLVT_UINT32:
value_p->value.integer = *((IData*)(vop->varDatap()));
return;
2017-07-06 23:49:34 +00:00
case VLVT_WDATA: // FALLTHRU
case VLVT_UINT64: // FALLTHRU
default:
2017-07-06 23:49:34 +00:00
value_p->value.integer = 0;
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
return;
}
} else if (value_p->format == vpiSuppressVal) {
return;
}
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) as requested for %s",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
return;
}
else if (VerilatedVpioConst* vop = VerilatedVpioConst::castp(object)) {
if (value_p->format == vpiIntVal) {
value_p->value.integer = vop->num();
return;
}
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
return;
}
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format %s",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format));
}
vpiHandle vpi_put_value(vpiHandle object, p_vpi_value value_p,
p_vpi_time time_p, PLI_INT32 flags) {
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_put_value %p %p\n",object, value_p););
_VL_VPI_ERROR_RESET(); // reset vpi error status
if (VL_UNLIKELY(!value_p)) {
_VL_VPI_WARNING(__FILE__, __LINE__, "Ignoring vpi_put_value with NULL value pointer");
return 0;
}
if (VerilatedVpioVar* vop = VerilatedVpioVar::castp(object)) {
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_put_value name=%s fmt=%d vali=%d\n",
vop->fullname(), value_p->format, value_p->value.integer);
VL_PRINTF("-vltVpi: varp=%p putatp=%p\n",
vop->varp()->datap(), vop->varDatap()););
if (VL_UNLIKELY(!vop->varp()->isPublicRW())) {
_VL_VPI_WARNING(__FILE__, __LINE__, "Ignoring vpi_put_value to signal marked read-only, use public_flat_rw instead: ", vop->fullname());
return 0;
}
if (value_p->format == vpiVectorVal) {
if (VL_UNLIKELY(!value_p->value.vector)) return NULL;
switch (vop->varp()->vltype()) {
case VLVT_UINT8:
*((CData*)(vop->varDatap())) = value_p->value.vector[0].aval & vop->mask();
return object;
case VLVT_UINT16:
*((SData*)(vop->varDatap())) = value_p->value.vector[0].aval & vop->mask();
return object;
case VLVT_UINT32:
*((IData*)(vop->varDatap())) = value_p->value.vector[0].aval & vop->mask();
return object;
case VLVT_WDATA: {
int words = VL_WORDS_I(vop->varp()->range().elements());
WDataOutP datap = ((IData*)(vop->varDatap()));
for (int i=0; i<words; ++i) {
datap[i] = value_p->value.vector[i].aval;
if (i==(words-1)) {
datap[i] &= vop->mask();
}
}
return object;
}
case VLVT_UINT64: {
*((QData*)(vop->varDatap())) = _VL_SET_QII(
value_p->value.vector[1].aval & vop->mask(),
value_p->value.vector[0].aval);
return object;
}
default: {
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
return NULL;
}
}
} else if (value_p->format == vpiBinStrVal) {
switch (vop->varp()->vltype()) {
case VLVT_UINT8 :
case VLVT_UINT16:
case VLVT_UINT32:
case VLVT_UINT64:
case VLVT_WDATA: {
int bits = vop->varp()->range().elements();
int len = strlen(value_p->value.str);
CData* datap = ((CData*)(vop->varDatap()));
for (int i=0; i<bits; ++i) {
char set = (i < len)?(value_p->value.str[len-i-1]=='1'):0;
// zero bits 7:1 of byte when assigning to bit 0, else
// or in 1 if bit set
if (i&7) {
datap[i>>3] |= set<<(i&7);
} else {
datap[i>>3] = set;
}
}
return object;
}
default:
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
return 0;
}
} else if (value_p->format == vpiOctStrVal) {
switch (vop->varp()->vltype()) {
case VLVT_UINT8 :
case VLVT_UINT16:
case VLVT_UINT32:
case VLVT_UINT64:
case VLVT_WDATA: {
int chars = (vop->varp()->range().elements()+2)/3;
int bytes = VL_BYTES_I(vop->varp()->range().elements());
int len = strlen(value_p->value.str);
CData* datap = ((CData*)(vop->varDatap()));
div_t idx;
datap[0] = 0; // reset zero'th byte
for (int i=0; i<chars; ++i) {
union {
char byte[2];
short half;
} val;
idx = div(i*3, 8);
if (i < len) {
// ignore illegal chars
char digit = value_p->value.str[len-i-1];
if (digit >= '0' && digit <= '7') {
val.half = digit-'0';
} else {
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: Non octal character '%c' in '%s' as value %s for %s",
VL_FUNC, digit, value_p->value.str,
VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
val.half = 0;
}
} else {
val.half = 0;
}
// align octal character to position within vector, note that
// the three bits may straddle a byte bounday so two byte wide
// assignments are made to adjacent bytes - but not if the least
// signifcant byte of the aligned value is the most significant
// byte of the destination.
val.half <<= idx.rem;
datap[idx.quot] |= val.byte[0]; // or in value
if ((idx.quot+1) < bytes) {
datap[idx.quot+1] = val.byte[1]; // this also resets all bits to 0 prior to or'ing above
}
}
// mask off non existant bits in the most significant byte
if (idx.quot == (bytes-1)) {
datap[idx.quot] &= vop->mask_byte(idx.quot);
} else if (idx.quot+1 == (bytes-1)) {
datap[idx.quot+1] &= vop->mask_byte(idx.quot+1);
}
// zero off remaining top bytes
for (int i=idx.quot+2; i<bytes; ++i) {
datap[i] = 0;
}
return object;
}
default:
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
return 0;
}
} else if (value_p->format == vpiDecStrVal) {
char remainder[16];
unsigned long long val;
int success = sscanf(value_p->value.str, "%30llu%15s", &val, remainder);
if (success < 1) {
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Parsing failed for '%s' as value %s for %s",
VL_FUNC, value_p->value.str, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
return 0;
}
if (success > 1) {
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: Trailing garbage '%s' in '%s' as value %s for %s",
VL_FUNC, remainder, value_p->value.str, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
}
switch (vop->varp()->vltype()) {
case VLVT_UINT8 : *((CData*)(vop->varDatap())) = val & vop->mask(); break;
case VLVT_UINT16: *((SData*)(vop->varDatap())) = val & vop->mask(); break;
case VLVT_UINT32: *((IData*)(vop->varDatap())) = val & vop->mask(); break;
case VLVT_UINT64: *((QData*)(vop->varDatap())) = val; ((IData*)(vop->varDatap()))[1] &= vop->mask(); break;
case VLVT_WDATA:
default:
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s, maximum limit is 64 bits",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
return 0;
}
return object;
} else if (value_p->format == vpiHexStrVal) {
switch (vop->varp()->vltype()) {
case VLVT_UINT8 :
case VLVT_UINT16:
case VLVT_UINT32:
case VLVT_UINT64:
case VLVT_WDATA: {
int chars = (vop->varp()->range().elements()+3)>>2;
CData* datap = ((CData*)(vop->varDatap()));
char* val = value_p->value.str;
// skip hex ident if one is detected at the start of the string
if (val[0] == '0' && (val[1] == 'x' || val[1] == 'X')) {
val += 2;
}
int len = strlen(val);
for (int i=0; i<chars; ++i) {
char hex;
// compute hex digit value
if (i < len) {
char digit = val[len-i-1];
if (digit >= '0' && digit <= '9') hex = digit - '0';
else if (digit >= 'a' && digit <= 'f') hex = digit - 'a' + 10;
else if (digit >= 'A' && digit <= 'F') hex = digit - 'A' + 10;
else {
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: Non hex character '%c' in '%s' as value %s for %s",
VL_FUNC, digit, value_p->value.str, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
hex = 0;
}
} else {
hex = 0;
}
// assign hex digit value to destination
if (i&1) {
datap[i>>1] |= hex<<4;
} else {
datap[i>>1] = hex; // this also resets all bits to 0 prior to or'ing above of the msb
}
}
// apply bit mask to most significant byte
datap[(chars-1)>>1] &= vop->mask_byte((chars-1)>>1);
return object;
}
default:
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
return 0;
}
} else if (value_p->format == vpiStringVal) {
switch (vop->varp()->vltype()) {
case VLVT_UINT8 :
case VLVT_UINT16:
case VLVT_UINT32:
case VLVT_UINT64:
case VLVT_WDATA: {
int bytes = VL_BYTES_I(vop->varp()->range().elements());
int len = strlen(value_p->value.str);
CData* datap = ((CData*)(vop->varDatap()));
for (int i=0; i<bytes; ++i) {
datap[i] = (i < len)?value_p->value.str[len-i-1]:0; // prepend with 0 values before placing string the least signifcant bytes
}
return object;
}
default:
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
return 0;
}
} else if (value_p->format == vpiIntVal) {
switch (vop->varp()->vltype()) {
case VLVT_UINT8:
*((CData*)(vop->varDatap())) = vop->mask() & value_p->value.integer;
return object;
case VLVT_UINT16:
*((SData*)(vop->varDatap())) = vop->mask() & value_p->value.integer;
return object;
case VLVT_UINT32:
*((IData*)(vop->varDatap())) = vop->mask() & value_p->value.integer;
return object;
case VLVT_WDATA: // FALLTHRU
case VLVT_UINT64: // FALLTHRU
default:
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
return 0;
}
}
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) as requested for %s",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
return NULL;
}
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for ??",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format));
return NULL;
}
void vpi_get_value_array(vpiHandle object, p_vpi_arrayvalue arrayvalue_p,
PLI_INT32 *index_p, PLI_UINT32 num) {
_VL_VPI_UNIMP(); return;
}
void vpi_put_value_array(vpiHandle object, p_vpi_arrayvalue arrayvalue_p,
PLI_INT32 *index_p, PLI_UINT32 num) {
_VL_VPI_UNIMP(); return;
}
// time processing
void vpi_get_time(vpiHandle object, p_vpi_time time_p) {
2015-10-04 02:33:06 +00:00
// cppcheck-suppress nullPointer
if (VL_UNLIKELY(!time_p)) {
_VL_VPI_WARNING(__FILE__, __LINE__, "Ignoring vpi_get_time with NULL value pointer");
return;
}
if (time_p->type == vpiSimTime) {
QData qtime = VL_TIME_Q();
WData itime[2];
VL_SET_WQ(itime, qtime);
time_p->low = itime[0];
time_p->high = itime[1];
return;
}
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported type (%d)",
VL_FUNC, time_p->type);
return;
}
// I/O routines
PLI_UINT32 vpi_mcd_open(PLI_BYTE8 *filenamep) {
_VL_VPI_ERROR_RESET(); // reset vpi error status
return VL_FOPEN_S(filenamep,"wb");
}
PLI_UINT32 vpi_mcd_close(PLI_UINT32 mcd) {
_VL_VPI_ERROR_RESET(); // reset vpi error status
VL_FCLOSE_I(mcd); return 0;
}
PLI_BYTE8 *vpi_mcd_name(PLI_UINT32 mcd) {
_VL_VPI_UNIMP(); return 0;
}
PLI_INT32 vpi_mcd_printf(PLI_UINT32 mcd, PLI_BYTE8 *formatp, ...) {
_VL_VPI_ERROR_RESET(); // reset vpi error status
va_list ap;
va_start(ap,formatp);
int chars = vpi_mcd_vprintf(mcd, formatp, ap);
va_end(ap);
return chars;
}
PLI_INT32 vpi_printf(PLI_BYTE8 *formatp, ...) {
_VL_VPI_ERROR_RESET(); // reset vpi error status
va_list ap;
va_start(ap,formatp);
int chars = vpi_vprintf(formatp, ap);
va_end(ap);
return chars;
}
PLI_INT32 vpi_vprintf(PLI_BYTE8* formatp, va_list ap) {
_VL_VPI_ERROR_RESET(); // reset vpi error status
return VL_VPRINTF(formatp, ap);
}
PLI_INT32 vpi_mcd_vprintf(PLI_UINT32 mcd, PLI_BYTE8 *format, va_list ap) {
FILE* fp = VL_CVT_I_FP(mcd);
_VL_VPI_ERROR_RESET(); // reset vpi error status
2015-10-04 02:33:06 +00:00
// cppcheck-suppress nullPointer
if (VL_UNLIKELY(!fp)) return 0;
int chars = vfprintf(fp, format, ap);
return chars;
}
PLI_INT32 vpi_flush(void) {
_VL_VPI_ERROR_RESET(); // reset vpi error status
Verilated::flushCall();
return 0;
}
PLI_INT32 vpi_mcd_flush(PLI_UINT32 mcd) {
FILE* fp = VL_CVT_I_FP(mcd);
_VL_VPI_ERROR_RESET(); // reset vpi error status
if (VL_UNLIKELY(!fp)) return 1;
fflush(fp);
return 0;
}
// utility routines
PLI_INT32 vpi_compare_objects(vpiHandle object1, vpiHandle object2) {
_VL_VPI_UNIMP(); return 0;
}
PLI_INT32 vpi_chk_error(p_vpi_error_info error_info_p) {
// executing vpi_chk_error does not reset error
// error_info_p can be NULL, so only return level in that case
p_vpi_error_info _error_info_p = VerilatedVpi::error_info()->getError();
if (error_info_p && _error_info_p) {
*error_info_p = *_error_info_p;
}
if (!_error_info_p) return 0; // no error occured
return _error_info_p->level; // return error severity level
};
PLI_INT32 vpi_free_object(vpiHandle object) {
_VL_VPI_ERROR_RESET(); // reset vpi error status
return vpi_release_handle(object); // Deprecated
}
PLI_INT32 vpi_release_handle (vpiHandle object) {
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_release_handle %p\n",object););
VerilatedVpio* vop = VerilatedVpio::castp(object);
_VL_VPI_ERROR_RESET(); // reset vpi error status
if (VL_UNLIKELY(!vop)) return 0;
vpi_remove_cb(object); // May not be a callback, but that's ok
delete vop;
return 1;
}
PLI_INT32 vpi_get_vlog_info(p_vpi_vlog_info vlog_info_p) {
_VL_VPI_ERROR_RESET(); // reset vpi error status
vlog_info_p->argc = Verilated::getCommandArgs()->argc;
vlog_info_p->argv = (PLI_BYTE8**)Verilated::getCommandArgs()->argv;
vlog_info_p->product = (PLI_BYTE8*)Verilated::productName();
vlog_info_p->version = (PLI_BYTE8*)Verilated::productVersion();
return 1;
}
// routines added with 1364-2001
PLI_INT32 vpi_get_data(PLI_INT32 id, PLI_BYTE8 *dataLoc, PLI_INT32 numOfBytes) {
_VL_VPI_UNIMP(); return 0;
}
PLI_INT32 vpi_put_data(PLI_INT32 id, PLI_BYTE8 *dataLoc, PLI_INT32 numOfBytes) {
_VL_VPI_UNIMP(); return 0;
}
void *vpi_get_userdata(vpiHandle obj) {
_VL_VPI_UNIMP(); return 0;
}
PLI_INT32 vpi_put_userdata(vpiHandle obj, void *userdata) {
_VL_VPI_UNIMP(); return 0;
}
PLI_INT32 vpi_control(PLI_INT32 operation, ...) {
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_control %d\n",operation););
_VL_VPI_ERROR_RESET(); // reset vpi error status
switch (operation) {
case vpiFinish: {
vl_finish(__FILE__,__LINE__,"*VPI*");
return 1;
}
case vpiStop: {
vl_stop(__FILE__,__LINE__,"*VPI*");
return 1;
}
}
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: Unsupported type %s, ignoring",
VL_FUNC, VerilatedVpiError::strFromVpiProp(operation));
return 0;
}
vpiHandle vpi_handle_by_multi_index(vpiHandle obj, PLI_INT32 num_index, PLI_INT32 *index_array) {
_VL_VPI_UNIMP(); return 0;
}