verilator/src/V3Ast.h

1049 lines
44 KiB
C
Raw Normal View History

// $Id$ //-*- C++ -*-
//*************************************************************************
// DESCRIPTION: Verilator: Ast node structure
//
// Code available from: http://www.veripool.com/verilator
//
// AUTHORS: Wilson Snyder with Paul Wasson, Duane Gabli
//
//*************************************************************************
//
// Copyright 2003-2007 by Wilson Snyder. This program is free software; you can
// redistribute it and/or modify it under the terms of either the GNU
// General Public License or the Perl Artistic License.
//
// Verilator is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
//*************************************************************************
#ifndef _V3AST_H_
#define _V3AST_H_ 1
#include "config_build.h"
#include "verilatedos.h"
#include "V3Error.h"
#include "V3Number.h"
#include <vector>
#include "V3Ast__gen_classes.h" // From ./astgen
// Things like:
// class V3AstNode;
//######################################################################
class AstType {
public:
#include "V3Ast__gen_types.h" // From ./astgen
// Above include has:
// enum en {...};
// const char* ascii() const {...};
enum en m_e;
inline AstType () {};
inline AstType (en _e) : m_e(_e) {};
explicit inline AstType (int _e) : m_e(static_cast<en>(_e)) {};
operator en () const { return m_e; };
};
inline bool operator== (AstType lhs, AstType rhs) { return (lhs.m_e == rhs.m_e); }
inline bool operator== (AstType lhs, AstType::en rhs) { return (lhs.m_e == rhs); }
inline bool operator== (AstType::en lhs, AstType rhs) { return (lhs == rhs.m_e); }
inline ostream& operator<<(ostream& os, AstType rhs) { return os<<rhs.ascii(); }
//######################################################################
class AstPragmaType {
public:
enum en {
COVERAGE_BLOCK_OFF,
INLINE_MODULE,
NO_INLINE_MODULE,
NO_INLINE_TASK,
PUBLIC_MODULE,
PUBLIC_TASK
};
enum en m_e;
inline AstPragmaType () {};
inline AstPragmaType (en _e) : m_e(_e) {};
explicit inline AstPragmaType (int _e) : m_e(static_cast<en>(_e)) {};
operator en () const { return m_e; };
};
inline bool operator== (AstPragmaType lhs, AstPragmaType rhs) { return (lhs.m_e == rhs.m_e); }
inline bool operator== (AstPragmaType lhs, AstPragmaType::en rhs) { return (lhs.m_e == rhs); }
inline bool operator== (AstPragmaType::en lhs, AstPragmaType rhs) { return (lhs == rhs.m_e); }
//######################################################################
class AstCFuncType {
public:
enum en {
NORMAL,
TRACE_INIT,
TRACE_FULL,
TRACE_CHANGE
};
enum en m_e;
inline AstCFuncType () {};
inline AstCFuncType (en _e) : m_e(_e) {};
explicit inline AstCFuncType (int _e) : m_e(static_cast<en>(_e)) {};
operator en () const { return m_e; };
};
inline bool operator== (AstCFuncType lhs, AstCFuncType rhs) { return (lhs.m_e == rhs.m_e); }
inline bool operator== (AstCFuncType lhs, AstCFuncType::en rhs) { return (lhs.m_e == rhs); }
inline bool operator== (AstCFuncType::en lhs, AstCFuncType rhs) { return (lhs == rhs.m_e); }
//######################################################################
class AstEdgeType {
public:
// REMEMBER to edit the strings below too
enum en {
// These must be in general -> most specific order, as we sort by it in AstSenTree::sortSenses()
ILLEGAL,
// Involving a variable
ANYEDGE, // Default for sensitivities; rip them out
BOTHEDGE, // POSEDGE | NEGEDGE
POSEDGE,
NEGEDGE,
HIGHEDGE, // Is high now (latches)
LOWEDGE, // Is low now (latches)
// Not involving anything
COMBO, // Sensitive to all combo inputs to this block
INITIAL, // User initial statements
SETTLE, // Like combo but for initial wire resolutions after initial statement
NEVER // Never occurs (optimized away)
};
enum en m_e;
bool clockedStmt() const {
static const bool clocked[] = {
false, false, true, true, true, true, true,
false, false, false
};
return clocked[m_e];
}
AstEdgeType invert() const {
switch (m_e) {
case ANYEDGE: return ANYEDGE;
case BOTHEDGE: return BOTHEDGE;
case POSEDGE: return NEGEDGE;
case NEGEDGE: return POSEDGE;
case HIGHEDGE: return LOWEDGE;
case LOWEDGE: return HIGHEDGE;
default: UASSERT_STATIC(0,"Inverting bad edgeType()");
};
return AstEdgeType::ILLEGAL;
}
const char* ascii() const {
static const char* names[] = {
"%E-edge", "ANY", "BOTH", "POS", "NEG", "HIGH", "LOW",
"COMBO","INITIAL","SETTLE","NEVER"
};
return names[m_e];
};
const char* verilogKwd() const {
static const char* names[] = {
"%E-edge", "", "[both]", "posedge", "negedge", "[high]","[low]",
"/*AS*/","[initial]","[settle]","[never]"
};
return names[m_e];
};
inline AstEdgeType () {};
inline AstEdgeType (en _e) : m_e(_e) {};
explicit inline AstEdgeType (int _e) : m_e(static_cast<en>(_e)) {};
operator en () const { return m_e; };
};
inline bool operator== (AstEdgeType lhs, AstEdgeType rhs) { return (lhs.m_e == rhs.m_e); }
inline bool operator== (AstEdgeType lhs, AstEdgeType::en rhs) { return (lhs.m_e == rhs); }
inline bool operator== (AstEdgeType::en lhs, AstEdgeType rhs) { return (lhs == rhs.m_e); }
//######################################################################
class AstAttrType {
public:
enum en {
BITS,
RANGE_LSB,
ARRAY_LSB,
SCOPE_TEXT
};
enum en m_e;
inline AstAttrType () {};
inline AstAttrType (en _e) : m_e(_e) {};
explicit inline AstAttrType (int _e) : m_e(static_cast<en>(_e)) {};
operator en () const { return m_e; };
};
inline bool operator== (AstAttrType lhs, AstAttrType rhs) { return (lhs.m_e == rhs.m_e); }
inline bool operator== (AstAttrType lhs, AstAttrType::en rhs) { return (lhs.m_e == rhs); }
inline bool operator== (AstAttrType::en lhs, AstAttrType rhs) { return (lhs == rhs.m_e); }
//######################################################################
class AstVarType {
public:
enum en {
UNKNOWN,
GPARAM,
LPARAM,
GENVAR,
INTEGER,
INPUT,
OUTPUT,
INOUT,
SUPPLY0,
SUPPLY1,
WIRE,
IMPLICIT,
REG,
TRIWIRE,
BLOCKTEMP,
MODULETEMP,
STMTTEMP
};
enum en m_e;
inline AstVarType () {};
inline AstVarType (en _e) : m_e(_e) {};
explicit inline AstVarType (int _e) : m_e(static_cast<en>(_e)) {};
operator en () const { return m_e; };
const char* ascii() const {
static const char* names[] = {
"?","GPARAM","LPARAM","GENVAR",
"INTEGER","INPUT","OUTPUT","INOUT",
"SUPPLY0","SUPPLY1","WIRE","IMPLICIT","REG","TRIWIRE",
"BLOCKTEMP","MODULETEMP","STMTTEMP"};
return names[m_e];};
};
inline bool operator== (AstVarType lhs, AstVarType rhs) { return (lhs.m_e == rhs.m_e); }
inline bool operator== (AstVarType lhs, AstVarType::en rhs) { return (lhs.m_e == rhs); }
inline bool operator== (AstVarType::en lhs, AstVarType rhs) { return (lhs == rhs.m_e); }
inline ostream& operator<<(ostream& os, AstVarType rhs) { return os<<rhs.ascii(); }
//######################################################################
class AstBranchPred {
public:
enum en {
UNKNOWN=0,
LIKELY,
UNLIKELY,
_ENUM_END
};
enum en m_e;
// CONSTRUCTOR - note defaults to *UNKNOWN*
inline AstBranchPred () : m_e(UNKNOWN) {};
inline AstBranchPred (en _e) : m_e(_e) {};
explicit inline AstBranchPred (int _e) : m_e(static_cast<en>(_e)) {};
operator en () const { return m_e; };
AstBranchPred invert() const {
if (m_e==UNLIKELY) return LIKELY;
else if (m_e==LIKELY) return UNLIKELY;
else return m_e;
}
const char* ascii() const {
static const char* names[] = {
"","VL_LIKELY","VL_UNLIKELY"};
return names[m_e];};
};
inline bool operator== (AstBranchPred lhs, AstBranchPred rhs) { return (lhs.m_e == rhs.m_e); }
inline bool operator== (AstBranchPred lhs, AstBranchPred::en rhs) { return (lhs.m_e == rhs); }
inline bool operator== (AstBranchPred::en lhs, AstBranchPred rhs) { return (lhs == rhs.m_e); }
inline ostream& operator<<(ostream& os, AstBranchPred rhs) { return os<<rhs.ascii(); }
//######################################################################
class AstDisplayType {
public:
enum en {
DISPLAY,
WRITE,
INFO,
ERROR,
WARNING,
FATAL
};
enum en m_e;
inline AstDisplayType () {};
inline AstDisplayType (en _e) : m_e(_e) {};
explicit inline AstDisplayType (int _e) : m_e(static_cast<en>(_e)) {};
operator en () const { return m_e; };
bool addNewline() const { return m_e!=WRITE; }
bool needScopeTracking() const { return m_e!=DISPLAY && m_e!=WRITE; }
const char* ascii() const {
static const char* names[] = {
"display","write","info","error","warning","fatal"};
return names[m_e];};
};
inline bool operator== (AstDisplayType lhs, AstDisplayType rhs) { return (lhs.m_e == rhs.m_e); }
inline bool operator== (AstDisplayType lhs, AstDisplayType::en rhs) { return (lhs.m_e == rhs); }
inline bool operator== (AstDisplayType::en lhs, AstDisplayType rhs) { return (lhs == rhs.m_e); }
//######################################################################
class AstParseRefExp {
public:
enum en {
NONE, // Used in V3LinkParse only
VAR_MEM,
VAR_ANY,
TASK,
FUNC,
_ENUM_END
};
enum en m_e;
inline AstParseRefExp() : m_e(NONE) {};
inline AstParseRefExp (en _e) : m_e(_e) {};
explicit inline AstParseRefExp (int _e) : m_e(static_cast<en>(_e)) {};
operator en () const { return m_e; };
const char* ascii() const {
static const char* names[] = {
"","VAR_MEM","VAR_ANY","TASK","FUNC"};
return names[m_e];};
};
inline bool operator== (AstParseRefExp lhs, AstParseRefExp rhs) { return (lhs.m_e == rhs.m_e); }
inline bool operator== (AstParseRefExp lhs, AstParseRefExp::en rhs) { return (lhs.m_e == rhs); }
inline bool operator== (AstParseRefExp::en lhs, AstParseRefExp rhs) { return (lhs == rhs.m_e); }
inline ostream& operator<<(ostream& os, AstParseRefExp rhs) { return os<<rhs.ascii(); }
//######################################################################
// AstNUser - Generic pointer base class for AST User nodes.
// - Also used to allow parameter passing up/down iterate calls
class WidthVP;
class LinkVP;
class OrderBlockNU;
class OrderVarNU;
class V3GraphVertex;
class V3SymTable;
struct AstNUser {
AstNUser* p() { return this; } // So can take address of temporary: iterate(...,AstNUser(args).p())
// Casters
WidthVP* c() { return ((WidthVP*)this); }
LinkVP* castLinkVP() { return ((LinkVP*)this); }
V3SymTable* castSymTable() { return ((V3SymTable*)this); }
AstNode* castNode() { return ((AstNode*)this); }
OrderBlockNU* castOrderBlock() { return ((OrderBlockNU*)this); }
OrderVarNU* castOrderVar() { return ((OrderVarNU*)this); }
V3GraphVertex* castGraphVertex() { return ((V3GraphVertex*)this); }
inline int castInt() {
union { AstNUser* up; int ui; } u;
u.up = this;
return u.ui;
}
static inline AstNUser* fromInt (int i) {
union { AstNUser* up; int ui; } u;
u.up=0; u.ui=i;
return u.up;
}
};
//######################################################################
// AstNVisitor -- Allows new functions to be called on each node
// type without changing the base classes. See "Modern C++ Design".
class AstNVisitor {
private:
vector<AstNode*> m_deleteps; // Nodes to delete when we are finished
protected:
friend class AstNode;
public:
// Cleaning
void pushDeletep(AstNode* nodep) {
m_deleteps.push_back(nodep);
}
void doDeletes();
public:
virtual ~AstNVisitor() {
doDeletes();
}
#include "V3Ast__gen_visitor.h" // From ./astgen
// Things like:
// virtual void visit(type*) = 0;
};
//######################################################################
// AstNRelinker -- Holds the state of a unlink so a new node can be
// added at the same point.
class AstNRelinker {
protected:
friend class AstNode;
enum RelinkWhatEn {
RELINK_BAD, RELINK_NEXT, RELINK_OP1, RELINK_OP2, RELINK_OP3, RELINK_OP4
};
AstNode* m_oldp; // The old node that was linked to this point in the tree
AstNode* m_backp;
RelinkWhatEn m_chg;
AstNode** m_iterpp;
public:
AstNRelinker() { m_backp=NULL; m_chg=RELINK_BAD; m_iterpp=NULL;}
void relink(AstNode* newp);
AstNode* oldp() const { return m_oldp; }
void dump(ostream& str=cout);
};
inline ostream& operator<<(ostream& os, AstNRelinker& rhs) { rhs.dump(os); return os;}
//######################################################################
// V3Hash -- Node hashing for V3Combine
class V3Hash {
// A hash of a tree of nodes, consisting of 8 bits with the number of nodes in the hash
// and 24 bit value hash of relevant information about the node.
// A value of 0 is illegal
uint32_t m_both;
static const uint32_t M24 = ((1<<24)-1);
void setBoth(uint32_t depth, uint32_t hshval) {
if (depth==0) depth=1; if (depth>255) depth=255;
m_both = (depth<<24) | (hshval & M24);
}
public:
// METHODS
bool isIllegal() const { return m_both==0; }
uint32_t fullValue() const { return m_both; }
uint32_t depth() const { return (m_both >> 24) & 255; }
uint32_t hshval() const { return m_both & M24; }
// OPERATORS
inline bool operator== (const V3Hash& rh) const { return m_both==rh.m_both; };
inline bool operator< (const V3Hash& rh) const { return m_both<rh.m_both; };
// CREATORS
class Illegal {}; // for creator type-overload selection
class FullValue {}; // for creator type-overload selection
V3Hash(Illegal) { m_both=0; }
// Saving and restoring inside a userp
V3Hash(AstNUser* up) { m_both=up->castInt(); }
V3Hash operator+= (const V3Hash& rh) {
setBoth(depth()+rh.depth(), (hshval()*31+rh.hshval()));
return *this; };
// Creating from raw data (sameHash functions)
V3Hash() { setBoth(1,0); }
V3Hash(uint32_t val) { setBoth(1,val); }
V3Hash(void* vp) {
// It's just a hash, so we can shove a 64 bit pointer into a 32 bit bucket
// On 32 bit systems, lower is always 0, but who cares?
union { void* up; struct {uint32_t upper; uint32_t lower;} l;} u;
u.l.upper=0; u.l.lower=0; u.up=vp;
setBoth(1,u.l.upper^u.l.lower);
}
V3Hash(const string& name);
V3Hash(V3Hash lh, V3Hash rh) {
setBoth(1,lh.hshval()*31+rh.hshval());
}
};
ostream& operator<<(ostream& os, V3Hash rhs);
//######################################################################
// AstNode -- Base type of all Ast types
class AstNode {
private:
AstNode* m_nextp; // Next peer in the parent's list
AstNode* m_backp; // Node that points to this one (via next/op1/op2/...)
AstNode* m_headtailp; // When at begin/end of list, the opposite end of the list
AstNode* m_op1p; // Generic pointer 1
AstNode* m_op2p; // Generic pointer 2
AstNode* m_op3p; // Generic pointer 3
AstNode* m_op4p; // Generic pointer 4
AstNode** m_iterpp; // Pointer to node iterating on, change it if we replace this node.
AstNode* m_clonep; // Pointer to clone of/ source of this module (for *LAST* cloneTree() ONLY)
int m_cloneCnt; // Mark of when userp was set
static int s_cloneCntGbl; // Count of which userp is set
FileLine* m_fileline; // Where it was declared
vluint64_t m_editCount; // When it was last edited
static vluint64_t s_editCntGbl; // Global edit counter
static vluint64_t s_editCntLast;// Global edit counter, last value for printing * near node #s
// Attributes
bool m_signed; // Node is signed
int m_width; // Bit width of operation
int m_widthMin; // If unsized, bitwidth of minimum implementation
AstNUser* m_userp; // Pointer to any information the user iteration routine wants
int m_userCnt; // Mark of when userp was set
static int s_userCntGbl; // Count of which userp is set
AstNUser* m_user2p; // Pointer to any information the user iteration routine wants
int m_user2Cnt; // Mark of when userp was set
static int s_user2CntGbl; // Count of which userp is set
AstNUser* m_user3p; // Pointer to any information the user iteration routine wants
int m_user3Cnt; // Mark of when userp was set
static int s_user3CntGbl; // Count of which userp is set
AstNUser* m_user4p; // Pointer to any information the user iteration routine wants
int m_user4Cnt; // Mark of when userp was set
static int s_user4CntGbl; // Count of which userp is set
AstNUser* m_user5p; // Pointer to any information the user iteration routine wants
int m_user5Cnt; // Mark of when userp was set
static int s_user5CntGbl; // Count of which userp is set
// METHODS
void op1p(AstNode* nodep) { m_op1p = nodep; if (nodep) nodep->m_backp = this; }
void op2p(AstNode* nodep) { m_op2p = nodep; if (nodep) nodep->m_backp = this; }
void op3p(AstNode* nodep) { m_op3p = nodep; if (nodep) nodep->m_backp = this; }
void op4p(AstNode* nodep) { m_op4p = nodep; if (nodep) nodep->m_backp = this; }
void init(); // initialize value of AstNode
void iterateListBackwards(AstNVisitor& v, AstNUser* vup=NULL);
AstNode* cloneTreeIter();
AstNode* cloneTreeIterList();
void checkTreeIter(AstNode* backp);
void checkTreeIterList(AstNode* backp);
bool sameTreeIter(AstNode* node2p, bool ignNext);
void deleteTreeIter();
void deleteNode();
static void relinkOneLink(AstNode*& pointpr, AstNode* newp);
void debugTreeChange(const char* prefix, int lineno, bool next);
protected:
// CONSTUCTORS
AstNode() {init(); }
AstNode(FileLine* fileline) {init(); m_fileline = fileline; }
virtual AstNode* clone() = 0; // Generally, cloneTree/cloneNode is what you want
virtual void cloneRelink() {}
void cloneRelinkTree();
// METHODS
void setOp1p(AstNode* newp); // Set non-list-type op1 to non-list element
void setOp2p(AstNode* newp); // Set non-list-type op2 to non-list element
void setOp3p(AstNode* newp); // Set non-list-type op3 to non-list element
void setOp4p(AstNode* newp); // Set non-list-type op4 to non-list element
void setNOp1p(AstNode* newp) { if (newp) setOp1p(newp); }
void setNOp2p(AstNode* newp) { if (newp) setOp2p(newp); }
void setNOp3p(AstNode* newp) { if (newp) setOp3p(newp); }
void setNOp4p(AstNode* newp) { if (newp) setOp4p(newp); }
void addOp1p(AstNode* newp); // Append newp to end of op1
void addOp2p(AstNode* newp); // Append newp to end of op2
void addOp3p(AstNode* newp); // Append newp to end of op3
void addOp4p(AstNode* newp); // Append newp to end of op4
void addNOp1p(AstNode* newp) { if (newp) addOp1p(newp); }
void addNOp2p(AstNode* newp) { if (newp) addOp2p(newp); }
void addNOp3p(AstNode* newp) { if (newp) addOp3p(newp); }
void addNOp4p(AstNode* newp) { if (newp) addOp4p(newp); }
void clonep(AstNode* nodep) { m_clonep=nodep; m_cloneCnt=s_cloneCntGbl; }
static void cloneClearTree() { s_cloneCntGbl++; UASSERT_STATIC(s_cloneCntGbl,"Rollover"); }
public:
// ACCESSORS
virtual AstType type() const = 0;
const char* typeName() const { return type().ascii(); }
AstNode* nextp() const { return m_nextp; }
AstNode* backp() const { return m_backp; }
AstNode* op1p() const { return m_op1p; }
AstNode* op2p() const { return m_op2p; }
AstNode* op3p() const { return m_op3p; }
AstNode* op4p() const { return m_op4p; }
AstNode* clonep() const { return ((m_cloneCnt==s_cloneCntGbl)?m_clonep:NULL); }
AstNode* firstAbovep() const { return ((backp() && backp()->nextp()!=this) ? backp() : NULL); } // Returns NULL when second or later in list
bool brokeExists() const;
// CONSTRUCTORS
virtual ~AstNode();
// CONSTANT ACCESSORS
static int instrCountBranch() { return 4; } ///< Instruction cycles to branch
static int instrCountDiv() { return 10; } ///< Instruction cycles to divide
static int instrCountLd() { return 2; } ///< Instruction cycles to load memory
static int instrCountMul() { return 3; } ///< Instruction cycles to multiply integers
static int instrCountPli() { return 20; } ///< Instruction cycles to call pli routines
static int instrCountCall() { return instrCountBranch()+10; } ///< Instruction cycles to call subroutine
static int instrCountTime() { return instrCountCall()+5; } ///< Instruction cycles to determine simulation time
// ACCESSORS
virtual string name() const { return ""; }
virtual string verilogKwd() const { return ""; }
string shortName() const; // Name with __PVT__ removed for concatenating scopes
static string dedotName(const string& namein); // Name with dots removed
static string prettyName(const string& namein); // Name for printing out to the user
string prettyName() const { return prettyName(name()); }
FileLine* fileline() const { return m_fileline; }
int width() const { return m_width; }
bool width1() const { return width()==1; }
int widthWords() const { return VL_WORDS_I(width()); }
int widthMin() const { return m_widthMin?m_widthMin:m_width; } // If sized, the size, if unsized the min digits to represent it
int widthPow2() const;
int widthInstrs() const { return isWide()?widthWords():1; }
bool widthSized() const { return !m_widthMin || m_widthMin==m_width; }
void width(int width, int sized) { m_width=width; m_widthMin=sized; }
void widthFrom(AstNode* fromp) { if (fromp) { m_width=fromp->m_width; m_widthMin=fromp->m_widthMin; }}
void widthSignedFrom(AstNode* fromp) { widthFrom(fromp); signedFrom(fromp); }
void signedFrom(AstNode* fromp) { if (fromp) { m_signed=fromp->m_signed; }}
void isSigned(bool flag) { m_signed=flag; }
bool isSigned() const { return m_signed; }
bool isQuad() const { return (width()>VL_WORDSIZE && width()<=VL_QUADSIZE); }
bool isWide() const { return (width()>VL_QUADSIZE); }
int user() const { return userp()->castInt(); }
AstNUser* userp() const { return ((m_userCnt==s_userCntGbl)?m_userp:NULL); }
void userp(void* userp) { m_userp=(AstNUser*)(userp); m_userCnt=s_userCntGbl; }
void user(int val) { userp(AstNUser::fromInt(val)); }
static void userClearTree() { s_userCntGbl++; UASSERT_STATIC(s_userCntGbl,"Rollover"); } // Clear userp()'s across the entire tree
int user2() const { return user2p()->castInt(); }
AstNUser* user2p() const { return ((m_user2Cnt==s_user2CntGbl)?m_user2p:NULL); }
void user2p(void* userp) { m_user2p=(AstNUser*)(userp); m_user2Cnt=s_user2CntGbl; }
void user2(int val) { user2p(AstNUser::fromInt(val)); }
static void user2ClearTree() { s_user2CntGbl++; } // Clear userp()'s across the entire tree
int user3() const { return user3p()->castInt(); }
AstNUser* user3p() const { return ((m_user3Cnt==s_user3CntGbl)?m_user3p:NULL); }
void user3p(void* userp) { m_user3p=(AstNUser*)(userp); m_user3Cnt=s_user3CntGbl; }
void user3(int val) { user3p(AstNUser::fromInt(val)); }
static void user3ClearTree() { s_user3CntGbl++; } // Clear userp()'s across the entire tree
int user4() const { return user4p()->castInt(); }
AstNUser* user4p() const { return ((m_user4Cnt==s_user4CntGbl)?m_user4p:NULL); }
void user4p(void* userp) { m_user4p=(AstNUser*)(userp); m_user4Cnt=s_user4CntGbl; }
void user4(int val) { user4p(AstNUser::fromInt(val)); }
static void user4ClearTree() { s_user4CntGbl++; } // Clear userp()'s across the entire tree
int user5() const { return user5p()->castInt(); }
AstNUser* user5p() const { return ((m_user5Cnt==s_user5CntGbl)?m_user5p:NULL); }
void user5p(void* userp) { m_user5p=(AstNUser*)(userp); m_user5Cnt=s_user5CntGbl; }
void user5(int val) { user5p(AstNUser::fromInt(val)); }
static void user5ClearTree() { s_user5CntGbl++; } // Clear userp()'s across the entire tree
vluint64_t editCount() const { return m_editCount; }
void editCountInc() { m_editCount = s_editCntGbl++; }
static vluint64_t editCountLast() { return s_editCntLast; }
static vluint64_t editCountGbl() { return s_editCntGbl; }
static void editCountSetLast() { s_editCntLast = editCountGbl(); }
// ACCESSORS for specific types
// Alas these can't be virtual or they break when passed a NULL
bool isZero();
bool isOne();
bool isNeqZero();
bool isAllOnes();
bool isAllOnesV(); // Verilog width rules apply
// METHODS
AstNode* addNext(AstNode* newp); // Returns this, adds to end of list
AstNode* addNextNull(AstNode* newp); // Returns this, adds to end of list, NULL is OK
void addNextHere(AstNode* newp); // Adds after speced node
void replaceWith(AstNode* newp); // Replace current node in tree with new node
void v3errorEnd(ostringstream& str);
virtual void dump(ostream& str=cout);
AstNode* unlinkFrBack(AstNRelinker* linkerp=NULL); // Unlink this from whoever points to it.
AstNode* unlinkFrBackWithNext(AstNRelinker* linkerp=NULL); // Unlink this from whoever points to it, keep entire next list with unlinked node
void relink(AstNRelinker* linkerp); // Generally use linker->relink() instead
void cloneRelinkNode() { cloneRelink(); }
// METHODS - Iterate on a tree
AstNode* cloneTree(bool cloneNextLink);
bool sameTree(AstNode* node2p); // Does tree of this == node2p?
void deleteTree(); // Always deletes the next link
void checkTree(); // User Interface version
void dumpPtrs(ostream& str=cout);
void dumpTree(ostream& str=cout, const string& indent=" ", int maxDepth=0);
void dumpTreeAndNext(ostream& str=cout, const string& indent=" ", int maxDepth=0);
void dumpTreeFile(const string& filename, bool append=false);
// METHODS - queries
virtual bool isSplittable() const { return true; } // Else a $display, etc, that must be ordered with other displays
virtual bool isGateOptimizable() const { return true; } // Else a AstTime etc that can't be pushed out
virtual bool isSubstOptimizable() const { return true; } // Else a AstTime etc that can't be substituted out
virtual bool isPredictOptimizable() const { return true; } // Else a AstTime etc which output can't be predicted from input
virtual bool isOutputter() const { return false; } // Else creates output or exits, etc, not unconsumed
virtual bool isUnlikely() const { return false; } // Else $stop or similar statement which means an above IF statement is unlikely to be taken
virtual int instrCount() const { return 0; }
virtual V3Hash sameHash() const { return V3Hash(V3Hash::Illegal()); } // Not a node that supports it
virtual bool same(AstNode* otherp) const { return true; }
virtual bool maybePointedTo() const { return false; } // Another AstNode* may have a pointer into this node, other then normal front/back/etc.
virtual bool broken() const { return false; }
virtual bool emitWordForm() { return false; }
// INVOKERS
virtual void accept(AstNVisitor& v, AstNUser* vup=NULL) = 0;
void iterate(AstNVisitor& v, AstNUser* vup=NULL) { this->accept(v,vup); } // Does this; excludes following this->next
void iterateAndNext(AstNVisitor& v, AstNUser* vup=NULL);
void iterateAndNextIgnoreEdit(AstNVisitor& v, AstNUser* vup=NULL);
void iterateChildren(AstNVisitor& v, AstNUser* vup=NULL); // Excludes following this->next
void iterateChildrenBackwards(AstNVisitor& v, AstNUser* vup=NULL); // Excludes following this->next
// CONVERSION
AstNode* castNode() { return this; }
#include "V3Ast__gen_interface.h" // From ./astgen
// Things like:
// AstAlways* castAlways();
};
inline ostream& operator<<(ostream& os, AstNode* rhs) { rhs->dump(os); return os;}
inline void AstNRelinker::relink(AstNode* newp) { newp->AstNode::relink(this); }
//######################################################################
//######################################################################
//=== AstNode* : Derived generic node types
struct AstNodeMath : public AstNode {
// Math -- anything that's part of an expression tree
AstNodeMath(FileLine* fl)
: AstNode(fl) {}
virtual ~AstNodeMath() {}
// METHODS
virtual string emitVerilog() = 0; /// Format string for verilog writing; see V3EmitV
virtual string emitOperator() = 0;
virtual string emitSimpleOperator() { return ""; }
virtual bool cleanOut() = 0; // True if output has extra upper bits zero
};
struct AstNodeTermop : public AstNodeMath {
// Terminal operator -- a operator with no "inputs"
AstNodeTermop(FileLine* fl)
: AstNodeMath(fl) {}
virtual ~AstNodeTermop() {}
};
struct AstNodeUniop : public AstNodeMath {
// Unary math
AstNodeUniop(FileLine* fl, AstNode* lhsp)
: AstNodeMath(fl) {
if (lhsp) widthSignedFrom(lhsp);
setOp1p(lhsp); }
virtual ~AstNodeUniop() {}
AstNode* lhsp() const { return op1p()->castNode(); }
// METHODS
virtual void numberOperate(V3Number& out, const V3Number& lhs) = 0; // Set out to evaluation of a AstConst'ed lhs
virtual bool cleanLhs() = 0;
virtual bool sizeMattersLhs() = 0; // True if output result depends on lhs size
virtual int instrCount() const { return widthInstrs(); }
virtual V3Hash sameHash() const { return V3Hash(); }
virtual bool same(AstNode*) const { return true; }
};
struct AstNodeBiop : public AstNodeMath {
// Binary math
AstNodeBiop(FileLine* fl, AstNode* lhs, AstNode* rhs)
: AstNodeMath(fl) {
setOp1p(lhs); setOp2p(rhs); }
virtual ~AstNodeBiop() {}
AstNode* lhsp() const { return op1p()->castNode(); }
AstNode* rhsp() const { return op2p()->castNode(); }
void lhsp(AstNode* nodep) { return setOp1p(nodep); }
void rhsp(AstNode* nodep) { return setOp2p(nodep); }
// METHODS
virtual void numberOperate(V3Number& out, const V3Number& lhs, const V3Number& rhs) = 0; // Set out to evaluation of a AstConst'ed
virtual bool cleanLhs() = 0; // True if LHS must have extra upper bits zero
virtual bool cleanRhs() = 0; // True if RHS must have extra upper bits zero
virtual bool sizeMattersLhs() = 0; // True if output result depends on lhs size
virtual bool sizeMattersRhs() = 0; // True if output result depends on rhs size
virtual bool signedFlavor() const { return false; } // Signed flavor of nodes with both flavors?
virtual int instrCount() const { return widthInstrs(); }
virtual V3Hash sameHash() const { return V3Hash(); }
virtual bool same(AstNode*) const { return true; }
};
struct AstNodeTriop : public AstNodeMath {
// Trinary math
AstNodeTriop(FileLine* fl, AstNode* lhs, AstNode* rhs, AstNode* ths)
: AstNodeMath(fl) {
setOp1p(lhs); setOp2p(rhs); setOp3p(ths); }
virtual ~AstNodeTriop() {}
AstNode* lhsp() const { return op1p()->castNode(); }
AstNode* rhsp() const { return op2p()->castNode(); }
AstNode* thsp() const { return op3p()->castNode(); }
void lhsp(AstNode* nodep) { return setOp1p(nodep); }
void rhsp(AstNode* nodep) { return setOp2p(nodep); }
void thsp(AstNode* nodep) { return setOp3p(nodep); }
// METHODS
virtual void numberOperate(V3Number& out, const V3Number& lhs, const V3Number& rhs, const V3Number& ths) = 0; // Set out to evaluation of a AstConst'ed
virtual bool cleanLhs() = 0; // True if LHS must have extra upper bits zero
virtual bool cleanRhs() = 0; // True if RHS must have extra upper bits zero
virtual bool cleanThs() = 0; // True if THS must have extra upper bits zero
virtual bool sizeMattersLhs() = 0; // True if output result depends on lhs size
virtual bool sizeMattersRhs() = 0; // True if output result depends on rhs size
virtual bool sizeMattersThs() = 0; // True if output result depends on ths size
virtual int instrCount() const { return widthInstrs(); }
virtual V3Hash sameHash() const { return V3Hash(); }
virtual bool same(AstNode*) const { return true; }
};
struct AstNodeBiCom : public AstNodeBiop {
// Binary math with commutative properties
AstNodeBiCom(FileLine* fl, AstNode* lhs, AstNode* rhs)
: AstNodeBiop(fl, lhs, rhs) {}
virtual ~AstNodeBiCom() {}
};
struct AstNodeBiComAsv : public AstNodeBiCom {
// Binary math with commutative & associative properties
AstNodeBiComAsv(FileLine* fl, AstNode* lhs, AstNode* rhs)
: AstNodeBiCom(fl, lhs, rhs) {}
virtual ~AstNodeBiComAsv() {}
};
struct AstNodeCond : public AstNodeTriop {
AstNodeCond(FileLine* fl, AstNode* condp, AstNode* expr1p, AstNode* expr2p)
: AstNodeTriop(fl, condp, expr1p, expr2p) {
if (expr1p) widthSignedFrom(expr1p);
else if (expr2p) widthSignedFrom(expr2p);
}
virtual ~AstNodeCond() {}
virtual void numberOperate(V3Number& out, const V3Number& lhs, const V3Number& rhs, const V3Number& ths) {
if (lhs.isNeqZero()) out.opAssign(rhs); else out.opAssign(ths); }
AstNode* condp() const { return op1p()->castNode(); } // op1 = Condition
AstNode* expr1p() const { return op2p()->castNode(); } // op2 = If true...
AstNode* expr2p() const { return op3p()->castNode(); } // op3 = If false...
virtual string emitVerilog() { return "%k(%l %k? %r %k: %t)"; }
virtual string emitOperator() { return "VL_COND"; }
virtual bool cleanOut() { return false; } // clean if e1 & e2 clean
virtual bool cleanLhs() { return true; }
virtual bool cleanRhs() { return false; } virtual bool cleanThs() { return false; } // Propagates up
virtual bool sizeMattersLhs() { return false; } virtual bool sizeMattersRhs() { return false; }
virtual bool sizeMattersThs() { return false; }
virtual int instrCount() const { return instrCountBranch(); }
};
struct AstNodePreSel : public AstNode {
// Something that becomes a AstSel
AstNodePreSel(FileLine* fl, AstNode* lhs, AstNode* rhs, AstNode* ths)
: AstNode(fl) {
setOp1p(lhs); setOp2p(rhs); setNOp3p(ths); }
virtual ~AstNodePreSel() {}
AstNode* lhsp() const { return op1p()->castNode(); }
AstNode* rhsp() const { return op2p()->castNode(); }
AstNode* thsp() const { return op3p()->castNode(); }
void lhsp(AstNode* nodep) { return setOp1p(nodep); }
void rhsp(AstNode* nodep) { return setOp2p(nodep); }
void thsp(AstNode* nodep) { return setOp3p(nodep); }
// METHODS
virtual V3Hash sameHash() const { return V3Hash(); }
virtual bool same(AstNode*) const { return true; }
};
struct AstNodeStmt : public AstNode {
// Statement -- anything that's directly under a function
AstNodeStmt(FileLine* fl)
: AstNode(fl) {}
virtual ~AstNodeStmt() {}
// METHODS
};
struct AstNodeAssign : public AstNodeStmt {
AstNodeAssign(FileLine* fl, AstNode* lhsp, AstNode* rhsp)
: AstNodeStmt(fl) {
setOp1p(rhsp); setOp2p(lhsp);
if (lhsp) widthSignedFrom(lhsp);
}
virtual ~AstNodeAssign() {}
virtual AstNode* cloneType(AstNode* lhsp, AstNode* rhsp)=0; // Clone single node, just get same type back.
// So iteration hits the RHS which is "earlier" in execution order, it's op1, not op2
AstNode* rhsp() const { return op1p()->castNode(); } // op1 = Assign from
AstNode* lhsp() const { return op2p()->castNode(); } // op2 = Assign to
void rhsp(AstNode* np) { setOp1p(np); }
void lhsp(AstNode* np) { setOp2p(np); }
virtual bool cleanRhs() { return true; }
virtual int instrCount() const { return widthInstrs(); }
virtual V3Hash sameHash() const { return V3Hash(); }
virtual bool same(AstNode*) const { return true; }
};
struct AstNodeFor : public AstNodeStmt {
AstNodeFor(FileLine* fileline, AstNode* initsp, AstNode* condp,
AstNode* incsp, AstNode* bodysp)
: AstNodeStmt(fileline) {
addNOp1p(initsp); setOp2p(condp); addNOp3p(incsp); addNOp4p(bodysp);
}
virtual ~AstNodeFor() {}
AstNode* initsp() const { return op1p()->castNode(); } // op1= initial statements
AstNode* condp() const { return op2p()->castNode(); } // op2= condition to continue
AstNode* incsp() const { return op3p()->castNode(); } // op3= increment statements
AstNode* bodysp() const { return op4p()->castNode(); } // op4= body of loop
virtual bool isGateOptimizable() const { return false; }
virtual bool isPredictOptimizable() const { return false; }
virtual int instrCount() const { return instrCountBranch(); }
virtual V3Hash sameHash() const { return V3Hash(); }
virtual bool same(AstNode* samep) const { return true; }
};
struct AstNodeIf : public AstNodeStmt {
private:
AstBranchPred m_branchPred; // Branch prediction as taken/untaken?
public:
AstNodeIf(FileLine* fl, AstNode* condp, AstNode* ifsp, AstNode* elsesp)
: AstNodeStmt(fl) {
setOp1p(condp); addNOp2p(ifsp); addNOp3p(elsesp);
}
virtual ~AstNodeIf() {}
AstNode* condp() const { return op1p(); } // op1 = condition
AstNode* ifsp() const { return op2p(); } // op2 = list of true statements
AstNode* elsesp() const { return op3p(); } // op3 = list of false statements
void condp(AstNode* newp) { setOp1p(newp); }
void addIfsp(AstNode* newp) { addOp2p(newp); }
void addElsesp(AstNode* newp) { addOp3p(newp); }
virtual bool isGateOptimizable() const { return false; }
virtual int instrCount() const { return instrCountBranch(); }
virtual V3Hash sameHash() const { return V3Hash(); }
virtual bool same(AstNode* samep) const { return true; }
void branchPred(AstBranchPred flag) { m_branchPred = flag; }
AstBranchPred branchPred() const { return m_branchPred; }
};
struct AstNodeCase : public AstNodeStmt {
AstNodeCase(FileLine* fl, AstNode* exprp, AstNode* casesp)
: AstNodeStmt(fl) {
setOp1p(exprp); addNOp2p(casesp);
}
virtual ~AstNodeCase() {}
virtual int instrCount() const { return instrCountBranch(); }
AstNode* exprp() const { return op1p()->castNode(); } // op1 = case condition <expression>
AstCaseItem* itemsp() const { return op2p()->castCaseItem(); } // op2 = list of case expressions
AstNode* notParallelp() const { return op3p()->castNode(); } // op3 = assertion code for non-full case's
void addItemsp(AstNode* nodep) { addOp2p(nodep); }
void addNotParallelp(AstNode* nodep) { setOp3p(nodep); }
};
class AstNodeVarRef : public AstNodeMath {
// A AstVarRef or AstVarXRef
private:
bool m_lvalue; // Left hand side assignment
AstVar* m_varp; // [AfterLink] Pointer to variable itself
AstVarScope* m_varScopep; // Varscope for hierarchy
string m_name; // Name of variable
string m_hiername; // Scope converted into name-> for emitting
bool m_hierThis; // Hiername points to "this" function
public:
AstNodeVarRef(FileLine* fl, const string& name, bool lvalue)
: AstNodeMath(fl), m_lvalue(lvalue), m_varp(NULL), m_varScopep(NULL),
m_name(name), m_hierThis(false) {
}
AstNodeVarRef(FileLine* fl, const string& name, AstVar* varp, bool lvalue)
: AstNodeMath(fl), m_lvalue(lvalue), m_varp(varp), m_varScopep(NULL),
m_name(name), m_hierThis(false) {
// May have varp==NULL
if (m_varp) widthSignedFrom((AstNode*)m_varp);
}
virtual ~AstNodeVarRef() {}
virtual bool broken() const;
virtual int instrCount() const { return widthInstrs(); }
virtual void cloneRelink();
virtual string name() const { return m_name; } // * = Var name
void name(const string& name) { m_name = name; }
bool lvalue() const { return m_lvalue; }
void lvalue(bool lval) { m_lvalue=lval; } // Avoid using this; Set in constructor
AstVar* varp() const { return m_varp; } // [After Link] Pointer to variable
void varp(AstVar* varp) { m_varp=varp; }
AstVarScope* varScopep() const { return m_varScopep; }
void varScopep(AstVarScope* varscp) { m_varScopep=varscp; }
string hiername() const { return m_hiername; }
void hiername(const string& hn) { m_hiername = hn; }
bool hierThis() const { return m_hierThis; }
void hierThis(bool flag) { m_hierThis = flag; }
};
class AstNodePli : public AstNodeStmt {
string m_text;
public:
AstNodePli(FileLine* fl, const string& text, AstNode* exprsp)
: AstNodeStmt(fl), m_text(text) {
addNOp1p(exprsp); }
virtual ~AstNodePli() {}
virtual string name() const { return m_text; }
virtual int instrCount() const { return instrCountPli(); }
void exprsp(AstNode* nodep) { addOp1p(nodep); } // op1 = Expressions to output
AstNode* exprsp() const { return op1p()->castNode(); } // op1 = Expressions to output
string text() const { return m_text; } // * = Text to display
void text(const string& text) { m_text=text; }
// op2p,op3p... used by AstDisplay
};
struct AstNodeText : public AstNode {
private:
string m_text;
public:
// Node that simply puts text into the output stream
AstNodeText(FileLine* fileline, const string& textp)
: AstNode(fileline) {
m_text = textp; // Copy it
}
virtual ~AstNodeText() {}
const string& text() const { return m_text; }
virtual V3Hash sameHash() const { return V3Hash(text()); }
virtual bool same(AstNode* samep) const {
return text()==samep->castNodeText()->text(); }
};
struct AstNodeSel : public AstNodeBiop {
// Single bit range extraction, perhaps with non-constant selection or array selection
AstNodeSel(FileLine* fl, AstNode* fromp, AstNode* bitp)
:AstNodeBiop(fl, fromp, bitp) {}
AstNode* fromp() const { return op1p()->castNode(); } // op1 = Extracting what (NULL=TBD during parsing)
AstNode* bitp() const { return op2p()->castNode(); } // op2 = Msb selection expression
int bitConst() const;
};
//######################################################################
// Tasks/functions common handling
struct AstNodeFTask : public AstNode {
private:
string m_name; // Name of task
bool m_taskPublic; // Public task
public:
// Node that simply puts name into the output stream
AstNodeFTask(FileLine* fileline, const string& name, AstNode* stmtsp)
: AstNode(fileline)
, m_name(name), m_taskPublic(false) {
addNOp3p(stmtsp);
}
virtual ~AstNodeFTask() {}
virtual void dump(ostream& str=cout);
virtual string name() const { return m_name; } // * = Var name
virtual bool maybePointedTo() const { return true; }
// {AstFunc only} op1 = Range output variable
// op3 = Statements/Ports/Vars
void name(const string& name) { m_name = name; }
AstNode* stmtsp() const { return op3p()->castNode(); } // op1 = List of statements
void addStmtsp(AstNode* nodep) { addOp3p(nodep); }
void taskPublic(bool flag) { m_taskPublic=flag; }
bool taskPublic() const { return m_taskPublic; }
};
struct AstNodeFTaskRef : public AstNode {
// A reference to a task (or function)
private:
AstNodeFTask* m_taskp; // [AfterLink] Pointer to task referenced
string m_name; // Name of variable
string m_dotted; // Dotted part of scope to task or ""
string m_inlinedDots; // Dotted hierarchy flattened out
public:
AstNodeFTaskRef(FileLine* fl, AstNode* namep, AstNode* pinsp)
:AstNode(fl)
, m_taskp(NULL) {
setOp1p(namep); addNOp2p(pinsp);
}
virtual ~AstNodeFTaskRef() {}
virtual bool broken() const { return m_taskp && !m_taskp->brokeExists(); }
virtual void cloneRelink() { if (m_taskp && m_taskp->clonep()) {
m_taskp = m_taskp->clonep()->castNodeFTask();
}}
virtual void dump(ostream& str=cout);
virtual string name() const { return m_name; } // * = Var name
string dotted() const { return m_dotted; } // * = Scope name or ""
string prettyDotted() const { return prettyName(dotted()); }
string inlinedDots() const { return m_inlinedDots; }
void inlinedDots(const string& flag) { m_inlinedDots = flag; }
AstNodeFTask* taskp() const { return m_taskp; } // [After Link] Pointer to variable
void taskp(AstNodeFTask* taskp) { m_taskp=taskp; }
void name(const string& name) { m_name = name; }
void dotted(const string& name) { m_dotted = name; }
// op1 = namep
AstNode* namep() const { return op1p(); }
// op2 = Pin interconnection list
AstNode* pinsp() const { return op2p()->castNode(); }
void addPinsp(AstNode* nodep) { addOp2p(nodep); }
};
//######################################################################
#include "V3AstNodes.h"
#include "V3Ast__gen_impl.h" // From ./astgen
// Things like:
// inline AstAlways* AstNode::castAlways() { return dynamic_cast<AstAlways*>(this);}
//######################################################################
// Inline ACCESSORS
inline bool AstNode::isZero() { return (this->castConst() && this->castConst()->num().isEqZero()); }
inline bool AstNode::isNeqZero() { return (this->castConst() && this->castConst()->num().isNeqZero()); }
inline bool AstNode::isOne() { return (this->castConst() && this->castConst()->num().isEqOne()); }
inline bool AstNode::isAllOnes() { return (this->castConst() && this->castConst()->num().isEqAllOnes(this->width())); }
inline bool AstNode::isAllOnesV() { return (this->castConst() && this->castConst()->num().isEqAllOnes(this->widthMin())); }
#endif // Guard