verilator/include/verilated.h
Stefan Wallentowitz 633131b984 Return vpiModule when it is the scope.
Return the vpiModule when it is searched for by name and not the vpiScope,
now that we actually have it (one step further to supporting vpiModule in
complete).

Signed-off-by: Stefan Wallentowitz <stefan@wallentowitz.de>
Signed-off-by: Wilson Snyder <wsnyder@wsnyder.org>
2019-10-02 18:47:12 -04:00

2348 lines
101 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
//
// Copyright 2003-2019 by Wilson Snyder. This program is free software; you can
// redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License.
// Version 2.0.
//
// Verilator is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
//*************************************************************************
///
/// \file
/// \brief Verilator: Common include for all Verilated C files
///
/// This file is included automatically by Verilator at the top of
/// all C++ files it generates. It contains standard macros and
/// classes required by the Verilated code.
///
/// Code available from: http://www.veripool.org/verilator
///
//*************************************************************************
#ifndef _VERILATED_H_
#define _VERILATED_H_ 1 ///< Header Guard
#include "verilatedos.h"
#include <cassert>
#include <cmath>
#include <cstdarg>
#include <cstdio>
#include <cstdlib>
#include <cstring>
// <iostream> avoided to reduce compile time
// <map> avoided and instead in verilated_heavy.h to reduce compile time
// <string> avoided and instead in verilated_heavy.h to reduce compile time
#ifdef VL_THREADED
# include <atomic>
# include <mutex>
# include <thread>
#endif
//=============================================================================
// Switches
#if VM_TRACE // Verilator tracing requested
# define WAVES 1 // Set backward compatibility flag
#endif
//=========================================================================
// Basic types
// P // Packed data of bit type (C/S/I/Q/W)
typedef vluint8_t CData; ///< Verilated pack data, 1-8 bits
typedef vluint16_t SData; ///< Verilated pack data, 9-16 bits
typedef vluint32_t IData; ///< Verilated pack data, 17-32 bits
typedef vluint64_t QData; ///< Verilated pack data, 33-64 bits
typedef vluint32_t WData; ///< Verilated pack data, >64 bits, as an array
// float F // No typedef needed; Verilator uses float
// double D // No typedef needed; Verilator uses double
// string N // No typedef needed; Verilator uses string
typedef const WData* WDataInP; ///< Array input to a function
typedef WData* WDataOutP; ///< Array output from a function
typedef void (*VerilatedVoidCb)(void);
class SpTraceVcd;
class SpTraceVcdCFile;
class VerilatedEvalMsgQueue;
class VerilatedScopeNameMap;
class VerilatedVar;
class VerilatedVarNameMap;
class VerilatedVcd;
class VerilatedVcdC;
class VerilatedFst;
class VerilatedFstC;
enum VerilatedVarType {
VLVT_UNKNOWN=0,
VLVT_PTR, // Pointer to something
VLVT_UINT8, // AKA CData
VLVT_UINT16, // AKA SData
VLVT_UINT32, // AKA IData
VLVT_UINT64, // AKA QData
VLVT_WDATA, // AKA WData
VLVT_STRING // C++ string
};
enum VerilatedVarFlags {
VLVD_0 = 0, // None
VLVD_IN = 1, // == vpiInput
VLVD_OUT = 2, // == vpiOutput
VLVD_INOUT = 3, // == vpiInOut
VLVD_NODIR = 5, // == vpiNoDirection
VLVF_MASK_DIR = 7, // Bit mask for above directions
// Flags
VLVF_PUB_RD = (1<<8), // Public readable
VLVF_PUB_RW = (1<<9), // Public writable
VLVF_DPI_CLAY = (1<<10) // DPI compatible C standard layout
};
//=========================================================================
/// Mutex and threading support
/// Return current thread ID (or 0), not super fast, cache if needed
extern vluint32_t VL_THREAD_ID() VL_MT_SAFE;
#if VL_THREADED
#define VL_LOCK_SPINS 50000 /// Number of times to spin for a mutex before relaxing
/// Mutex, wrapped to allow -fthread_safety checks
class VL_CAPABILITY("mutex") VerilatedMutex {
private:
std::mutex m_mutex; // Mutex
public:
VerilatedMutex() {}
~VerilatedMutex() {}
const VerilatedMutex& operator!() const { return *this; } // For -fthread_safety
/// Acquire/lock mutex
void lock() VL_ACQUIRE() {
// Try to acquire the lock by spinning. If the wait is short,
// avoids a trap to the OS plus OS scheduler overhead.
if (VL_LIKELY(try_lock())) return; // Short circuit loop
for (int i = 0; i < VL_LOCK_SPINS; ++i) {
if (VL_LIKELY(try_lock())) return;
VL_CPU_RELAX();
}
// Spinning hasn't worked, pay the cost of blocking.
m_mutex.lock();
}
/// Release/unlock mutex
void unlock() VL_RELEASE() { m_mutex.unlock(); }
/// Try to acquire mutex. Returns true on success, and false on failure.
bool try_lock() VL_TRY_ACQUIRE(true) { return m_mutex.try_lock(); }
};
/// Lock guard for mutex (ala std::lock_guard), wrapped to allow -fthread_safety checks
class VL_SCOPED_CAPABILITY VerilatedLockGuard {
VL_UNCOPYABLE(VerilatedLockGuard);
private:
VerilatedMutex& m_mutexr;
public:
explicit VerilatedLockGuard(VerilatedMutex& mutexr) VL_ACQUIRE(mutexr)
: m_mutexr(mutexr) {
m_mutexr.lock();
}
~VerilatedLockGuard() VL_RELEASE() {
m_mutexr.unlock();
}
};
#else // !VL_THREADED
/// Empty non-threaded mutex to avoid #ifdefs in consuming code
class VerilatedMutex {
public:
void lock() {}
void unlock() {}
};
/// Empty non-threaded lock guard to avoid #ifdefs in consuming code
class VerilatedLockGuard {
VL_UNCOPYABLE(VerilatedLockGuard);
public:
explicit VerilatedLockGuard(VerilatedMutex&) {}
~VerilatedLockGuard() {}
};
#endif // VL_THREADED
/// Remember the calling thread at construction time, and make sure later calls use same thread
class VerilatedAssertOneThread {
// MEMBERS
#if defined(VL_THREADED) && defined(VL_DEBUG)
vluint32_t m_threadid; /// Thread that is legal
public:
// CONSTRUCTORS
/// The constructor establishes the thread id for all later calls.
/// If necessary, a different class could be made that inits it otherwise.
VerilatedAssertOneThread() : m_threadid(VL_THREAD_ID()) { }
~VerilatedAssertOneThread() { check(); }
// METHODS
/// Check that the current thread ID is the same as the construction thread ID
void check() VL_MT_UNSAFE_ONE {
if (VL_UNCOVERABLE(m_threadid != VL_THREAD_ID())) {
fatal_different(); // LCOV_EXCL_LINE
}
}
static void fatal_different() VL_MT_SAFE;
#else // !VL_THREADED || !VL_DEBUG
public:
void check() {}
#endif
};
//=========================================================================
/// Base class for all Verilated module classes
class VerilatedScope;
class VerilatedModule {
VL_UNCOPYABLE(VerilatedModule);
private:
const char* m_namep; ///< Module name
public:
explicit VerilatedModule(const char* namep); ///< Create module with given hierarchy name
~VerilatedModule();
const char* name() const { return m_namep; } ///< Return name of module
};
//=========================================================================
// Declare nets
#ifndef VL_ST_SIG
# define VL_ST_SIG8(name, msb,lsb) CData name ///< Declare signal, 1-8 bits
# define VL_ST_SIG16(name, msb,lsb) SData name ///< Declare signal, 9-16 bits
# define VL_ST_SIG64(name, msb,lsb) QData name ///< Declare signal, 33-64 bits
# define VL_ST_SIG(name, msb,lsb) IData name ///< Declare signal, 17-32 bits
# define VL_ST_SIGW(name,msb,lsb,words) WData name[words] ///< Declare signal, 65+ bits
#endif
#ifndef VL_SIG
# define VL_SIG8(name, msb,lsb) CData name ///< Declare signal, 1-8 bits
# define VL_SIG16(name, msb,lsb) SData name ///< Declare signal, 9-16 bits
# define VL_SIG64(name, msb,lsb) QData name ///< Declare signal, 33-64 bits
# define VL_SIG(name, msb,lsb) IData name ///< Declare signal, 17-32 bits
# define VL_SIGW(name, msb,lsb, words) WData name[words] ///< Declare signal, 65+ bits
# define VL_IN8(name, msb,lsb) CData name ///< Declare input signal, 1-8 bits
# define VL_IN16(name, msb,lsb) SData name ///< Declare input signal, 9-16 bits
# define VL_IN64(name, msb,lsb) QData name ///< Declare input signal, 33-64 bits
# define VL_IN(name, msb,lsb) IData name ///< Declare input signal, 17-32 bits
# define VL_INW(name, msb,lsb, words) WData name[words] ///< Declare input signal, 65+ bits
# define VL_INOUT8(name, msb,lsb) CData name ///< Declare bidir signal, 1-8 bits
# define VL_INOUT16(name, msb,lsb) SData name ///< Declare bidir signal, 9-16 bits
# define VL_INOUT64(name, msb,lsb) QData name ///< Declare bidir signal, 33-64 bits
# define VL_INOUT(name, msb,lsb) IData name ///< Declare bidir signal, 17-32 bits
# define VL_INOUTW(name, msb,lsb, words) WData name[words] ///< Declare bidir signal, 65+ bits
# define VL_OUT8(name, msb,lsb) CData name ///< Declare output signal, 1-8 bits
# define VL_OUT16(name, msb,lsb) SData name ///< Declare output signal, 9-16 bits
# define VL_OUT64(name, msb,lsb) QData name ///< Declare output signal, 33-64bits
# define VL_OUT(name, msb,lsb) IData name ///< Declare output signal, 17-32 bits
# define VL_OUTW(name, msb,lsb, words) WData name[words] ///< Declare output signal, 65+ bits
# define VL_PIN_NOP(instname,pin,port) ///< Connect a pin, ala SP_PIN
# define VL_CELL(instname,type) ///< Declare a cell, ala SP_CELL
/// Declare a module, ala SC_MODULE
# define VL_MODULE(modname) class modname : public VerilatedModule
/// Constructor, ala SC_CTOR
# define VL_CTOR(modname) modname(const char* __VCname="")
/// Constructor declaration for C++, ala SP_CTOR_IMPL
# define VL_CTOR_IMP(modname) modname::modname(const char* __VCname) : VerilatedModule(__VCname)
/// Constructor declaration for SystemC, ala SP_CTOR_IMPL
# define VL_SC_CTOR_IMP(modname) modname::modname(sc_module_name)
#endif
//=========================================================================
// Functions overridable by user defines
// (Internals however must use VL_PRINTF_MT, which calls these.)
#ifndef VL_PRINTF
# define VL_PRINTF printf ///< Print ala printf, called from main thread; may redefine if desired
#endif
#ifndef VL_VPRINTF
# define VL_VPRINTF vprintf ///< Print ala vprintf, called from main thread; may redefine if desired
#endif
//===========================================================================
/// Verilator symbol table base class
class VerilatedSyms {
public: // But for internal use only
#ifdef VL_THREADED
VerilatedEvalMsgQueue* __Vm_evalMsgQp;
#endif
VerilatedSyms();
~VerilatedSyms();
};
//===========================================================================
/// Verilator global class information class
/// This class is initialized by main thread only. Reading post-init is thread safe.
class VerilatedScope {
public:
typedef enum {
SCOPE_MODULE, SCOPE_OTHER
} Type; // Type of a scope, currently module is only interesting
private:
// Fastpath:
VerilatedSyms* m_symsp; ///< Symbol table
void** m_callbacksp; ///< Callback table pointer (Fastpath)
int m_funcnumMax; ///< Maxium function number stored (Fastpath)
// 4 bytes padding (on -m64), for rent.
VerilatedVarNameMap* m_varsp; ///< Variable map
const char* m_namep; ///< Scope name (Slowpath)
const char* m_identifierp; ///< Identifier of scope (with escapes removed)
Type m_type; ///< Type of the scope
public: // But internals only - called from VerilatedModule's
VerilatedScope();
~VerilatedScope();
void configure(VerilatedSyms* symsp, const char* prefixp, const char* suffix,
const char* identifier, const Type type) VL_MT_UNSAFE;
void exportInsert(int finalize, const char* namep, void* cb) VL_MT_UNSAFE;
void varInsert(int finalize, const char* namep, void* datap,
VerilatedVarType vltype, int vlflags, int dims, ...) VL_MT_UNSAFE;
// ACCESSORS
const char* name() const { return m_namep; }
const char* identifier() const { return m_identifierp; }
inline VerilatedSyms* symsp() const { return m_symsp; }
VerilatedVar* varFind(const char* namep) const VL_MT_SAFE_POSTINIT;
VerilatedVarNameMap* varsp() const VL_MT_SAFE_POSTINIT { return m_varsp; }
void scopeDump() const;
void* exportFindError(int funcnum) const;
static void* exportFindNullError(int funcnum) VL_MT_SAFE;
static inline void* exportFind(const VerilatedScope* scopep, int funcnum) VL_MT_SAFE {
if (VL_UNLIKELY(!scopep)) return exportFindNullError(funcnum);
if (VL_LIKELY(funcnum < scopep->m_funcnumMax)) {
// m_callbacksp must be declared, as Max'es are > 0
return scopep->m_callbacksp[funcnum];
} else { // LCOV_EXCL_LINE
return scopep->exportFindError(funcnum); // LCOV_EXCL_LINE
}
}
Type type() const { return m_type; }
};
class VerilatedHierarchy {
public:
void add(VerilatedScope* fromp, VerilatedScope* top);
};
//===========================================================================
/// Verilator global static information class
class Verilated {
// MEMBERS
// Slow path variables
static VerilatedMutex m_mutex; ///< Mutex for s_s/s_ns members, when VL_THREADED
static VerilatedVoidCb s_flushCb; ///< Flush callback function
static struct Serialized { // All these members serialized/deserialized
// Fast path
int s_debug; ///< See accessors... only when VL_DEBUG set
bool s_calcUnusedSigs; ///< Waves file on, need all signals calculated
bool s_gotFinish; ///< A $finish statement executed
bool s_assertOn; ///< Assertions are enabled
bool s_fatalOnVpiError; ///< Stop on vpi error/unsupported
// Slow path
int s_randReset; ///< Random reset: 0=all 0s, 1=all 1s, 2=random
int s_randSeed; ///< Random seed: 0=random
Serialized();
~Serialized() {}
} s_s;
static struct NonSerialized { // Non-serialized information
// These are reloaded from on command-line settings, so do not need to persist
// Fast path
vluint64_t s_profThreadsStart; ///< +prof+threads starting time
vluint32_t s_profThreadsWindow; ///< +prof+threads window size
// Slow path
const char* s_profThreadsFilenamep; ///< +prof+threads filename
NonSerialized();
~NonSerialized();
} s_ns;
// no need to be save-restored (serialized) the
// assumption is that the restore is allowed to pass different arguments
static struct CommandArgValues {
VerilatedMutex m_argMutex; ///< Mutex for s_args members, when VL_THREADED
int argc;
const char** argv;
CommandArgValues() : argc(0), argv(NULL) {}
~CommandArgValues() {}
} s_args;
// Not covered by mutex, as per-thread
static VL_THREAD_LOCAL struct ThreadLocal {
#ifdef VL_THREADED
vluint32_t t_mtaskId; ///< Current mtask# executing on this thread
vluint32_t t_endOfEvalReqd; ///< Messages may be pending, thread needs endOf-eval calls
#endif
const VerilatedScope* t_dpiScopep; ///< DPI context scope
const char* t_dpiFilename; ///< DPI context filename
int t_dpiLineno; ///< DPI context line number
ThreadLocal();
~ThreadLocal();
} t_s;
private:
// CONSTRUCTORS
VL_UNCOPYABLE(Verilated);
public:
// METHODS - User called
/// Select initial value of otherwise uninitialized signals.
////
/// 0 = Set to zeros
/// 1 = Set all bits to one
/// 2 = Randomize all bits
static void randReset(int val) VL_MT_SAFE;
static int randReset() VL_MT_SAFE { return s_s.s_randReset; } ///< Return randReset value
static void randSeed(int val) VL_MT_SAFE;
static int randSeed() VL_MT_SAFE { return s_s.s_randSeed; } ///< Return randSeed value
/// Enable debug of internal verilated code
static void debug(int level) VL_MT_SAFE;
#ifdef VL_DEBUG
/// Return debug level
/// When multithreaded this may not immediately react to another thread
/// changing the level (no mutex)
static inline int debug() VL_MT_SAFE { return s_s.s_debug; }
#else
static inline int debug() VL_PURE { return 0; } ///< Return constant 0 debug level, so C++'s optimizer rips up
#endif
/// Enable calculation of unused signals
static void calcUnusedSigs(bool flag) VL_MT_SAFE;
static bool calcUnusedSigs() VL_MT_SAFE { ///< Return calcUnusedSigs value
return s_s.s_calcUnusedSigs; }
/// Did the simulation $finish?
static void gotFinish(bool flag) VL_MT_SAFE;
static bool gotFinish() VL_MT_SAFE { return s_s.s_gotFinish; } ///< Return if got a $finish
/// Allow traces to at some point be enabled (disables some optimizations)
static void traceEverOn(bool flag) VL_MT_SAFE {
if (flag) { calcUnusedSigs(flag); }
}
/// Enable/disable assertions
static void assertOn(bool flag) VL_MT_SAFE;
static bool assertOn() VL_MT_SAFE { return s_s.s_assertOn; }
/// Enable/disable vpi fatal
static void fatalOnVpiError(bool flag) VL_MT_SAFE;
static bool fatalOnVpiError() VL_MT_SAFE { return s_s.s_fatalOnVpiError; }
/// --prof-threads related settings
static void profThreadsStart(vluint64_t flag) VL_MT_SAFE;
static vluint64_t profThreadsStart() VL_MT_SAFE { return s_ns.s_profThreadsStart; }
static void profThreadsWindow(vluint64_t flag) VL_MT_SAFE;
static vluint32_t profThreadsWindow() VL_MT_SAFE { return s_ns.s_profThreadsWindow; }
static void profThreadsFilenamep(const char* flagp) VL_MT_SAFE;
static const char* profThreadsFilenamep() VL_MT_SAFE { return s_ns.s_profThreadsFilenamep; }
/// Flush callback for VCD waves
static void flushCb(VerilatedVoidCb cb) VL_MT_SAFE;
static void flushCall() VL_MT_SAFE;
/// Record command line arguments, for retrieval by $test$plusargs/$value$plusargs,
/// and for parsing +verilator+ run-time arguments.
/// This should be called before the first model is created.
static void commandArgs(int argc, const char** argv) VL_MT_SAFE;
static void commandArgs(int argc, char** argv) VL_MT_SAFE {
commandArgs(argc, const_cast<const char**>(argv)); }
static void commandArgsAdd(int argc, const char** argv);
static CommandArgValues* getCommandArgs() VL_MT_SAFE { return &s_args; }
/// Match plusargs with a given prefix. Returns static char* valid only for a single call
static const char* commandArgsPlusMatch(const char* prefixp) VL_MT_SAFE;
/// Produce name & version for (at least) VPI
static const char* productName() VL_PURE;
static const char* productVersion() VL_PURE;
/// Convenience OS utilities
static void mkdir(const char* dirname) VL_MT_UNSAFE;
/// When multithreaded, quiesce the model to prepare for trace/saves/coverage
/// This may only be called when no locks are held.
static void quiesce() VL_MT_SAFE;
/// For debugging, print much of the Verilator internal state.
/// The output of this function may change in future
/// releases - contact the authors before production use.
static void internalsDump() VL_MT_SAFE;
/// For debugging, print text list of all scope names with
/// dpiImport/Export context. This function may change in future
/// releases - contact the authors before production use.
static void scopesDump() VL_MT_SAFE;
public:
// METHODS - INTERNAL USE ONLY (but public due to what uses it)
// Internal: Create a new module name by concatenating two strings
static const char* catName(const char* n1, const char* n2); // Returns static data
// Internal: Throw signal assertion
static void overWidthError(const char* signame) VL_MT_SAFE;
// Internal: Find scope
static const VerilatedScope* scopeFind(const char* namep) VL_MT_SAFE;
static const VerilatedScopeNameMap* scopeNameMap() VL_MT_SAFE;
// Internal: Get and set DPI context
static const VerilatedScope* dpiScope() VL_MT_SAFE { return t_s.t_dpiScopep; }
static void dpiScope(const VerilatedScope* scopep) VL_MT_SAFE { t_s.t_dpiScopep = scopep; }
static void dpiContext(const VerilatedScope* scopep, const char* filenamep, int lineno) VL_MT_SAFE {
t_s.t_dpiScopep = scopep; t_s.t_dpiFilename = filenamep; t_s.t_dpiLineno = lineno; }
static void dpiClearContext() VL_MT_SAFE { t_s.t_dpiScopep = NULL; }
static bool dpiInContext() VL_MT_SAFE { return t_s.t_dpiScopep != NULL; }
static const char* dpiFilenamep() VL_MT_SAFE { return t_s.t_dpiFilename; }
static int dpiLineno() VL_MT_SAFE { return t_s.t_dpiLineno; }
static int exportFuncNum(const char* namep) VL_MT_SAFE;
static size_t serializedSize() VL_PURE { return sizeof(s_s); }
static void* serializedPtr() VL_MT_UNSAFE { return &s_s; } // Unsafe, for Serialize only
#ifdef VL_THREADED
/// Set the mtaskId, called when an mtask starts
static void mtaskId(vluint32_t id) VL_MT_SAFE { t_s.t_mtaskId = id; }
static vluint32_t mtaskId() VL_MT_SAFE { return t_s.t_mtaskId; }
static void endOfEvalReqdInc() VL_MT_SAFE { ++t_s.t_endOfEvalReqd; }
static void endOfEvalReqdDec() VL_MT_SAFE { --t_s.t_endOfEvalReqd; }
/// Called at end of each thread mtask, before finishing eval
static void endOfThreadMTask(VerilatedEvalMsgQueue* evalMsgQp) VL_MT_SAFE {
if (VL_UNLIKELY(t_s.t_endOfEvalReqd)) { endOfThreadMTaskGuts(evalMsgQp); }
}
/// Called at end of eval loop
static void endOfEval(VerilatedEvalMsgQueue* evalMsgQp) VL_MT_SAFE {
// It doesn't work to set endOfEvalReqd on the threadpool thread
// and then check it on the eval thread since it's thread local.
// It should be ok to call into endOfEvalGuts, it returns immediately
// if there are no transactions.
endOfEvalGuts(evalMsgQp);
}
#endif
private:
#ifdef VL_THREADED
static void endOfThreadMTaskGuts(VerilatedEvalMsgQueue* evalMsgQp) VL_MT_SAFE;
static void endOfEvalGuts(VerilatedEvalMsgQueue* evalMsgQp) VL_MT_SAFE;
#endif
};
//=========================================================================
// Extern functions -- User may override -- See verilated.cpp
/// Routine to call for $finish
/// User code may wish to replace this function, to do so, define VL_USER_FINISH.
/// This code does not have to be thread safe.
/// Verilator internal code must call VL_FINISH_MT instead, which eventually calls this.
extern void vl_finish(const char* filename, int linenum, const char* hier);
/// Routine to call for $stop
/// User code may wish to replace this function, to do so, define VL_USER_STOP.
/// This code does not have to be thread safe.
/// Verilator internal code must call VL_FINISH_MT instead, which eventually calls this.
extern void vl_stop(const char* filename, int linenum, const char* hier);
/// Routine to call for a couple of fatal messages
/// User code may wish to replace this function, to do so, define VL_USER_FATAL.
/// This code does not have to be thread safe.
/// Verilator internal code must call VL_FINISH_MT instead, which eventually calls this.
extern void vl_fatal(const char* filename, int linenum, const char* hier,
const char* msg);
//=========================================================================
// Extern functions -- Slow path
/// Multithread safe wrapper for calls to $finish
extern void VL_FINISH_MT(const char* filename, int linenum, const char* hier) VL_MT_SAFE;
/// Multithread safe wrapper for calls to $stop
extern void VL_STOP_MT(const char* filename, int linenum, const char* hier) VL_MT_SAFE;
/// Multithread safe wrapper to call for a couple of fatal messages
extern void VL_FATAL_MT(const char* filename, int linenum, const char* hier,
const char* msg) VL_MT_SAFE;
/// Print a string, multithread safe. Eventually VL_PRINTF will get called.
#ifdef VL_THREADED
extern void VL_PRINTF_MT(const char* formatp, ...) VL_ATTR_PRINTF(1) VL_MT_SAFE;
#else
# define VL_PRINTF_MT VL_PRINTF // The following parens will take care of themselves
#endif
/// Print a debug message from internals with standard prefix, with printf style format
extern void VL_DBG_MSGF(const char* formatp, ...) VL_ATTR_PRINTF(1) VL_MT_SAFE;
extern IData VL_RANDOM_I(int obits); ///< Randomize a signal
extern QData VL_RANDOM_Q(int obits); ///< Randomize a signal
extern WDataOutP VL_RANDOM_W(int obits, WDataOutP outwp); ///< Randomize a signal
/// Init time only, so slow is fine
extern IData VL_RAND_RESET_I(int obits); ///< Random reset a signal
extern QData VL_RAND_RESET_Q(int obits); ///< Random reset a signal
extern WDataOutP VL_RAND_RESET_W(int obits, WDataOutP outwp); ///< Random reset a signal
extern WDataOutP VL_ZERO_RESET_W(int obits, WDataOutP outwp); ///< Zero reset a signal (slow - else use VL_ZERO_W)
#if VL_THREADED
/// Return high-precision counter for profiling, or 0x0 if not available
inline QData VL_RDTSC_Q() { vluint64_t val; VL_RDTSC(val); return val; }
#endif
/// Math
extern WDataOutP _vl_moddiv_w(int lbits, WDataOutP owp,
WDataInP lwp, WDataInP rwp, bool is_modulus);
/// File I/O
extern IData VL_FGETS_IXI(int obits, void* destp, IData fpi);
extern IData VL_FOPEN_S(const char* filenamep, const char* modep);
extern IData VL_FOPEN_WI(int fnwords, WDataInP filenamep, IData mode);
extern IData VL_FOPEN_QI(QData filename, IData mode);
inline IData VL_FOPEN_II(IData filename, IData mode) VL_MT_SAFE {
return VL_FOPEN_QI(filename, mode); }
extern void VL_FCLOSE_I(IData fdi);
extern IData VL_FREAD_I(int width, int array_lsb, int array_size,
void* memp, IData fpi, IData start, IData count);
extern void VL_READMEM_W(bool hex, int width, int depth, int array_lsb, int fnwords,
WDataInP filenamep, void* memp, IData start, IData end);
extern void VL_READMEM_Q(bool hex, int width, int depth, int array_lsb, int fnwords,
QData filename, void* memp, IData start, IData end);
inline void VL_READMEM_I(bool hex, int width, int depth, int array_lsb, int fnwords,
IData filename, void* memp, IData start, IData end) VL_MT_SAFE {
VL_READMEM_Q(hex, width, depth, array_lsb, fnwords, filename, memp, start, end); }
extern void VL_WRITEMEM_W(bool hex, int width, int depth, int array_lsb, int fnwords,
WDataInP filenamep, const void* memp, IData start, IData end);
extern void VL_WRITEMEM_Q(bool hex, int width, int depth, int array_lsb, int fnwords,
QData filename, const void* memp, IData start, IData end);
inline void VL_WRITEMEM_I(bool hex, int width, int depth, int array_lsb, int fnwords,
IData filename, const void* memp, IData start, IData end) VL_MT_SAFE {
VL_WRITEMEM_Q(hex, width, depth, array_lsb, fnwords, filename, memp, start, end); }
extern void VL_WRITEF(const char* formatp, ...);
extern void VL_FWRITEF(IData fpi, const char* formatp, ...);
extern IData VL_FSCANF_IX(IData fpi, const char* formatp, ...);
extern IData VL_SSCANF_IIX(int lbits, IData ld, const char* formatp, ...);
extern IData VL_SSCANF_IQX(int lbits, QData ld, const char* formatp, ...);
extern IData VL_SSCANF_IWX(int lbits, WDataInP lwp, const char* formatp, ...);
extern void VL_SFORMAT_X(int obits, CData& destr, const char* formatp, ...);
extern void VL_SFORMAT_X(int obits, SData& destr, const char* formatp, ...);
extern void VL_SFORMAT_X(int obits, IData& destr, const char* formatp, ...);
extern void VL_SFORMAT_X(int obits, QData& destr, const char* formatp, ...);
extern void VL_SFORMAT_X(int obits, void* destp, const char* formatp, ...);
extern IData VL_SYSTEM_IW(int lhswords, WDataInP lhsp);
extern IData VL_SYSTEM_IQ(QData lhs);
inline IData VL_SYSTEM_II(IData lhs) VL_MT_SAFE { return VL_SYSTEM_IQ(lhs); }
extern IData VL_TESTPLUSARGS_I(const char* formatp);
extern const char* vl_mc_scan_plusargs(const char* prefixp); // PLIish
//=========================================================================
// Base macros
/// Return true if data[bit] set; not 0/1 return, but 0/non-zero return.
#define VL_BITISSET_I(data,bit) ((data) & (VL_UL(1) << VL_BITBIT_I(bit)))
#define VL_BITISSET_Q(data,bit) ((data) & (VL_ULL(1) << VL_BITBIT_Q(bit)))
#define VL_BITISSET_W(data,bit) ((data)[VL_BITWORD_I(bit)] & (VL_UL(1) << VL_BITBIT_I(bit)))
#define VL_BITISSETLIMIT_W(data,width,bit) \
(((bit)<(width)) && (data)[VL_BITWORD_I(bit)] & (VL_UL(1) << VL_BITBIT_I(bit)))
/// Shift appropriate word by bit. Does not account for wrapping between two words
#define VL_BITRSHIFT_W(data,bit) ((data)[VL_BITWORD_I(bit)] >> VL_BITBIT_I(bit))
/// Create two 32-bit words from quadword
/// WData is always at least 2 words; does not clean upper bits
#define VL_SET_WQ(owp,data) { (owp)[0] = static_cast<IData>(data); \
(owp)[1] = static_cast<IData>((data)>>VL_WORDSIZE); }
#define VL_SET_WI(owp,data) { (owp)[0] = static_cast<IData>(data); (owp)[1] = 0; }
#define VL_SET_QW(lwp) \
( (static_cast<QData>((lwp)[0])) \
| (static_cast<QData>((lwp)[1]) << (static_cast<QData>(VL_WORDSIZE)) ))
#define _VL_SET_QII(ld,rd) ((static_cast<QData>(ld)<<VL_ULL(32)) | static_cast<QData>(rd))
/// Return FILE* from IData
extern FILE* VL_CVT_I_FP(IData lhs);
// Use a union to avoid cast-to-different-size warnings
/// Return void* from QData
static inline void* VL_CVT_Q_VP(QData lhs) VL_PURE {
union { void* fp; QData q; } u; u.q=lhs; return u.fp; }
/// Return QData from void*
static inline QData VL_CVT_VP_Q(void* fp) VL_PURE {
union { void* fp; QData q; } u; u.q=0; u.fp=fp; return u.q; }
/// Return double from QData (bits, not numerically)
static inline double VL_CVT_D_Q(QData lhs) VL_PURE {
union { double d; QData q; } u; u.q=lhs; return u.d; }
/// Return QData from double (bits, not numerically)
static inline QData VL_CVT_Q_D(double lhs) VL_PURE {
union { double d; QData q; } u; u.d=lhs; return u.q; }
/// Return double from QData (numeric)
static inline double VL_ITOR_D_I(IData lhs) VL_PURE {
return static_cast<double>(static_cast<vlsint32_t>(lhs)); }
/// Return QData from double (numeric)
static inline IData VL_RTOI_I_D(double lhs) VL_PURE {
return static_cast<vlsint32_t>(VL_TRUNC(lhs)); }
/// Return QData from double (numeric)
static inline IData VL_RTOIROUND_I_D(double lhs) VL_PURE {
return static_cast<vlsint32_t>(VL_ROUND(lhs)); }
// Sign extend such that if MSB set, we get ffff_ffff, else 0s
// (Requires clean input)
#define VL_SIGN_I(nbits,lhs) ((lhs) >> VL_BITBIT_I((nbits) - VL_UL(1)))
#define VL_SIGN_Q(nbits,lhs) ((lhs) >> VL_BITBIT_Q((nbits) - VL_ULL(1)))
#define VL_SIGN_W(nbits,rwp) ((rwp)[VL_BITWORD_I((nbits)-VL_UL(1))] >> VL_BITBIT_I((nbits)-VL_UL(1)))
#define VL_SIGNONES_I(nbits,lhs) (-(VL_SIGN_I(nbits, lhs)))
// Sign bit extended up to MSB, doesn't include unsigned portion
// Optimization bug in GCC 3.3 returns different bitmasks to later states for
static inline IData VL_EXTENDSIGN_I(int lbits, IData lhs) VL_PURE {
return (-((lhs)&(VL_UL(1)<<(lbits-1)))); }
static inline QData VL_EXTENDSIGN_Q(int lbits, QData lhs) VL_PURE {
return (-((lhs)&(VL_ULL(1)<<(lbits-1)))); }
// Debugging prints
extern void _VL_DEBUG_PRINT_W(int lbits, WDataInP iwp);
//=========================================================================
// Pli macros
#ifndef VL_TIME_PRECISION
# define VL_TIME_PRECISION (-12) ///< Timescale units only for for VPI return - picoseconds
#endif
#ifndef VL_TIME_MULTIPLIER
# define VL_TIME_MULTIPLIER 1
#endif
/// Return current simulation time
#if defined(SYSTEMC_VERSION) && (SYSTEMC_VERSION>20011000)
# define VL_TIME_I() (static_cast<IData>(sc_time_stamp().to_default_time_units()*VL_TIME_MULTIPLIER))
# define VL_TIME_Q() (static_cast<QData>(sc_time_stamp().to_default_time_units()*VL_TIME_MULTIPLIER))
# define VL_TIME_D() (static_cast<double>(sc_time_stamp().to_default_time_units()*VL_TIME_MULTIPLIER))
#else
# define VL_TIME_I() (static_cast<IData>(sc_time_stamp()*VL_TIME_MULTIPLIER))
# define VL_TIME_Q() (static_cast<QData>(sc_time_stamp()*VL_TIME_MULTIPLIER))
# define VL_TIME_D() (static_cast<double>(sc_time_stamp()*VL_TIME_MULTIPLIER))
extern double sc_time_stamp();
#endif
/// Evaluate expression if debug enabled
#ifdef VL_DEBUG
# define VL_DEBUG_IF(text) {if (VL_UNLIKELY(Verilated::debug())) {text}}
#else
# define VL_DEBUG_IF(text)
#endif
/// Collect coverage analysis for this line
#ifndef SP_AUTO_COVER3
# define SP_AUTO_COVER3(what,file,line)
#endif
//=========================================================================
// Functional macros/routines
// These all take the form
// VL_func_IW(bits, bits, op, op)
// VL_func_WW(bits, bits, out, op, op)
// The I/W indicates if it's a integer or wide for the output and each operand.
// The bits indicate the bit width of the output and each operand.
// If wide output, a temporary storage location is specified.
//===================================================================
// SETTING OPERATORS
// Output clean
// EMIT_RULE: VL_CLEAN: oclean=clean; obits=lbits;
#define VL_CLEAN_II(obits,lbits,lhs) ((lhs) & VL_MASK_I(obits))
#define VL_CLEAN_QQ(obits,lbits,lhs) ((lhs) & VL_MASK_Q(obits))
// EMIT_RULE: VL_ASSIGNCLEAN: oclean=clean; obits==lbits;
#define VL_ASSIGNCLEAN_W(obits,owp,lwp) VL_CLEAN_WW((obits), (obits), (owp), (lwp))
static inline WDataOutP _VL_CLEAN_INPLACE_W(int obits, WDataOutP owp) VL_MT_SAFE {
int words = VL_WORDS_I(obits);
owp[words-1] &= VL_MASK_I(obits);
return owp;
}
static inline WDataOutP VL_CLEAN_WW(int obits, int, WDataOutP owp, WDataInP lwp) VL_MT_SAFE {
int words = VL_WORDS_I(obits);
for (int i=0; (i < (words-1)); ++i) owp[i] = lwp[i];
owp[words-1] = lwp[words-1] & VL_MASK_I(obits);
return owp;
}
static inline WDataOutP VL_ZERO_W(int obits, WDataOutP owp) VL_MT_SAFE {
int words = VL_WORDS_I(obits);
for (int i=0; i < words; ++i) owp[i] = 0;
return owp;
}
static inline WDataOutP VL_ALLONES_W(int obits, WDataOutP owp) VL_MT_SAFE {
int words = VL_WORDS_I(obits);
for (int i=0; (i < (words-1)); ++i) owp[i] = ~VL_UL(0);
owp[words-1] = VL_MASK_I(obits);
return owp;
}
// EMIT_RULE: VL_ASSIGN: oclean=rclean; obits==lbits;
// For now, we always have a clean rhs.
// Note: If a ASSIGN isn't clean, use VL_ASSIGNCLEAN instead to do the same thing.
static inline WDataOutP VL_ASSIGN_W(int obits, WDataOutP owp, WDataInP lwp) VL_MT_SAFE {
int words = VL_WORDS_I(obits);
for (int i=0; i < words; ++i) owp[i] = lwp[i];
return owp;
}
// EMIT_RULE: VL_ASSIGNBIT: rclean=clean;
static inline void VL_ASSIGNBIT_II(int, int bit, CData& lhsr, IData rhs) VL_PURE {
lhsr = ((lhsr & ~(VL_UL(1)<<VL_BITBIT_I(bit)))
| (rhs<<VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_II(int, int bit, SData& lhsr, IData rhs) VL_PURE {
lhsr = ((lhsr & ~(VL_UL(1)<<VL_BITBIT_I(bit)))
| (rhs<<VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_II(int, int bit, IData& lhsr, IData rhs) VL_PURE {
lhsr = ((lhsr & ~(VL_UL(1)<<VL_BITBIT_I(bit)))
| (rhs<<VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_QI(int, int bit, QData& lhsr, QData rhs) VL_PURE {
lhsr = ((lhsr & ~(VL_ULL(1)<<VL_BITBIT_Q(bit)))
| (rhs<<VL_BITBIT_Q(bit)));
}
static inline void VL_ASSIGNBIT_WI(int, int bit, WDataOutP owp, IData rhs) VL_MT_SAFE {
IData orig = owp[VL_BITWORD_I(bit)];
owp[VL_BITWORD_I(bit)] = ((orig & ~(VL_UL(1)<<VL_BITBIT_I(bit)))
| (rhs<<VL_BITBIT_I(bit)));
}
// Alternative form that is an instruction faster when rhs is constant one.
static inline void VL_ASSIGNBIT_IO(int, int bit, CData& lhsr, IData) VL_PURE {
lhsr = (lhsr | (VL_UL(1)<<VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_IO(int, int bit, SData& lhsr, IData) VL_PURE {
lhsr = (lhsr | (VL_UL(1)<<VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_IO(int, int bit, IData& lhsr, IData) VL_PURE {
lhsr = (lhsr | (VL_UL(1)<<VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_QO(int, int bit, QData& lhsr, IData) VL_PURE {
lhsr = (lhsr | (VL_ULL(1)<<VL_BITBIT_Q(bit)));
}
static inline void VL_ASSIGNBIT_WO(int, int bit, WDataOutP owp, IData) VL_MT_SAFE {
IData orig = owp[VL_BITWORD_I(bit)];
owp[VL_BITWORD_I(bit)] = (orig | (VL_UL(1)<<VL_BITBIT_I(bit)));
}
//===================================================================
// SYSTEMC OPERATORS
// Copying verilog format to systemc integers and bit vectors.
// Get a SystemC variable
#define VL_ASSIGN_ISI(obits,vvar,svar) { (vvar) = VL_CLEAN_II((obits), (obits), (svar).read()); }
#define VL_ASSIGN_QSQ(obits,vvar,svar) { (vvar) = VL_CLEAN_QQ((obits), (obits), (svar).read()); }
#define VL_ASSIGN_ISW(obits,od,svar) { \
(od) = ((svar).read().get_word(0)) & VL_MASK_I(obits); \
}
#define VL_ASSIGN_QSW(obits,od,svar) { \
(od) = ((static_cast<QData>((svar).read().get_word(1)))<<VL_WORDSIZE \
| (svar).read().get_word(0)) \
& VL_MASK_Q(obits); \
}
#define VL_ASSIGN_WSW(obits,owp,svar) { \
int words = VL_WORDS_I(obits); \
for (int i=0; i < words; ++i) (owp)[i] = (svar).read().get_word(i); \
(owp)[words-1] &= VL_MASK_I(obits); \
}
#define VL_ASSIGN_ISU(obits,vvar,svar) { (vvar) = VL_CLEAN_II((obits), (obits), (svar).read().to_uint()); }
#define VL_ASSIGN_QSU(obits,vvar,svar) { (vvar) = VL_CLEAN_QQ((obits), (obits), (svar).read().to_uint64()); }
#define VL_ASSIGN_WSB(obits,owp,svar) { \
int words = VL_WORDS_I(obits); \
sc_biguint<(obits)> _butemp = (svar).read(); \
for (int i=0; i < words; ++i) { \
int msb = ((i+1)*VL_WORDSIZE) - 1; \
msb = (msb >= (obits)) ? ((obits)-1) : msb; \
(owp)[i] = _butemp.range(msb, i*VL_WORDSIZE).to_uint(); \
} \
(owp)[words-1] &= VL_MASK_I(obits); \
}
// Copying verilog format from systemc integers and bit vectors.
// Set a SystemC variable
#define VL_ASSIGN_SII(obits,svar,vvar) { (svar).write(vvar); }
#define VL_ASSIGN_SQQ(obits,svar,vvar) { (svar).write(vvar); }
#define VL_ASSIGN_SWI(obits,svar,rd) { \
sc_bv<(obits)> _bvtemp; \
_bvtemp.set_word(0, (rd)); \
(svar).write(_bvtemp); \
}
#define VL_ASSIGN_SWQ(obits,svar,rd) { \
sc_bv<(obits)> _bvtemp; \
_bvtemp.set_word(0, static_cast<IData>(rd)); \
_bvtemp.set_word(1, static_cast<IData>((rd)>>VL_WORDSIZE)); \
(svar).write(_bvtemp); \
}
#define VL_ASSIGN_SWW(obits,svar,rwp) { \
sc_bv<(obits)> _bvtemp; \
for (int i=0; i < VL_WORDS_I(obits); ++i) _bvtemp.set_word(i, (rwp)[i]); \
(svar).write(_bvtemp); \
}
#define VL_ASSIGN_SUI(obits,svar,rd) { (svar).write(rd); }
#define VL_ASSIGN_SUQ(obits,svar,rd) { (svar).write(rd); }
#define VL_ASSIGN_SBI(obits,svar,rd) { (svar).write(rd); }
#define VL_ASSIGN_SBQ(obits,svar,rd) { (svar).write(rd); }
#define VL_ASSIGN_SBW(obits,svar,rwp) { \
sc_biguint<(obits)> _butemp; \
for (int i=0; i < VL_WORDS_I(obits); ++i) { \
int msb = ((i+1)*VL_WORDSIZE) - 1; \
msb = (msb >= (obits)) ? ((obits)-1) : msb; \
_butemp.range(msb, i*VL_WORDSIZE) = (rwp)[i]; \
} \
(svar).write(_butemp); \
}
//===================================================================
// Extending sizes
// CAREFUL, we're width changing, so obits!=lbits
// Right must be clean because otherwise size increase would pick up bad bits
// EMIT_RULE: VL_EXTEND: oclean=clean; rclean==clean;
#define VL_EXTEND_II(obits,lbits,lhs) ((lhs))
#define VL_EXTEND_QI(obits,lbits,lhs) (static_cast<QData>(lhs))
#define VL_EXTEND_QQ(obits,lbits,lhs) ((lhs))
static inline WDataOutP VL_EXTEND_WI(int obits, int, WDataOutP owp, IData ld) VL_MT_SAFE {
// Note for extracts that obits != lbits
owp[0] = ld;
for (int i=1; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
return owp;
}
static inline WDataOutP VL_EXTEND_WQ(int obits, int, WDataOutP owp, QData ld) VL_MT_SAFE {
VL_SET_WQ(owp, ld);
for (int i=2; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
return owp;
}
static inline WDataOutP VL_EXTEND_WW(int obits, int lbits, WDataOutP owp, WDataInP lwp) VL_MT_SAFE {
for (int i=0; i < VL_WORDS_I(lbits); ++i) owp[i] = lwp[i];
for (int i=VL_WORDS_I(lbits); i < VL_WORDS_I(obits); ++i) owp[i] = 0;
return owp;
}
// EMIT_RULE: VL_EXTENDS: oclean=*dirty*; obits=lbits;
// Sign extension; output dirty
static inline IData VL_EXTENDS_II(int, int lbits, IData lhs) VL_PURE {
return VL_EXTENDSIGN_I(lbits, lhs) | lhs;
}
static inline QData VL_EXTENDS_QI(int, int lbits, QData lhs/*Q_as_need_extended*/) VL_PURE {
return VL_EXTENDSIGN_Q(lbits, lhs) | lhs;
}
static inline QData VL_EXTENDS_QQ(int, int lbits, QData lhs) VL_PURE {
return VL_EXTENDSIGN_Q(lbits, lhs) | lhs;
}
static inline WDataOutP VL_EXTENDS_WI(int obits, int lbits, WDataOutP owp, IData ld) VL_MT_SAFE {
IData sign = VL_SIGNONES_I(lbits, ld);
owp[0] = ld | (sign & ~VL_MASK_I(lbits));
for (int i=1; i < VL_WORDS_I(obits); ++i) owp[i] = sign;
return owp;
}
static inline WDataOutP VL_EXTENDS_WQ(int obits, int lbits, WDataOutP owp, QData ld) VL_MT_SAFE {
VL_SET_WQ(owp, ld);
IData sign = VL_SIGNONES_I(lbits, owp[1]);
owp[1] |= sign & ~VL_MASK_I(lbits);
for (int i=2; i < VL_WORDS_I(obits); ++i) owp[i] = sign;
return owp;
}
static inline WDataOutP VL_EXTENDS_WW(int obits, int lbits, WDataOutP owp, WDataInP lwp) VL_MT_SAFE {
for (int i=0; i < VL_WORDS_I(lbits)-1; ++i) owp[i] = lwp[i];
int lmsw = VL_WORDS_I(lbits)-1;
IData sign = VL_SIGNONES_I(lbits, lwp[lmsw]);
owp[lmsw] = lwp[lmsw] | (sign & ~VL_MASK_I(lbits));
for (int i=VL_WORDS_I(lbits); i < VL_WORDS_I(obits); ++i) owp[i] = sign;
return owp;
}
//===================================================================
// REDUCTION OPERATORS
// EMIT_RULE: VL_REDAND: oclean=clean; lclean==clean; obits=1;
#define VL_REDAND_II(obits,lbits,lhs) ((lhs) == VL_MASK_I(lbits))
#define VL_REDAND_IQ(obits,lbits,lhs) ((lhs) == VL_MASK_Q(lbits))
static inline IData VL_REDAND_IW(int, int lbits, WDataInP lwp) VL_MT_SAFE {
int words = VL_WORDS_I(lbits);
IData combine = lwp[0];
for (int i=1; i < words-1; ++i) combine &= lwp[i];
combine &= ~VL_MASK_I(lbits) | lwp[words-1];
return ((~combine)==0);
}
// EMIT_RULE: VL_REDOR: oclean=clean; lclean==clean; obits=1;
#define VL_REDOR_I(lhs) ((lhs)!=0)
#define VL_REDOR_Q(lhs) ((lhs)!=0)
static inline IData VL_REDOR_W(int words, WDataInP lwp) VL_MT_SAFE {
IData equal = 0;
for (int i=0; i < words; ++i) equal |= lwp[i];
return (equal != 0);
}
// EMIT_RULE: VL_REDXOR: oclean=dirty; obits=1;
static inline IData VL_REDXOR_2(IData r) VL_PURE {
// Experiments show VL_REDXOR_2 is faster than __builtin_parityl
r=(r^(r>>1));
return r;
}
static inline IData VL_REDXOR_4(IData r) VL_PURE {
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
return __builtin_parityl(r);
#else
r=(r^(r>>1)); r=(r^(r>>2));
return r;
#endif
}
static inline IData VL_REDXOR_8(IData r) VL_PURE {
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
return __builtin_parityl(r);
#else
r=(r^(r>>1)); r=(r^(r>>2)); r=(r^(r>>4));
return r;
#endif
}
static inline IData VL_REDXOR_16(IData r) VL_PURE {
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
return __builtin_parityl(r);
#else
r=(r^(r>>1)); r=(r^(r>>2)); r=(r^(r>>4)); r=(r^(r>>8));
return r;
#endif
}
static inline IData VL_REDXOR_32(IData r) VL_PURE {
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
return __builtin_parityl(r);
#else
r=(r^(r>>1)); r=(r^(r>>2)); r=(r^(r>>4)); r=(r^(r>>8)); r=(r^(r>>16));
return r;
#endif
}
static inline IData VL_REDXOR_64(QData r) VL_PURE {
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
return __builtin_parityll(r);
#else
r=(r^(r>>1)); r=(r^(r>>2)); r=(r^(r>>4)); r=(r^(r>>8)); r=(r^(r>>16)); r=(r^(r>>32));
return static_cast<IData>(r);
#endif
}
static inline IData VL_REDXOR_W(int words, WDataInP lwp) VL_MT_SAFE {
IData r = lwp[0];
for (int i=1; i < words; ++i) r ^= lwp[i];
return VL_REDXOR_32(r);
}
// EMIT_RULE: VL_COUNTONES_II: oclean = false; lhs clean
static inline IData VL_COUNTONES_I(IData lhs) VL_PURE {
// This is faster than __builtin_popcountl
IData r = lhs - ((lhs >> 1) & 033333333333) - ((lhs >> 2) & 011111111111);
r = (r + (r>>3)) & 030707070707;
r = (r + (r>>6));
r = (r + (r>>12) + (r>>24)) & 077;
return r;
}
static inline IData VL_COUNTONES_Q(QData lhs) VL_PURE {
return VL_COUNTONES_I(static_cast<IData>(lhs)) + VL_COUNTONES_I(static_cast<IData>(lhs>>32));
}
static inline IData VL_COUNTONES_W(int words, WDataInP lwp) VL_MT_SAFE {
IData r = 0;
for (int i=0; (i < words); ++i) r+=VL_COUNTONES_I(lwp[i]);
return r;
}
static inline IData VL_ONEHOT_I(IData lhs) VL_PURE {
return (((lhs & (lhs-1))==0) & (lhs!=0));
}
static inline IData VL_ONEHOT_Q(QData lhs) VL_PURE {
return (((lhs & (lhs-1))==0) & (lhs!=0));
}
static inline IData VL_ONEHOT_W(int words, WDataInP lwp) VL_MT_SAFE {
IData one = 0;
for (int i=0; (i < words); ++i) {
if (lwp[i]) {
if (one) return 0;
one = 1;
if (lwp[i] & (lwp[i]-1)) return 0;
}
}
return one;
}
static inline IData VL_ONEHOT0_I(IData lhs) VL_PURE {
return ((lhs & (lhs-1))==0);
}
static inline IData VL_ONEHOT0_Q(QData lhs) VL_PURE {
return ((lhs & (lhs-1))==0);
}
static inline IData VL_ONEHOT0_W(int words, WDataInP lwp) VL_MT_SAFE {
bool one = false;
for (int i=0; (i < words); ++i) {
if (lwp[i]) {
if (one) return 0;
one = true;
if (lwp[i] & (lwp[i]-1)) return 0;
}
}
return 1;
}
static inline IData VL_CLOG2_I(IData lhs) VL_PURE {
// There are faster algorithms, or fls GCC4 builtins, but rarely used
if (VL_UNLIKELY(!lhs)) return 0;
lhs--;
int shifts = 0;
for (; lhs!=0; ++shifts) lhs = lhs >> 1;
return shifts;
}
static inline IData VL_CLOG2_Q(QData lhs) VL_PURE {
if (VL_UNLIKELY(!lhs)) return 0;
lhs--;
int shifts = 0;
for (; lhs!=0; ++shifts) lhs = lhs >> VL_ULL(1);
return shifts;
}
static inline IData VL_CLOG2_W(int words, WDataInP lwp) VL_MT_SAFE {
IData adjust = (VL_COUNTONES_W(words, lwp)==1) ? 0 : 1;
for (int i=words-1; i>=0; --i) {
if (VL_UNLIKELY(lwp[i])) { // Shorter worst case if predict not taken
for (int bit=31; bit>=0; --bit) {
if (VL_UNLIKELY(VL_BITISSET_I(lwp[i], bit))) {
return i*VL_WORDSIZE + bit + adjust;
}
}
// Can't get here - one bit must be set
}
}
return 0;
}
static inline IData VL_MOSTSETBITP1_W(int words, WDataInP lwp) VL_MT_SAFE {
// MSB set bit plus one; similar to FLS. 0=value is zero
for (int i=words-1; i>=0; --i) {
if (VL_UNLIKELY(lwp[i])) { // Shorter worst case if predict not taken
for (int bit=31; bit>=0; --bit) {
if (VL_UNLIKELY(VL_BITISSET_I(lwp[i], bit))) {
return i*VL_WORDSIZE + bit + 1;
}
}
// Can't get here - one bit must be set
}
}
return 0;
}
//===================================================================
// SIMPLE LOGICAL OPERATORS
// EMIT_RULE: VL_AND: oclean=lclean||rclean; obits=lbits; lbits==rbits;
static inline WDataOutP VL_AND_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
for (int i=0; (i < words); ++i) owp[i] = (lwp[i] & rwp[i]);
return owp;
}
// EMIT_RULE: VL_OR: oclean=lclean&&rclean; obits=lbits; lbits==rbits;
static inline WDataOutP VL_OR_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
for (int i=0; (i < words); ++i) owp[i] = (lwp[i] | rwp[i]);
return owp;
}
// EMIT_RULE: VL_CHANGEXOR: oclean=1; obits=32; lbits==rbits;
static inline IData VL_CHANGEXOR_W(int words, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
IData od = 0;
for (int i=0; (i < words); ++i) od |= (lwp[i] ^ rwp[i]);
return(od);
}
// EMIT_RULE: VL_XOR: oclean=lclean&&rclean; obits=lbits; lbits==rbits;
static inline WDataOutP VL_XOR_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
for (int i=0; (i < words); ++i) owp[i] = (lwp[i] ^ rwp[i]);
return owp;
}
// EMIT_RULE: VL_XNOR: oclean=dirty; obits=lbits; lbits==rbits;
static inline WDataOutP VL_XNOR_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
for (int i=0; (i < words); ++i) owp[i] = (lwp[i] ^ ~rwp[i]);
return owp;
}
// EMIT_RULE: VL_NOT: oclean=dirty; obits=lbits;
static inline WDataOutP VL_NOT_W(int words, WDataOutP owp, WDataInP lwp) VL_MT_SAFE {
for (int i=0; i < words; ++i) owp[i] = ~(lwp[i]);
return owp;
}
//=========================================================================
// Logical comparisons
// EMIT_RULE: VL_EQ: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
// EMIT_RULE: VL_NEQ: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
// EMIT_RULE: VL_LT: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
// EMIT_RULE: VL_GT: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
// EMIT_RULE: VL_GTE: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
// EMIT_RULE: VL_LTE: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
#define VL_NEQ_W(words,lwp,rwp) (!VL_EQ_W(words,lwp,rwp))
#define VL_LT_W(words,lwp,rwp) (_VL_CMP_W(words,lwp,rwp)<0)
#define VL_LTE_W(words,lwp,rwp) (_VL_CMP_W(words,lwp,rwp)<=0)
#define VL_GT_W(words,lwp,rwp) (_VL_CMP_W(words,lwp,rwp)>0)
#define VL_GTE_W(words,lwp,rwp) (_VL_CMP_W(words,lwp,rwp)>=0)
// Output clean, <lhs> AND <rhs> MUST BE CLEAN
static inline IData VL_EQ_W(int words, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
int nequal = 0;
for (int i=0; (i < words); ++i) nequal |= (lwp[i] ^ rwp[i]);
return (nequal==0);
}
// Internal usage
static inline int _VL_CMP_W(int words, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
for (int i=words-1; i>=0; --i) {
if (lwp[i] > rwp[i]) return 1;
if (lwp[i] < rwp[i]) return -1;
}
return(0); // ==
}
#define VL_LTS_IWW(obits,lbits,rbbits,lwp,rwp) (_VL_CMPS_W(lbits,lwp,rwp)<0)
#define VL_LTES_IWW(obits,lbits,rbits,lwp,rwp) (_VL_CMPS_W(lbits,lwp,rwp)<=0)
#define VL_GTS_IWW(obits,lbits,rbits,lwp,rwp) (_VL_CMPS_W(lbits,lwp,rwp)>0)
#define VL_GTES_IWW(obits,lbits,rbits,lwp,rwp) (_VL_CMPS_W(lbits,lwp,rwp)>=0)
static inline IData VL_GTS_III(int, int lbits, int, IData lhs, IData rhs) VL_PURE {
// For lbits==32, this becomes just a single instruction, otherwise ~5.
// GCC 3.3.4 sign extension bugs on AMD64 architecture force us to use quad logic
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); // Q for gcc
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); // Q for gcc
return lhs_signed > rhs_signed;
}
static inline IData VL_GTS_IQQ(int, int lbits, int, QData lhs, QData rhs) VL_PURE {
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
return lhs_signed > rhs_signed;
}
static inline IData VL_GTES_III(int, int lbits, int, IData lhs, IData rhs) VL_PURE {
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); // Q for gcc
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); // Q for gcc
return lhs_signed >= rhs_signed;
}
static inline IData VL_GTES_IQQ(int, int lbits, int, QData lhs, QData rhs) VL_PURE {
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
return lhs_signed >= rhs_signed;
}
static inline IData VL_LTS_III(int, int lbits, int, IData lhs, IData rhs) VL_PURE {
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); // Q for gcc
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); // Q for gcc
return lhs_signed < rhs_signed;
}
static inline IData VL_LTS_IQQ(int, int lbits, int, QData lhs, QData rhs) VL_PURE {
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
return lhs_signed < rhs_signed;
}
static inline IData VL_LTES_III(int, int lbits, int, IData lhs, IData rhs) VL_PURE {
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); // Q for gcc
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); // Q for gcc
return lhs_signed <= rhs_signed;
}
static inline IData VL_LTES_IQQ(int, int lbits, int, QData lhs, QData rhs) VL_PURE {
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
return lhs_signed <= rhs_signed;
}
static inline int _VL_CMPS_W(int lbits, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
int words = VL_WORDS_I(lbits);
int i = words-1;
// We need to flip sense if negative comparison
IData lsign = VL_SIGN_I(lbits, lwp[i]);
IData rsign = VL_SIGN_I(lbits, rwp[i]);
if (!lsign && rsign) return 1; // + > -
if (lsign && !rsign) return -1; // - < +
for (; i>=0; --i) {
if (lwp[i] > rwp[i]) return 1;
if (lwp[i] < rwp[i]) return -1;
}
return(0); // ==
}
//=========================================================================
// Math
// EMIT_RULE: VL_MUL: oclean=dirty; lclean==clean; rclean==clean;
// EMIT_RULE: VL_DIV: oclean=dirty; lclean==clean; rclean==clean;
// EMIT_RULE: VL_MODDIV: oclean=dirty; lclean==clean; rclean==clean;
#define VL_DIV_III(lbits,lhs,rhs) (((rhs)==0)?0:(lhs)/(rhs))
#define VL_DIV_QQQ(lbits,lhs,rhs) (((rhs)==0)?0:(lhs)/(rhs))
#define VL_DIV_WWW(lbits,owp,lwp,rwp) (_vl_moddiv_w(lbits,owp,lwp,rwp,0))
#define VL_MODDIV_III(lbits,lhs,rhs) (((rhs)==0)?0:(lhs)%(rhs))
#define VL_MODDIV_QQQ(lbits,lhs,rhs) (((rhs)==0)?0:(lhs)%(rhs))
#define VL_MODDIV_WWW(lbits,owp,lwp,rwp) (_vl_moddiv_w(lbits,owp,lwp,rwp,1))
static inline WDataOutP VL_ADD_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
QData carry = 0;
for (int i=0; i<words; ++i) {
carry = carry + static_cast<QData>(lwp[i]) + static_cast<QData>(rwp[i]);
owp[i] = (carry & VL_ULL(0xffffffff));
carry = (carry >> VL_ULL(32)) & VL_ULL(0xffffffff);
}
return owp;
}
static inline WDataOutP VL_SUB_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
QData carry = 0;
for (int i=0; i<words; ++i) {
carry = (carry + static_cast<QData>(lwp[i])
+ static_cast<QData>(static_cast<IData>(~rwp[i])));
if (i==0) ++carry; // Negation of temp2
owp[i] = (carry & VL_ULL(0xffffffff));
carry = (carry >> VL_ULL(32)) & VL_ULL(0xffffffff);
}
return owp;
}
// Optimization bug in GCC 2.96 and presumably all-pre GCC 3 versions need this workaround,
// we can't just
//# define VL_NEGATE_I(data) (-(data))
static inline IData VL_NEGATE_I(IData data) VL_PURE { return -data; }
static inline QData VL_NEGATE_Q(QData data) VL_PURE { return -data; }
static inline WDataOutP VL_NEGATE_W(int words, WDataOutP owp, WDataInP lwp) VL_MT_SAFE {
QData carry = 0;
for (int i=0; i<words; ++i) {
carry = carry + static_cast<QData>(static_cast<IData>(~lwp[i]));
if (i==0) ++carry; // Negation of temp2
owp[i] = (carry & VL_ULL(0xffffffff));
carry = (carry >> VL_ULL(32)) & VL_ULL(0xffffffff);
}
return owp;
}
static inline WDataOutP VL_MUL_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
for (int i=0; i<words; ++i) owp[i] = 0;
for (int lword=0; lword<words; ++lword) {
for (int rword=0; rword<words; ++rword) {
QData mul = static_cast<QData>(lwp[lword]) * static_cast<QData>(rwp[rword]);
for (int qword=lword+rword; qword<words; ++qword) {
mul += static_cast<QData>(owp[qword]);
owp[qword] = (mul & VL_ULL(0xffffffff));
mul = (mul >> VL_ULL(32)) & VL_ULL(0xffffffff);
}
}
}
// Last output word is dirty
return owp;
}
static inline IData VL_MULS_III(int, int lbits, int, IData lhs, IData rhs) VL_PURE {
vlsint32_t lhs_signed = VL_EXTENDS_II(32, lbits, lhs);
vlsint32_t rhs_signed = VL_EXTENDS_II(32, lbits, rhs);
return lhs_signed * rhs_signed;
}
static inline QData VL_MULS_QQQ(int, int lbits, int, QData lhs, QData rhs) VL_PURE {
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
return lhs_signed * rhs_signed;
}
static inline WDataOutP VL_MULS_WWW(int, int lbits, int,
WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
int words = VL_WORDS_I(lbits);
// cppcheck-suppress variableScope
WData lwstore[VL_MULS_MAX_WORDS]; // Fixed size, as MSVC++ doesn't allow [words] here
// cppcheck-suppress variableScope
WData rwstore[VL_MULS_MAX_WORDS];
WDataInP lwusp = lwp;
WDataInP rwusp = rwp;
IData lneg = VL_SIGN_I(lbits, lwp[words-1]);
if (lneg) { // Negate lhs
lwusp = lwstore;
VL_NEGATE_W(words, lwstore, lwp);
lwstore[words-1] &= VL_MASK_I(lbits); // Clean it
}
IData rneg = VL_SIGN_I(lbits, rwp[words-1]);
if (rneg) { // Negate rhs
rwusp = rwstore;
VL_NEGATE_W(words, rwstore, rwp);
rwstore[words-1] &= VL_MASK_I(lbits); // Clean it
}
VL_MUL_W(words, owp, lwusp, rwusp);
owp[words-1] &= VL_MASK_I(lbits); // Clean. Note it's ok for the multiply to overflow into the sign bit
if ((lneg ^ rneg) & 1) { // Negate output (not using NEGATE, as owp==lwp)
QData carry = 0;
for (int i=0; i<words; ++i) {
carry = carry + static_cast<QData>(static_cast<IData>(~owp[i]));
if (i==0) ++carry; // Negation of temp2
owp[i] = (carry & VL_ULL(0xffffffff));
carry = (carry >> VL_ULL(32)) & VL_ULL(0xffffffff);
}
//Not needed: owp[words-1] |= 1<<VL_BITBIT_I(lbits-1); // Set sign bit
}
// Last output word is dirty
return owp;
}
static inline IData VL_DIVS_III(int lbits, IData lhs, IData rhs) VL_PURE {
if (VL_UNLIKELY(rhs==0)) return 0;
vlsint32_t lhs_signed = VL_EXTENDS_II(32, lbits, lhs);
vlsint32_t rhs_signed = VL_EXTENDS_II(32, lbits, rhs);
return lhs_signed / rhs_signed;
}
static inline QData VL_DIVS_QQQ(int lbits, QData lhs, QData rhs) VL_PURE {
if (VL_UNLIKELY(rhs==0)) return 0;
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
return lhs_signed / rhs_signed;
}
static inline IData VL_MODDIVS_III(int lbits, IData lhs, IData rhs) VL_PURE {
if (VL_UNLIKELY(rhs==0)) return 0;
vlsint32_t lhs_signed = VL_EXTENDS_II(32, lbits, lhs);
vlsint32_t rhs_signed = VL_EXTENDS_II(32, lbits, rhs);
return lhs_signed % rhs_signed;
}
static inline QData VL_MODDIVS_QQQ(int lbits, QData lhs, QData rhs) VL_PURE {
if (VL_UNLIKELY(rhs==0)) return 0;
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
return lhs_signed % rhs_signed;
}
static inline WDataOutP VL_DIVS_WWW(int lbits, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
int words = VL_WORDS_I(lbits);
IData lsign = VL_SIGN_I(lbits, lwp[words-1]);
IData rsign = VL_SIGN_I(lbits, rwp[words-1]);
// cppcheck-suppress variableScope
WData lwstore[VL_MULS_MAX_WORDS]; // Fixed size, as MSVC++ doesn't allow [words] here
// cppcheck-suppress variableScope
WData rwstore[VL_MULS_MAX_WORDS];
WDataInP ltup = lwp;
WDataInP rtup = rwp;
if (lsign) { ltup = _VL_CLEAN_INPLACE_W(lbits, VL_NEGATE_W(VL_WORDS_I(lbits), lwstore, lwp)); }
if (rsign) { rtup = _VL_CLEAN_INPLACE_W(lbits, VL_NEGATE_W(VL_WORDS_I(lbits), rwstore, rwp)); }
if ((lsign && !rsign) || (!lsign && rsign)) {
IData qNoSign[VL_MULS_MAX_WORDS];
VL_DIV_WWW(lbits, qNoSign, ltup, rtup);
_VL_CLEAN_INPLACE_W(lbits, VL_NEGATE_W(VL_WORDS_I(lbits), owp, qNoSign));
return owp;
} else {
return VL_DIV_WWW(lbits, owp, ltup, rtup);
}
}
static inline WDataOutP VL_MODDIVS_WWW(int lbits, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
int words = VL_WORDS_I(lbits);
IData lsign = VL_SIGN_I(lbits, lwp[words-1]);
IData rsign = VL_SIGN_I(lbits, rwp[words-1]);
// cppcheck-suppress variableScope
WData lwstore[VL_MULS_MAX_WORDS]; // Fixed size, as MSVC++ doesn't allow [words] here
// cppcheck-suppress variableScope
WData rwstore[VL_MULS_MAX_WORDS];
WDataInP ltup = lwp;
WDataInP rtup = rwp;
if (lsign) { ltup = _VL_CLEAN_INPLACE_W(lbits, VL_NEGATE_W(VL_WORDS_I(lbits), lwstore, lwp)); }
if (rsign) { rtup = _VL_CLEAN_INPLACE_W(lbits, VL_NEGATE_W(VL_WORDS_I(lbits), rwstore, rwp)); }
if (lsign) { // Only dividend sign matters for modulus
WData qNoSign[VL_MULS_MAX_WORDS];
VL_MODDIV_WWW(lbits, qNoSign, ltup, rtup);
_VL_CLEAN_INPLACE_W(lbits, VL_NEGATE_W(VL_WORDS_I(lbits), owp, qNoSign));
return owp;
} else {
return VL_MODDIV_WWW(lbits, owp, ltup, rtup);
}
}
#define VL_POW_IIQ(obits,lbits,rbits,lhs,rhs) VL_POW_QQQ(obits,lbits,rbits,lhs,rhs)
#define VL_POW_IIW(obits,lbits,rbits,lhs,rwp) VL_POW_QQW(obits,lbits,rbits,lhs,rwp)
#define VL_POW_QQI(obits,lbits,rbits,lhs,rhs) VL_POW_QQQ(obits,lbits,rbits,lhs,rhs)
#define VL_POW_WWI(obits,lbits,rbits,owp,lwp,rhs) VL_POW_WWQ(obits,lbits,rbits,owp,lwp,rhs)
static inline IData VL_POW_III(int, int, int rbits, IData lhs, IData rhs) VL_PURE {
if (VL_UNLIKELY(rhs==0)) return 1;
if (VL_UNLIKELY(lhs==0)) return 0;
IData power = lhs;
IData out = 1;
for (int i=0; i<rbits; ++i) {
if (i>0) power = power*power;
if (rhs & (VL_ULL(1)<<i)) out *= power;
}
return out;
}
static inline QData VL_POW_QQQ(int, int, int rbits, QData lhs, QData rhs) VL_PURE {
if (VL_UNLIKELY(rhs==0)) return 1;
if (VL_UNLIKELY(lhs==0)) return 0;
QData power = lhs;
QData out = VL_ULL(1);
for (int i=0; i<rbits; ++i) {
if (i>0) power = power*power;
if (rhs & (VL_ULL(1)<<i)) out *= power;
}
return out;
}
WDataOutP VL_POW_WWW(int obits, int, int rbits, WDataOutP owp, WDataInP lwp, WDataInP rwp);
WDataOutP VL_POW_WWQ(int obits, int, int rbits, WDataOutP owp, WDataInP lwp, QData rhs);
QData VL_POW_QQW(int obits, int, int rbits, QData lhs, WDataInP rwp);
#define VL_POWSS_IIQ(obits,lbits,rbits,lhs,rhs,lsign,rsign) \
VL_POWSS_QQQ(obits,lbits,rbits,lhs,rhs,lsign,rsign)
#define VL_POWSS_IIQ(obits,lbits,rbits,lhs,rhs,lsign,rsign) \
VL_POWSS_QQQ(obits,lbits,rbits,lhs,rhs,lsign,rsign)
#define VL_POWSS_IIW(obits,lbits,rbits,lhs,rwp,lsign,rsign) \
VL_POWSS_QQW(obits,lbits,rbits,lhs,rwp,lsign,rsign)
#define VL_POWSS_QQI(obits,lbits,rbits,lhs,rhs,lsign,rsign) \
VL_POWSS_QQQ(obits,lbits,rbits,lhs,rhs,lsign,rsign)
#define VL_POWSS_WWI(obits,lbits,rbits,owp,lwp,rhs,lsign,rsign) \
VL_POWSS_WWQ(obits,lbits,rbits,owp,lwp,rhs,lsign,rsign)
static inline IData VL_POWSS_III(int obits, int, int rbits,
IData lhs, IData rhs, bool lsign, bool rsign) VL_MT_SAFE {
if (VL_UNLIKELY(rhs==0)) return 1;
if (rsign && VL_SIGN_I(rbits, rhs)) {
if (lhs==0) return 0; // "X"
else if (lhs==1) return 1;
else if (lsign && lhs==VL_MASK_I(obits)) { // -1
if (rhs & 1) return VL_MASK_I(obits); // -1^odd=-1
else return 1; // -1^even=1
}
return 0;
}
return VL_POW_III(obits, rbits, rbits, lhs, rhs);
}
static inline QData VL_POWSS_QQQ(int obits, int, int rbits,
QData lhs, QData rhs, bool lsign, bool rsign) VL_MT_SAFE {
if (VL_UNLIKELY(rhs==0)) return 1;
if (rsign && VL_SIGN_I(rbits, rhs)) {
if (lhs==0) return 0; // "X"
else if (lhs==1) return 1;
else if (lsign && lhs==VL_MASK_I(obits)) { // -1
if (rhs & 1) return VL_MASK_I(obits); // -1^odd=-1
else return 1; // -1^even=1
}
return 0;
}
return VL_POW_QQQ(obits, rbits, rbits, lhs, rhs);
}
WDataOutP VL_POWSS_WWW(int obits, int, int rbits,
WDataOutP owp, WDataInP lwp, WDataInP rwp, bool lsign, bool rsign);
WDataOutP VL_POWSS_WWQ(int obits, int, int rbits,
WDataOutP owp, WDataInP lwp, QData rhs, bool lsign, bool rsign);
QData VL_POWSS_QQW(int obits, int, int rbits,
QData lhs, WDataInP rwp, bool lsign, bool rsign);
//===================================================================
// Concat/replication
// INTERNAL: Stuff LHS bit 0++ into OUTPUT at specified offset
// ld may be "dirty", output is clean
static inline void _VL_INSERT_II(int, CData& lhsr, IData ld, int hbit, int lbit) VL_PURE {
IData insmask = (VL_MASK_I(hbit-lbit+1))<<lbit;
lhsr = (lhsr & ~insmask) | ((ld<<lbit) & insmask);
}
static inline void _VL_INSERT_II(int, SData& lhsr, IData ld, int hbit, int lbit) VL_PURE {
IData insmask = (VL_MASK_I(hbit-lbit+1))<<lbit;
lhsr = (lhsr & ~insmask) | ((ld<<lbit) & insmask);
}
static inline void _VL_INSERT_II(int, IData& lhsr, IData ld, int hbit, int lbit) VL_PURE {
IData insmask = (VL_MASK_I(hbit-lbit+1))<<lbit;
lhsr = (lhsr & ~insmask) | ((ld<<lbit) & insmask);
}
static inline void _VL_INSERT_QQ(int, QData& lhsr, QData ld, int hbit, int lbit) VL_PURE {
QData insmask = (VL_MASK_Q(hbit-lbit+1))<<lbit;
lhsr = (lhsr & ~insmask) | ((ld<<lbit) & insmask);
}
static inline void _VL_INSERT_WI(int, WDataOutP owp, IData ld, int hbit, int lbit) VL_MT_SAFE {
int hoffset = VL_BITBIT_I(hbit);
int loffset = VL_BITBIT_I(lbit);
if (hoffset==VL_SIZEBITS_I && loffset==0) {
// Fast and common case, word based insertion
owp[VL_BITWORD_I(lbit)] = ld;
}
else {
int hword = VL_BITWORD_I(hbit);
int lword = VL_BITWORD_I(lbit);
if (hword==lword) { // know < 32 bits because above checks it
IData insmask = (VL_MASK_I(hoffset-loffset+1))<<loffset;
owp[lword] = (owp[lword] & ~insmask) | ((ld<<loffset) & insmask);
} else {
IData hinsmask = (VL_MASK_I(hoffset-0+1))<<0;
IData linsmask = (VL_MASK_I(31-loffset+1))<<loffset;
int nbitsonright = 32-loffset; // bits that end up in lword
owp[lword] = (owp[lword] & ~linsmask) | ((ld<<loffset) & linsmask);
owp[hword] = (owp[hword] & ~hinsmask) | ((ld>>nbitsonright) & hinsmask);
}
}
}
// INTERNAL: Stuff large LHS bit 0++ into OUTPUT at specified offset
// lwp may be "dirty"
static inline void _VL_INSERT_WW(int, WDataOutP owp, WDataInP lwp, int hbit, int lbit) VL_MT_SAFE {
int hoffset = hbit & VL_SIZEBITS_I;
int loffset = lbit & VL_SIZEBITS_I;
int lword = VL_BITWORD_I(lbit);
int words = VL_WORDS_I(hbit-lbit+1);
if (hoffset==VL_SIZEBITS_I && loffset==0) {
// Fast and common case, word based insertion
for (int i=0; i<words; ++i) {
owp[lword+i] = lwp[i];
}
}
else if (loffset==0) {
// Non-32bit, but nicely aligned, so stuff all but the last word
for (int i=0; i<(words-1); ++i) {
owp[lword+i] = lwp[i];
}
IData hinsmask = (VL_MASK_I(hoffset-0+1)); // Know it's not a full word as above fast case handled it
owp[lword+words-1] = (owp[words+lword-1] & ~hinsmask) | (lwp[words-1] & hinsmask);
}
else {
IData hinsmask = (VL_MASK_I(hoffset-0+1))<<0;
IData linsmask = (VL_MASK_I(31-loffset+1))<<loffset;
int nbitsonright = 32-loffset; // bits that end up in lword (know loffset!=0)
// Middle words
int hword = VL_BITWORD_I(hbit);
for (int i=0; i<words; ++i) {
{ // Lower word
int oword = lword+i;
IData d = lwp[i]<<loffset;
IData od = (owp[oword] & ~linsmask) | (d & linsmask);
if (oword==hword) owp[oword] = (owp[oword] & ~hinsmask) | (od & hinsmask);
else owp[oword] = od;
}
{ // Upper word
int oword = lword+i+1;
if (oword <= hword) {
IData d = lwp[i]>>nbitsonright;
IData od = (d & ~linsmask) | (owp[oword] & linsmask);
if (oword==hword) owp[oword] = (owp[oword] & ~hinsmask) | (od & hinsmask);
else owp[oword] = od;
}
}
}
}
}
static inline void _VL_INSERT_WQ(int obits, WDataOutP owp, QData ld, int hbit, int lbit) VL_MT_SAFE {
WData lwp[2]; VL_SET_WQ(lwp, ld);
_VL_INSERT_WW(obits, owp, lwp, hbit, lbit);
}
// EMIT_RULE: VL_REPLICATE: oclean=clean>width32, dirty<=width32; lclean=clean; rclean==clean;
// RHS MUST BE CLEAN CONSTANT.
#define VL_REPLICATE_IOI(obits,lbits,rbits, ld, rep) (-(ld)) // Iff lbits==1
#define VL_REPLICATE_QOI(obits,lbits,rbits, ld, rep) (-(static_cast<QData>(ld))) // Iff lbits==1
static inline IData VL_REPLICATE_III(int, int lbits, int, IData ld, IData rep) VL_PURE {
IData returndata = ld;
for (unsigned i=1; i < rep; ++i){
returndata = returndata << lbits;
returndata |= ld;
}
return (returndata);
}
static inline QData VL_REPLICATE_QII(int, int lbits, int, IData ld, IData rep) VL_PURE {
QData returndata = ld;
for (unsigned i=1; i < rep; ++i){
returndata = returndata << lbits;
returndata |= static_cast<QData>(ld);
}
return (returndata);
}
static inline WDataOutP VL_REPLICATE_WII(int obits, int lbits, int,
WDataOutP owp, IData ld, IData rep) VL_MT_SAFE {
owp[0] = ld;
for (unsigned i=1; i < rep; ++i){
_VL_INSERT_WI(obits, owp, ld, i*lbits+lbits-1, i*lbits);
}
return owp;
}
static inline WDataOutP VL_REPLICATE_WQI(int obits, int lbits, int,
WDataOutP owp, QData ld, IData rep) VL_MT_SAFE {
VL_SET_WQ(owp, ld);
for (unsigned i=1; i < rep; ++i){
_VL_INSERT_WQ(obits, owp, ld, i*lbits+lbits-1, i*lbits);
}
return owp;
}
static inline WDataOutP VL_REPLICATE_WWI(int obits, int lbits, int,
WDataOutP owp, WDataInP lwp, IData rep) VL_MT_SAFE {
for (int i=0; i < VL_WORDS_I(lbits); ++i) owp[i] = lwp[i];
for (unsigned i=1; i < rep; ++i){
_VL_INSERT_WW(obits, owp, lwp, i*lbits+lbits-1, i*lbits);
}
return owp;
}
// Left stream operator. Output will always be clean. LHS and RHS must be clean.
// Special "fast" versions for slice sizes that are a power of 2. These use
// shifts and masks to execute faster than the slower for-loop approach where a
// subset of bits is copied in during each iteration.
static inline IData VL_STREAML_FAST_III(int, int lbits, int, IData ld, IData rd_log2) VL_PURE {
// Pre-shift bits in most-significant slice:
//
// If lbits is not a multiple of the slice size (i.e., lbits % rd != 0),
// then we end up with a "gap" in our reversed result. For example, if we
// have a 5-bit Verlilog signal (lbits=5) in an 8-bit C data type:
//
// ld = ---43210
//
// (where numbers are the Verilog signal bit numbers and '-' is an unused bit).
// Executing the switch statement below with a slice size of two (rd=2,
// rd_log2=1) produces:
//
// ret = 1032-400
//
// Pre-shifting the bits in the most-significant slice allows us to avoid
// this gap in the shuffled data:
//
// ld_adjusted = --4-3210
// ret = 10324---
IData ret = ld;
if (rd_log2) {
vluint32_t lbitsFloor = lbits & ~VL_MASK_I(rd_log2); // max multiple of rd <= lbits
vluint32_t lbitsRem = lbits - lbitsFloor; // number of bits in most-sig slice (MSS)
IData msbMask = VL_MASK_I(lbitsRem) << lbitsFloor; // mask to sel only bits in MSS
ret = (ret & ~msbMask) | ((ret & msbMask) << ((VL_UL(1) << rd_log2) - lbitsRem));
}
switch (rd_log2) {
case 0:
ret = ((ret >> 1) & VL_UL(0x55555555))
| ((ret & VL_UL(0x55555555)) << 1); // FALLTHRU
case 1:
ret = ((ret >> 2) & VL_UL(0x33333333))
| ((ret & VL_UL(0x33333333)) << 2); // FALLTHRU
case 2:
ret = ((ret >> 4) & VL_UL(0x0f0f0f0f))
| ((ret & VL_UL(0x0f0f0f0f)) << 4); // FALLTHRU
case 3:
ret = ((ret >> 8) & VL_UL(0x00ff00ff))
| ((ret & VL_UL(0x00ff00ff)) << 8); // FALLTHRU
case 4:
ret = ((ret >> 16) | (ret << 16));
}
return ret >> (VL_WORDSIZE - lbits);
}
static inline QData VL_STREAML_FAST_QQI(int, int lbits, int, QData ld, IData rd_log2) VL_PURE {
// Pre-shift bits in most-significant slice (see comment in VL_STREAML_FAST_III)
QData ret = ld;
if (rd_log2) {
vluint32_t lbitsFloor = lbits & ~VL_MASK_I(rd_log2);
vluint32_t lbitsRem = lbits - lbitsFloor;
QData msbMask = VL_MASK_Q(lbitsRem) << lbitsFloor;
ret = (ret & ~msbMask) | ((ret & msbMask) << ((VL_ULL(1) << rd_log2) - lbitsRem));
}
switch (rd_log2) {
case 0:
ret = (((ret >> 1) & VL_ULL(0x5555555555555555))
| ((ret & VL_ULL(0x5555555555555555)) << 1)); // FALLTHRU
case 1:
ret = (((ret >> 2) & VL_ULL(0x3333333333333333))
| ((ret & VL_ULL(0x3333333333333333)) << 2)); // FALLTHRU
case 2:
ret = (((ret >> 4) & VL_ULL(0x0f0f0f0f0f0f0f0f))
| ((ret & VL_ULL(0x0f0f0f0f0f0f0f0f)) << 4)); // FALLTHRU
case 3:
ret = (((ret >> 8) & VL_ULL(0x00ff00ff00ff00ff))
| ((ret & VL_ULL(0x00ff00ff00ff00ff)) << 8)); // FALLTHRU
case 4:
ret = (((ret >> 16) & VL_ULL(0x0000ffff0000ffff))
| ((ret & VL_ULL(0x0000ffff0000ffff)) << 16)); // FALLTHRU
case 5:
ret = ((ret >> 32) | (ret << 32));
}
return ret >> (VL_QUADSIZE - lbits);
}
// Regular "slow" streaming operators
static inline IData VL_STREAML_III(int, int lbits, int, IData ld, IData rd) VL_PURE {
IData ret = 0;
// Slice size should never exceed the lhs width
IData mask = VL_MASK_I(rd);
for (int istart=0; istart<lbits; istart+=rd) {
int ostart = lbits-rd-istart;
ostart = ostart > 0 ? ostart : 0;
ret |= ((ld >> istart) & mask) << ostart;
}
return ret;
}
static inline QData VL_STREAML_QQI(int, int lbits, int, QData ld, IData rd) VL_PURE {
QData ret = 0;
// Slice size should never exceed the lhs width
QData mask = VL_MASK_Q(rd);
for (int istart=0; istart<lbits; istart+=rd) {
int ostart = lbits-rd-istart;
ostart = ostart > 0 ? ostart : 0;
ret |= ((ld >> istart) & mask) << ostart;
}
return ret;
}
static inline WDataOutP VL_STREAML_WWI(int, int lbits, int,
WDataOutP owp, WDataInP lwp, IData rd) VL_MT_SAFE {
VL_ZERO_W(lbits, owp);
// Slice size should never exceed the lhs width
int ssize = (rd < static_cast<IData>(lbits)) ? rd : (static_cast<IData>(lbits));
for (int istart=0; istart<lbits; istart+=rd) {
int ostart = lbits-rd-istart;
ostart = ostart > 0 ? ostart : 0;
for (int sbit=0; sbit<ssize && sbit<lbits-istart; ++sbit) {
// Extract a single bit from lwp and shift it to the correct
// location for owp.
WData bit= (VL_BITRSHIFT_W(lwp, (istart+sbit)) & 1) << VL_BITBIT_I(ostart+sbit);
owp[VL_BITWORD_I(ostart+sbit)] |= bit;
}
}
return owp;
}
// Because concats are common and wide, it's valuable to always have a clean output.
// Thus we specify inputs must be clean, so we don't need to clean the output.
// Note the bit shifts are always constants, so the adds in these constify out.
// Casts required, as args may be 8 bit entities, and need to shift to appropriate output size
#define VL_CONCAT_III(obits,lbits,rbits,ld,rd) \
(static_cast<IData>(ld)<<(rbits) | static_cast<IData>(rd))
#define VL_CONCAT_QII(obits,lbits,rbits,ld,rd) \
(static_cast<QData>(ld)<<(rbits) | static_cast<QData>(rd))
#define VL_CONCAT_QIQ(obits,lbits,rbits,ld,rd) \
(static_cast<QData>(ld)<<(rbits) | static_cast<QData>(rd))
#define VL_CONCAT_QQI(obits,lbits,rbits,ld,rd) \
(static_cast<QData>(ld)<<(rbits) | static_cast<QData>(rd))
#define VL_CONCAT_QQQ(obits,lbits,rbits,ld,rd) \
(static_cast<QData>(ld)<<(rbits) | static_cast<QData>(rd))
static inline WDataOutP VL_CONCAT_WII(int obits, int lbits, int rbits,
WDataOutP owp, IData ld, IData rd) VL_MT_SAFE {
owp[0] = rd;
for (int i=1; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
_VL_INSERT_WI(obits, owp, ld, rbits+lbits-1, rbits);
return owp;
}
static inline WDataOutP VL_CONCAT_WWI(int obits, int lbits, int rbits,
WDataOutP owp, WDataInP lwp, IData rd) VL_MT_SAFE {
owp[0] = rd;
for (int i=1; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
_VL_INSERT_WW(obits, owp, lwp, rbits+lbits-1, rbits);
return owp;
}
static inline WDataOutP VL_CONCAT_WIW(int obits, int lbits, int rbits,
WDataOutP owp, IData ld, WDataInP rwp) VL_MT_SAFE {
for (int i=0; i < VL_WORDS_I(rbits); ++i) owp[i] = rwp[i];
for (int i=VL_WORDS_I(rbits); i < VL_WORDS_I(obits); ++i) owp[i] = 0;
_VL_INSERT_WI(obits, owp, ld, rbits+lbits-1, rbits);
return owp;
}
static inline WDataOutP VL_CONCAT_WIQ(int obits, int lbits, int rbits,
WDataOutP owp, IData ld, QData rd) VL_MT_SAFE {
VL_SET_WQ(owp, rd);
for (int i=2; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
_VL_INSERT_WI(obits, owp, ld, rbits+lbits-1, rbits);
return owp;
}
static inline WDataOutP VL_CONCAT_WQI(int obits, int lbits, int rbits,
WDataOutP owp, QData ld, IData rd) VL_MT_SAFE {
owp[0] = rd;
for (int i=1; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
_VL_INSERT_WQ(obits, owp, ld, rbits+lbits-1, rbits);
return owp;
}
static inline WDataOutP VL_CONCAT_WQQ(int obits, int lbits, int rbits,
WDataOutP owp, QData ld, QData rd) VL_MT_SAFE {
VL_SET_WQ(owp, rd);
for (int i=2; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
_VL_INSERT_WQ(obits, owp, ld, rbits+lbits-1, rbits);
return owp;
}
static inline WDataOutP VL_CONCAT_WWQ(int obits, int lbits, int rbits,
WDataOutP owp, WDataInP lwp, QData rd) VL_MT_SAFE {
VL_SET_WQ(owp, rd);
for (int i=2; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
_VL_INSERT_WW(obits, owp, lwp, rbits+lbits-1, rbits);
return owp;
}
static inline WDataOutP VL_CONCAT_WQW(int obits, int lbits, int rbits,
WDataOutP owp, QData ld, WDataInP rwp) VL_MT_SAFE {
for (int i=0; i < VL_WORDS_I(rbits); ++i) owp[i] = rwp[i];
for (int i=VL_WORDS_I(rbits); i < VL_WORDS_I(obits); ++i) owp[i] = 0;
_VL_INSERT_WQ(obits, owp, ld, rbits+lbits-1, rbits);
return owp;
}
static inline WDataOutP VL_CONCAT_WWW(int obits, int lbits, int rbits,
WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
for (int i=0; i < VL_WORDS_I(rbits); ++i) owp[i] = rwp[i];
for (int i=VL_WORDS_I(rbits); i < VL_WORDS_I(obits); ++i) owp[i] = 0;
_VL_INSERT_WW(obits, owp, lwp, rbits+lbits-1, rbits);
return owp;
}
//===================================================================
// Shifts
// Static shift, used by internal functions
// The output is the same as the input - it overlaps!
static inline void _VL_SHIFTL_INPLACE_W(int obits, WDataOutP iowp, IData rd/*1 or 4*/) VL_MT_SAFE {
int words = VL_WORDS_I(obits);
IData linsmask = VL_MASK_I(rd);
for (int i=words-1; i>=1; --i) {
iowp[i] = ((iowp[i]<<rd) & ~linsmask) | ((iowp[i-1] >> (32-rd)) & linsmask);
}
iowp[0] = ((iowp[0]<<rd) & ~linsmask);
iowp[VL_WORDS_I(obits)-1] &= VL_MASK_I(obits);
}
// EMIT_RULE: VL_SHIFTL: oclean=lclean; rclean==clean;
// Important: Unlike most other funcs, the shift might well be a computed
// expression. Thus consider this when optimizing. (And perhaps have 2 funcs?)
static inline WDataOutP VL_SHIFTL_WWI(int obits, int, int,
WDataOutP owp, WDataInP lwp, IData rd) VL_MT_SAFE {
int word_shift = VL_BITWORD_I(rd);
int bit_shift = VL_BITBIT_I(rd);
if (rd >= static_cast<IData>(obits)) { // rd may be huge with MSB set
for (int i=0; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
} else if (bit_shift==0) { // Aligned word shift (<<0,<<32,<<64 etc)
for (int i=0; i < word_shift; ++i) owp[i] = 0;
for (int i=word_shift; i < VL_WORDS_I(obits); ++i) owp[i] = lwp[i-word_shift];
} else {
for (int i=0; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
_VL_INSERT_WW(obits, owp, lwp, obits-1, rd);
}
return owp;
}
static inline WDataOutP VL_SHIFTL_WWW(int obits, int lbits, int rbits,
WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
for (int i=1; i < VL_WORDS_I(rbits); ++i) {
if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more
return VL_ZERO_W(obits, owp);
}
}
return VL_SHIFTL_WWI(obits, lbits, 32, owp, lwp, rwp[0]);
}
static inline IData VL_SHIFTL_IIW(int obits, int, int rbits, IData lhs, WDataInP rwp) VL_MT_SAFE {
for (int i=1; i < VL_WORDS_I(rbits); ++i) {
if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more
return 0;
}
}
return VL_CLEAN_II(obits, obits, lhs<<rwp[0]);
}
static inline QData VL_SHIFTL_QQW(int obits, int, int rbits, QData lhs, WDataInP rwp) VL_MT_SAFE {
for (int i=1; i < VL_WORDS_I(rbits); ++i) {
if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more
return 0;
}
}
// Above checks rwp[1]==0 so not needed in below shift
return VL_CLEAN_QQ(obits, obits, lhs<<(static_cast<QData>(rwp[0])));
}
// EMIT_RULE: VL_SHIFTR: oclean=lclean; rclean==clean;
// Important: Unlike most other funcs, the shift might well be a computed
// expression. Thus consider this when optimizing. (And perhaps have 2 funcs?)
static inline WDataOutP VL_SHIFTR_WWI(int obits, int, int,
WDataOutP owp, WDataInP lwp, IData rd) VL_MT_SAFE {
int word_shift = VL_BITWORD_I(rd); // Maybe 0
int bit_shift = VL_BITBIT_I(rd);
if (rd >= static_cast<IData>(obits)) { // rd may be huge with MSB set
for (int i=0; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
} else if (bit_shift==0) { // Aligned word shift (>>0,>>32,>>64 etc)
int copy_words = (VL_WORDS_I(obits)-word_shift);
for (int i=0; i < copy_words; ++i) owp[i] = lwp[i+word_shift];
for (int i=copy_words; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
} else {
int loffset = rd & VL_SIZEBITS_I;
int nbitsonright = 32-loffset; // bits that end up in lword (know loffset!=0)
// Middle words
int words = VL_WORDS_I(obits-rd);
for (int i=0; i<words; ++i) {
owp[i] = lwp[i+word_shift]>>loffset;
int upperword = i+word_shift+1;
if (upperword < VL_WORDS_I(obits)) {
owp[i] |= lwp[upperword]<< nbitsonright;
}
}
for (int i=words; i<VL_WORDS_I(obits); ++i) owp[i]=0;
}
return owp;
}
static inline WDataOutP VL_SHIFTR_WWW(int obits, int lbits, int rbits,
WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
for (int i=1; i < VL_WORDS_I(rbits); ++i) {
if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more
return VL_ZERO_W(obits, owp);
}
}
return VL_SHIFTR_WWI(obits, lbits, 32, owp, lwp, rwp[0]);
}
static inline IData VL_SHIFTR_IIW(int obits, int, int rbits, IData lhs, WDataInP rwp) VL_MT_SAFE {
for (int i=1; i < VL_WORDS_I(rbits); ++i) {
if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more
return 0;
}
}
return VL_CLEAN_II(obits, obits, lhs>>rwp[0]);
}
static inline QData VL_SHIFTR_QQW(int obits, int, int rbits, QData lhs, WDataInP rwp) VL_MT_SAFE {
for (int i=1; i < VL_WORDS_I(rbits); ++i) {
if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more
return 0;
}
}
// Above checks rwp[1]==0 so not needed in below shift
return VL_CLEAN_QQ(obits, obits, lhs>>(static_cast<QData>(rwp[0])));
}
// EMIT_RULE: VL_SHIFTRS: oclean=false; lclean=clean, rclean==clean;
static inline IData VL_SHIFTRS_III(int obits, int lbits, int, IData lhs, IData rhs) VL_PURE {
// Note the C standard does not specify the >> operator as a arithmetic shift!
// IEEE says signed if output signed, but bit position from lbits;
// must use lbits for sign; lbits might != obits,
// an EXTEND(SHIFTRS(...)) can became a SHIFTRS(...) within same 32/64 bit word length
IData sign = -(lhs >> (lbits-1)); // ffff_ffff if negative
IData signext = ~(VL_MASK_I(lbits) >> rhs); // One with bits where we've shifted "past"
return (lhs >> rhs) | (sign & VL_CLEAN_II(obits, obits, signext));
}
static inline QData VL_SHIFTRS_QQI(int obits, int lbits, int, QData lhs, IData rhs) VL_PURE {
QData sign = -(lhs >> (lbits-1));
QData signext = ~(VL_MASK_Q(lbits) >> rhs);
return (lhs >> rhs) | (sign & VL_CLEAN_QQ(obits, obits, signext));
}
static inline IData VL_SHIFTRS_IQI(int obits, int lbits, int rbits,
QData lhs, IData rhs) VL_PURE {
return static_cast<IData>(VL_SHIFTRS_QQI(obits, lbits, rbits, lhs, rhs));
}
static inline WDataOutP VL_SHIFTRS_WWI(int obits, int lbits, int,
WDataOutP owp, WDataInP lwp, IData rd) VL_MT_SAFE {
int word_shift = VL_BITWORD_I(rd);
int bit_shift = VL_BITBIT_I(rd);
int lmsw = VL_WORDS_I(obits)-1;
IData sign = VL_SIGNONES_I(lbits, lwp[lmsw]);
if (rd >= static_cast<IData>(obits)) { // Shifting past end, sign in all of lbits
for (int i=0; i <= lmsw; ++i) owp[i] = sign;
owp[lmsw] &= VL_MASK_I(lbits);
} else if (bit_shift==0) { // Aligned word shift (>>0,>>32,>>64 etc)
int copy_words = (VL_WORDS_I(obits)-word_shift);
for (int i=0; i < copy_words; ++i) owp[i] = lwp[i+word_shift];
if (copy_words>=0) owp[copy_words-1] |= ~VL_MASK_I(obits) & sign;
for (int i=copy_words; i < VL_WORDS_I(obits); ++i) owp[i] = sign;
owp[lmsw] &= VL_MASK_I(lbits);
} else {
int loffset = rd & VL_SIZEBITS_I;
int nbitsonright = 32-loffset; // bits that end up in lword (know loffset!=0)
// Middle words
int words = VL_WORDS_I(obits-rd);
for (int i=0; i<words; ++i) {
owp[i] = lwp[i+word_shift]>>loffset;
int upperword = i+word_shift+1;
if (upperword < VL_WORDS_I(obits)) {
owp[i] |= lwp[upperword]<< nbitsonright;
}
}
if (words) owp[words-1] |= sign & ~VL_MASK_I(obits-loffset);
for (int i=words; i<VL_WORDS_I(obits); ++i) owp[i] = sign;
owp[lmsw] &= VL_MASK_I(lbits);
}
return owp;
}
static inline WDataOutP VL_SHIFTRS_WWW(int obits, int lbits, int rbits,
WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
for (int i=1; i < VL_WORDS_I(rbits); ++i) {
if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more
int lmsw = VL_WORDS_I(obits)-1;
IData sign = VL_SIGNONES_I(lbits, lwp[lmsw]);
for (int j=0; j <= lmsw; ++j) owp[j] = sign;
owp[lmsw] &= VL_MASK_I(lbits);
return owp;
}
}
return VL_SHIFTRS_WWI(obits, lbits, 32, owp, lwp, rwp[0]);
}
static inline IData VL_SHIFTRS_IIW(int obits, int lbits, int rbits,
IData lhs, WDataInP rwp) VL_MT_SAFE {
for (int i=1; i < VL_WORDS_I(rbits); ++i) {
if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more
IData sign = -(lhs >> (lbits-1)); // ffff_ffff if negative
return VL_CLEAN_II(obits, obits, sign);
}
}
return VL_SHIFTRS_III(obits, lbits, 32, lhs, rwp[0]);
}
static inline QData VL_SHIFTRS_QQW(int obits, int lbits, int rbits,
QData lhs, WDataInP rwp) VL_MT_SAFE {
for (int i=1; i < VL_WORDS_I(rbits); ++i) {
if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more
QData sign = -(lhs >> (lbits-1)); // ffff_ffff if negative
return VL_CLEAN_QQ(obits, obits, sign);
}
}
return VL_SHIFTRS_QQI(obits, lbits, 32, lhs, rwp[0]);
}
static inline IData VL_SHIFTRS_IIQ(int obits, int lbits, int rbits, IData lhs, QData rhs) VL_PURE {
WData rwp[2]; VL_SET_WQ(rwp, rhs);
return VL_SHIFTRS_IIW(obits, lbits, rbits, lhs, rwp);
}
static inline QData VL_SHIFTRS_QQQ(int obits, int lbits, int rbits, QData lhs, QData rhs) VL_PURE {
WData rwp[2]; VL_SET_WQ(rwp, rhs);
return VL_SHIFTRS_QQW(obits, lbits, rbits, lhs, rwp);
}
//===================================================================
// Bit selection
// EMIT_RULE: VL_BITSEL: oclean=dirty; rclean==clean;
#define VL_BITSEL_IIII(obits,lbits,rbits,zbits,lhs,rhs) ((lhs)>>(rhs))
#define VL_BITSEL_QIII(obits,lbits,rbits,zbits,lhs,rhs) ((lhs)>>(rhs))
#define VL_BITSEL_QQII(obits,lbits,rbits,zbits,lhs,rhs) ((lhs)>>(rhs))
#define VL_BITSEL_IQII(obits,lbits,rbits,zbits,lhs,rhs) (static_cast<IData>((lhs)>>(rhs)))
static inline IData VL_BITSEL_IWII(int, int lbits, int, int, WDataInP lwp, IData rd) VL_MT_SAFE {
int word = VL_BITWORD_I(rd);
if (VL_UNLIKELY(rd > static_cast<IData>(lbits))) {
return ~0; // Spec says you can go outside the range of a array. Don't coredump if so.
// We return all 1's as that's more likely to find bugs (?) than 0's.
} else {
return (lwp[word]>>VL_BITBIT_I(rd));
}
}
// EMIT_RULE: VL_RANGE: oclean=lclean; out=dirty
// <msb> & <lsb> MUST BE CLEAN (currently constant)
#define VL_SEL_IIII(obits,lbits,rbits,tbits,lhs,lsb,width) ((lhs)>>(lsb))
#define VL_SEL_QQII(obits,lbits,rbits,tbits,lhs,lsb,width) ((lhs)>>(lsb))
#define VL_SEL_IQII(obits,lbits,rbits,tbits,lhs,lsb,width) (static_cast<IData>((lhs)>>(lsb)))
static inline IData VL_SEL_IWII(int, int lbits, int, int,
WDataInP lwp, IData lsb, IData width) VL_MT_SAFE {
int msb = lsb+width-1;
if (VL_UNLIKELY(msb>lbits)) {
return ~0; // Spec says you can go outside the range of a array. Don't coredump if so.
} else if (VL_BITWORD_I(msb)==VL_BITWORD_I(static_cast<int>(lsb))) {
return VL_BITRSHIFT_W(lwp, lsb);
} else {
// 32 bit extraction may span two words
int nbitsfromlow = 32-VL_BITBIT_I(lsb); // bits that come from low word
return ((lwp[VL_BITWORD_I(msb)]<<nbitsfromlow)
| VL_BITRSHIFT_W(lwp, lsb));
}
}
static inline QData VL_SEL_QWII(int, int lbits, int, int,
WDataInP lwp, IData lsb, IData width) VL_MT_SAFE {
int msb = lsb+width-1;
if (VL_UNLIKELY(msb>lbits)) {
return ~0; // Spec says you can go outside the range of a array. Don't coredump if so.
} else if (VL_BITWORD_I(msb)==VL_BITWORD_I(static_cast<int>(lsb))) {
return VL_BITRSHIFT_W(lwp, lsb);
} else if (VL_BITWORD_I(msb)==1+VL_BITWORD_I(static_cast<int>(lsb))) {
int nbitsfromlow = 32-VL_BITBIT_I(lsb);
QData hi = (lwp[VL_BITWORD_I(msb)]);
QData lo = VL_BITRSHIFT_W(lwp, lsb);
return (hi<<nbitsfromlow) | lo;
} else {
// 64 bit extraction may span three words
int nbitsfromlow = 32-VL_BITBIT_I(lsb);
QData hi = (lwp[VL_BITWORD_I(msb)]);
QData mid= (lwp[VL_BITWORD_I(lsb)+1]);
QData lo = VL_BITRSHIFT_W(lwp, lsb);
return (hi<<(nbitsfromlow+32)) | (mid<<nbitsfromlow) | lo;
}
}
static inline WDataOutP VL_SEL_WWII(int obits, int lbits, int, int,
WDataOutP owp, WDataInP lwp,
IData lsb, IData width) VL_MT_SAFE {
int msb = lsb+width-1;
int word_shift = VL_BITWORD_I(lsb);
if (VL_UNLIKELY(msb>lbits)) { // Outside bounds,
for (int i=0; i<VL_WORDS_I(obits)-1; ++i) owp[i] = ~0;
owp[VL_WORDS_I(obits)-1] = VL_MASK_I(obits);
} else if (VL_BITBIT_I(lsb)==0) {
// Just a word extract
for (int i=0; i<VL_WORDS_I(obits); ++i) owp[i] = lwp[i+word_shift];
} else {
// Not a _VL_INSERT because the bits come from any bit number and goto bit 0
int loffset = lsb & VL_SIZEBITS_I;
int nbitsfromlow = 32-loffset; // bits that end up in lword (know loffset!=0)
// Middle words
int words = VL_WORDS_I(msb-lsb+1);
for (int i=0; i<words; ++i) {
owp[i] = lwp[i+word_shift]>>loffset;
int upperword = i+word_shift+1;
if (upperword <= static_cast<int>(VL_BITWORD_I(msb))) {
owp[i] |= lwp[upperword]<< nbitsfromlow;
}
}
for (int i=words; i<VL_WORDS_I(obits); ++i) owp[i]=0;
}
return owp;
}
//======================================================================
// Range assignments
// EMIT_RULE: VL_ASSIGNRANGE: rclean=dirty;
static inline void VL_ASSIGNSEL_IIII(int obits, int lsb, CData& lhsr, IData rhs) VL_PURE {
_VL_INSERT_II(obits, lhsr, rhs, lsb+obits-1, lsb);
}
static inline void VL_ASSIGNSEL_IIII(int obits, int lsb, SData& lhsr, IData rhs) VL_PURE {
_VL_INSERT_II(obits, lhsr, rhs, lsb+obits-1, lsb);
}
static inline void VL_ASSIGNSEL_IIII(int obits, int lsb, IData& lhsr, IData rhs) VL_PURE {
_VL_INSERT_II(obits, lhsr, rhs, lsb+obits-1, lsb);
}
static inline void VL_ASSIGNSEL_QIII(int obits, int lsb, QData& lhsr, IData rhs) VL_PURE {
_VL_INSERT_QQ(obits, lhsr, rhs, lsb+obits-1, lsb);
}
static inline void VL_ASSIGNSEL_QQII(int obits, int lsb, QData& lhsr, QData rhs) VL_PURE {
_VL_INSERT_QQ(obits, lhsr, rhs, lsb+obits-1, lsb);
}
static inline void VL_ASSIGNSEL_QIIQ(int obits, int lsb, QData& lhsr, QData rhs) VL_PURE {
_VL_INSERT_QQ(obits, lhsr, rhs, lsb+obits-1, lsb);
}
//static inline void VL_ASSIGNSEL_IIIW(int obits, int lsb, IData& lhsr, WDataInP rwp) VL_MT_SAFE {
// Illegal, as lhs width >= rhs width
static inline void VL_ASSIGNSEL_WIII(int obits, int lsb, WDataOutP owp, IData rhs) VL_MT_SAFE {
_VL_INSERT_WI(obits, owp, rhs, lsb+obits-1, lsb);
}
static inline void VL_ASSIGNSEL_WIIQ(int obits, int lsb, WDataOutP owp, QData rhs) VL_MT_SAFE {
_VL_INSERT_WQ(obits, owp, rhs, lsb+obits-1, lsb);
}
static inline void VL_ASSIGNSEL_WIIW(int obits, int lsb, WDataOutP owp, WDataInP rwp) VL_MT_SAFE {
_VL_INSERT_WW(obits, owp, rwp, lsb+obits-1, lsb);
}
//======================================================================
// Triops
static inline WDataOutP VL_COND_WIWW(int obits, int, int, int,
WDataOutP owp, int cond,
WDataInP w1p, WDataInP w2p) VL_MT_SAFE {
int words = VL_WORDS_I(obits);
for (int i=0; i < words; ++i) owp[i] = cond ? w1p[i] : w2p[i];
return owp;
}
//======================================================================
// Constification
// VL_CONST_W_#X(int obits, WDataOutP owp, IData data0, .... IData data(#-1))
// Sets wide vector words to specified constant words.
// These macros are used when o might represent more words then are given as constants,
// hence all upper words must be zeroed.
// If changing the number of functions here, also change EMITCINLINES_NUM_CONSTW
#define _END(obits,wordsSet) \
for(int i=(wordsSet);i<VL_WORDS_I(obits);++i) o[i] = 0; \
return o
static inline WDataOutP VL_CONST_W_1X(int obits, WDataOutP o,
IData d0) VL_MT_SAFE {
o[0]=d0;
_END(obits,1); }
static inline WDataOutP VL_CONST_W_2X(int obits, WDataOutP o,
IData d1, IData d0) VL_MT_SAFE {
o[0]=d0; o[1]=d1;
_END(obits,2); }
static inline WDataOutP VL_CONST_W_3X(int obits, WDataOutP o,
IData d2, IData d1, IData d0) VL_MT_SAFE {
o[0]=d0; o[1]=d1; o[2]=d2;
_END(obits,3); }
static inline WDataOutP VL_CONST_W_4X(int obits, WDataOutP o,
IData d3, IData d2, IData d1, IData d0) VL_MT_SAFE {
o[0]=d0; o[1]=d1; o[2]=d2; o[3]=d3;
_END(obits,4); }
static inline WDataOutP VL_CONST_W_5X(int obits, WDataOutP o,
IData d4,
IData d3, IData d2, IData d1, IData d0) VL_MT_SAFE {
o[0]=d0; o[1]=d1; o[2]=d2; o[3]=d3; o[4]=d4;
_END(obits,5); }
static inline WDataOutP VL_CONST_W_6X(int obits, WDataOutP o,
IData d5, IData d4,
IData d3, IData d2, IData d1, IData d0) VL_MT_SAFE {
o[0]=d0; o[1]=d1; o[2]=d2; o[3]=d3; o[4]=d4; o[5]=d5;
_END(obits,6); }
static inline WDataOutP VL_CONST_W_7X(int obits, WDataOutP o,
IData d6, IData d5, IData d4,
IData d3, IData d2, IData d1, IData d0) VL_MT_SAFE {
o[0]=d0; o[1]=d1; o[2]=d2; o[3]=d3; o[4]=d4; o[5]=d5; o[6]=d6;
_END(obits,7); }
static inline WDataOutP VL_CONST_W_8X(int obits, WDataOutP o,
IData d7, IData d6, IData d5, IData d4,
IData d3, IData d2, IData d1, IData d0) VL_MT_SAFE {
o[0]=d0; o[1]=d1; o[2]=d2; o[3]=d3; o[4]=d4; o[5]=d5; o[6]=d6; o[7]=d7;
_END(obits,8); }
//
static inline WDataOutP VL_CONSTHI_W_1X(int obits, int lsb, WDataOutP obase,
IData d0) VL_MT_SAFE {
WDataOutP o = obase + VL_WORDS_I(lsb);
o[0]=d0;
_END(obits,1); }
static inline WDataOutP VL_CONSTHI_W_2X(int obits, int lsb, WDataOutP obase,
IData d1, IData d0) VL_MT_SAFE {
WDataOutP o = obase + VL_WORDS_I(lsb);
o[0]=d0; o[1]=d1;
_END(obits,2); }
static inline WDataOutP VL_CONSTHI_W_3X(int obits, int lsb, WDataOutP obase,
IData d2, IData d1, IData d0) VL_MT_SAFE {
WDataOutP o = obase + VL_WORDS_I(lsb);
o[0]=d0; o[1]=d1; o[2]=d2;
_END(obits,3); }
static inline WDataOutP VL_CONSTHI_W_4X(int obits, int lsb, WDataOutP obase,
IData d3, IData d2, IData d1, IData d0) VL_MT_SAFE {
WDataOutP o = obase + VL_WORDS_I(lsb);
o[0]=d0; o[1]=d1; o[2]=d2; o[3]=d3;
_END(obits,4); }
static inline WDataOutP VL_CONSTHI_W_5X(int obits, int lsb, WDataOutP obase,
IData d4,
IData d3, IData d2, IData d1, IData d0) VL_MT_SAFE {
WDataOutP o = obase + VL_WORDS_I(lsb);
o[0]=d0; o[1]=d1; o[2]=d2; o[3]=d3; o[4]=d4;
_END(obits,5); }
static inline WDataOutP VL_CONSTHI_W_6X(int obits, int lsb, WDataOutP obase,
IData d5, IData d4,
IData d3, IData d2, IData d1, IData d0) VL_MT_SAFE {
WDataOutP o = obase + VL_WORDS_I(lsb);
o[0]=d0; o[1]=d1; o[2]=d2; o[3]=d3; o[4]=d4; o[5]=d5;
_END(obits,6); }
static inline WDataOutP VL_CONSTHI_W_7X(int obits, int lsb, WDataOutP obase,
IData d6, IData d5, IData d4,
IData d3, IData d2, IData d1, IData d0) VL_MT_SAFE {
WDataOutP o = obase + VL_WORDS_I(lsb);
o[0]=d0; o[1]=d1; o[2]=d2; o[3]=d3; o[4]=d4; o[5]=d5; o[6]=d6;
_END(obits,7); }
static inline WDataOutP VL_CONSTHI_W_8X(int obits, int lsb, WDataOutP obase,
IData d7, IData d6, IData d5, IData d4,
IData d3, IData d2, IData d1, IData d0) VL_MT_SAFE {
WDataOutP o = obase + VL_WORDS_I(lsb);
o[0]=d0; o[1]=d1; o[2]=d2; o[3]=d3; o[4]=d4; o[5]=d5; o[6]=d6; o[7]=d7;
_END(obits,8); }
#undef _END
// Partial constant, lower words of vector wider than 8*32, starting at bit number lsb
static inline void VL_CONSTLO_W_8X(int lsb, WDataOutP obase,
IData d7, IData d6, IData d5, IData d4,
IData d3, IData d2, IData d1, IData d0) VL_MT_SAFE {
WDataOutP o = obase + VL_WORDS_I(lsb);
o[0]=d0; o[1]=d1; o[2]=d2; o[3]=d3; o[4]=d4; o[5]=d5; o[6]=d6; o[7]=d7; }
//======================================================================
#endif // Guard