// -*- mode: C++; c-file-style: "cc-mode" -*- //************************************************************************* // // Copyright 2003-2019 by Wilson Snyder. This program is free software; you can // redistribute it and/or modify it under the terms of either the GNU // Lesser General Public License Version 3 or the Perl Artistic License. // Version 2.0. // // Verilator is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // //************************************************************************* /// /// \file /// \brief Verilator: Common include for all Verilated C files /// /// This file is included automatically by Verilator at the top of /// all C++ files it generates. It contains standard macros and /// classes required by the Verilated code. /// /// Code available from: http://www.veripool.org/verilator /// //************************************************************************* #ifndef _VERILATED_H_ #define _VERILATED_H_ 1 ///< Header Guard #include "verilatedos.h" #include #include #include #include #include #include // avoided to reduce compile time // avoided and instead in verilated_heavy.h to reduce compile time // avoided and instead in verilated_heavy.h to reduce compile time #ifdef VL_THREADED # include # include # include #endif //============================================================================= // Switches #if VM_TRACE // Verilator tracing requested # define WAVES 1 // Set backward compatibility flag #endif //========================================================================= // Basic types // P // Packed data of bit type (C/S/I/Q/W) typedef vluint8_t CData; ///< Verilated pack data, 1-8 bits typedef vluint16_t SData; ///< Verilated pack data, 9-16 bits typedef vluint32_t IData; ///< Verilated pack data, 17-32 bits typedef vluint64_t QData; ///< Verilated pack data, 33-64 bits typedef vluint32_t WData; ///< Verilated pack data, >64 bits, as an array // float F // No typedef needed; Verilator uses float // double D // No typedef needed; Verilator uses double // string N // No typedef needed; Verilator uses string typedef const WData* WDataInP; ///< Array input to a function typedef WData* WDataOutP; ///< Array output from a function typedef void (*VerilatedVoidCb)(void); class SpTraceVcd; class SpTraceVcdCFile; class VerilatedEvalMsgQueue; class VerilatedScopeNameMap; class VerilatedVar; class VerilatedVarNameMap; class VerilatedVcd; class VerilatedVcdC; class VerilatedFst; class VerilatedFstC; enum VerilatedVarType { VLVT_UNKNOWN=0, VLVT_PTR, // Pointer to something VLVT_UINT8, // AKA CData VLVT_UINT16, // AKA SData VLVT_UINT32, // AKA IData VLVT_UINT64, // AKA QData VLVT_WDATA, // AKA WData VLVT_STRING // C++ string }; enum VerilatedVarFlags { VLVD_0 = 0, // None VLVD_IN = 1, // == vpiInput VLVD_OUT = 2, // == vpiOutput VLVD_INOUT = 3, // == vpiInOut VLVD_NODIR = 5, // == vpiNoDirection VLVF_MASK_DIR = 7, // Bit mask for above directions // Flags VLVF_PUB_RD = (1<<8), // Public readable VLVF_PUB_RW = (1<<9), // Public writable VLVF_DPI_CLAY = (1<<10) // DPI compatible C standard layout }; //========================================================================= /// Mutex and threading support /// Return current thread ID (or 0), not super fast, cache if needed extern vluint32_t VL_THREAD_ID() VL_MT_SAFE; #if VL_THREADED #define VL_LOCK_SPINS 50000 /// Number of times to spin for a mutex before relaxing /// Mutex, wrapped to allow -fthread_safety checks class VL_CAPABILITY("mutex") VerilatedMutex { private: std::mutex m_mutex; // Mutex public: VerilatedMutex() {} ~VerilatedMutex() {} const VerilatedMutex& operator!() const { return *this; } // For -fthread_safety /// Acquire/lock mutex void lock() VL_ACQUIRE() { // Try to acquire the lock by spinning. If the wait is short, // avoids a trap to the OS plus OS scheduler overhead. if (VL_LIKELY(try_lock())) return; // Short circuit loop for (int i = 0; i < VL_LOCK_SPINS; ++i) { if (VL_LIKELY(try_lock())) return; VL_CPU_RELAX(); } // Spinning hasn't worked, pay the cost of blocking. m_mutex.lock(); } /// Release/unlock mutex void unlock() VL_RELEASE() { m_mutex.unlock(); } /// Try to acquire mutex. Returns true on success, and false on failure. bool try_lock() VL_TRY_ACQUIRE(true) { return m_mutex.try_lock(); } }; /// Lock guard for mutex (ala std::lock_guard), wrapped to allow -fthread_safety checks class VL_SCOPED_CAPABILITY VerilatedLockGuard { VL_UNCOPYABLE(VerilatedLockGuard); private: VerilatedMutex& m_mutexr; public: explicit VerilatedLockGuard(VerilatedMutex& mutexr) VL_ACQUIRE(mutexr) : m_mutexr(mutexr) { m_mutexr.lock(); } ~VerilatedLockGuard() VL_RELEASE() { m_mutexr.unlock(); } }; #else // !VL_THREADED /// Empty non-threaded mutex to avoid #ifdefs in consuming code class VerilatedMutex { public: void lock() {} void unlock() {} }; /// Empty non-threaded lock guard to avoid #ifdefs in consuming code class VerilatedLockGuard { VL_UNCOPYABLE(VerilatedLockGuard); public: explicit VerilatedLockGuard(VerilatedMutex&) {} ~VerilatedLockGuard() {} }; #endif // VL_THREADED /// Remember the calling thread at construction time, and make sure later calls use same thread class VerilatedAssertOneThread { // MEMBERS #if defined(VL_THREADED) && defined(VL_DEBUG) vluint32_t m_threadid; /// Thread that is legal public: // CONSTRUCTORS /// The constructor establishes the thread id for all later calls. /// If necessary, a different class could be made that inits it otherwise. VerilatedAssertOneThread() : m_threadid(VL_THREAD_ID()) { } ~VerilatedAssertOneThread() { check(); } // METHODS /// Check that the current thread ID is the same as the construction thread ID void check() VL_MT_UNSAFE_ONE { if (VL_UNCOVERABLE(m_threadid != VL_THREAD_ID())) { fatal_different(); // LCOV_EXCL_LINE } } static void fatal_different() VL_MT_SAFE; #else // !VL_THREADED || !VL_DEBUG public: void check() {} #endif }; //========================================================================= /// Base class for all Verilated module classes class VerilatedScope; class VerilatedModule { VL_UNCOPYABLE(VerilatedModule); private: const char* m_namep; ///< Module name public: explicit VerilatedModule(const char* namep); ///< Create module with given hierarchy name ~VerilatedModule(); const char* name() const { return m_namep; } ///< Return name of module }; //========================================================================= // Declare nets #ifndef VL_ST_SIG # define VL_ST_SIG8(name, msb,lsb) CData name ///< Declare signal, 1-8 bits # define VL_ST_SIG16(name, msb,lsb) SData name ///< Declare signal, 9-16 bits # define VL_ST_SIG64(name, msb,lsb) QData name ///< Declare signal, 33-64 bits # define VL_ST_SIG(name, msb,lsb) IData name ///< Declare signal, 17-32 bits # define VL_ST_SIGW(name,msb,lsb,words) WData name[words] ///< Declare signal, 65+ bits #endif #ifndef VL_SIG # define VL_SIG8(name, msb,lsb) CData name ///< Declare signal, 1-8 bits # define VL_SIG16(name, msb,lsb) SData name ///< Declare signal, 9-16 bits # define VL_SIG64(name, msb,lsb) QData name ///< Declare signal, 33-64 bits # define VL_SIG(name, msb,lsb) IData name ///< Declare signal, 17-32 bits # define VL_SIGW(name, msb,lsb, words) WData name[words] ///< Declare signal, 65+ bits # define VL_IN8(name, msb,lsb) CData name ///< Declare input signal, 1-8 bits # define VL_IN16(name, msb,lsb) SData name ///< Declare input signal, 9-16 bits # define VL_IN64(name, msb,lsb) QData name ///< Declare input signal, 33-64 bits # define VL_IN(name, msb,lsb) IData name ///< Declare input signal, 17-32 bits # define VL_INW(name, msb,lsb, words) WData name[words] ///< Declare input signal, 65+ bits # define VL_INOUT8(name, msb,lsb) CData name ///< Declare bidir signal, 1-8 bits # define VL_INOUT16(name, msb,lsb) SData name ///< Declare bidir signal, 9-16 bits # define VL_INOUT64(name, msb,lsb) QData name ///< Declare bidir signal, 33-64 bits # define VL_INOUT(name, msb,lsb) IData name ///< Declare bidir signal, 17-32 bits # define VL_INOUTW(name, msb,lsb, words) WData name[words] ///< Declare bidir signal, 65+ bits # define VL_OUT8(name, msb,lsb) CData name ///< Declare output signal, 1-8 bits # define VL_OUT16(name, msb,lsb) SData name ///< Declare output signal, 9-16 bits # define VL_OUT64(name, msb,lsb) QData name ///< Declare output signal, 33-64bits # define VL_OUT(name, msb,lsb) IData name ///< Declare output signal, 17-32 bits # define VL_OUTW(name, msb,lsb, words) WData name[words] ///< Declare output signal, 65+ bits # define VL_PIN_NOP(instname,pin,port) ///< Connect a pin, ala SP_PIN # define VL_CELL(instname,type) ///< Declare a cell, ala SP_CELL /// Declare a module, ala SC_MODULE # define VL_MODULE(modname) class modname : public VerilatedModule /// Constructor, ala SC_CTOR # define VL_CTOR(modname) modname(const char* __VCname="") /// Constructor declaration for C++, ala SP_CTOR_IMPL # define VL_CTOR_IMP(modname) modname::modname(const char* __VCname) : VerilatedModule(__VCname) /// Constructor declaration for SystemC, ala SP_CTOR_IMPL # define VL_SC_CTOR_IMP(modname) modname::modname(sc_module_name) #endif //========================================================================= // Functions overridable by user defines // (Internals however must use VL_PRINTF_MT, which calls these.) #ifndef VL_PRINTF # define VL_PRINTF printf ///< Print ala printf, called from main thread; may redefine if desired #endif #ifndef VL_VPRINTF # define VL_VPRINTF vprintf ///< Print ala vprintf, called from main thread; may redefine if desired #endif //=========================================================================== /// Verilator symbol table base class class VerilatedSyms { public: // But for internal use only #ifdef VL_THREADED VerilatedEvalMsgQueue* __Vm_evalMsgQp; #endif VerilatedSyms(); ~VerilatedSyms(); }; //=========================================================================== /// Verilator global class information class /// This class is initialized by main thread only. Reading post-init is thread safe. class VerilatedScope { public: typedef enum { SCOPE_MODULE, SCOPE_OTHER } Type; // Type of a scope, currently module is only interesting private: // Fastpath: VerilatedSyms* m_symsp; ///< Symbol table void** m_callbacksp; ///< Callback table pointer (Fastpath) int m_funcnumMax; ///< Maxium function number stored (Fastpath) // 4 bytes padding (on -m64), for rent. VerilatedVarNameMap* m_varsp; ///< Variable map const char* m_namep; ///< Scope name (Slowpath) const char* m_identifierp; ///< Identifier of scope (with escapes removed) Type m_type; ///< Type of the scope public: // But internals only - called from VerilatedModule's VerilatedScope(); ~VerilatedScope(); void configure(VerilatedSyms* symsp, const char* prefixp, const char* suffix, const char* identifier, const Type type) VL_MT_UNSAFE; void exportInsert(int finalize, const char* namep, void* cb) VL_MT_UNSAFE; void varInsert(int finalize, const char* namep, void* datap, VerilatedVarType vltype, int vlflags, int dims, ...) VL_MT_UNSAFE; // ACCESSORS const char* name() const { return m_namep; } const char* identifier() const { return m_identifierp; } inline VerilatedSyms* symsp() const { return m_symsp; } VerilatedVar* varFind(const char* namep) const VL_MT_SAFE_POSTINIT; VerilatedVarNameMap* varsp() const VL_MT_SAFE_POSTINIT { return m_varsp; } void scopeDump() const; void* exportFindError(int funcnum) const; static void* exportFindNullError(int funcnum) VL_MT_SAFE; static inline void* exportFind(const VerilatedScope* scopep, int funcnum) VL_MT_SAFE { if (VL_UNLIKELY(!scopep)) return exportFindNullError(funcnum); if (VL_LIKELY(funcnum < scopep->m_funcnumMax)) { // m_callbacksp must be declared, as Max'es are > 0 return scopep->m_callbacksp[funcnum]; } else { // LCOV_EXCL_LINE return scopep->exportFindError(funcnum); // LCOV_EXCL_LINE } } Type type() const { return m_type; } }; class VerilatedHierarchy { public: void add(VerilatedScope* fromp, VerilatedScope* top); }; //=========================================================================== /// Verilator global static information class class Verilated { // MEMBERS // Slow path variables static VerilatedMutex m_mutex; ///< Mutex for s_s/s_ns members, when VL_THREADED static VerilatedVoidCb s_flushCb; ///< Flush callback function static struct Serialized { // All these members serialized/deserialized // Fast path int s_debug; ///< See accessors... only when VL_DEBUG set bool s_calcUnusedSigs; ///< Waves file on, need all signals calculated bool s_gotFinish; ///< A $finish statement executed bool s_assertOn; ///< Assertions are enabled bool s_fatalOnVpiError; ///< Stop on vpi error/unsupported // Slow path int s_randReset; ///< Random reset: 0=all 0s, 1=all 1s, 2=random int s_randSeed; ///< Random seed: 0=random Serialized(); ~Serialized() {} } s_s; static struct NonSerialized { // Non-serialized information // These are reloaded from on command-line settings, so do not need to persist // Fast path vluint64_t s_profThreadsStart; ///< +prof+threads starting time vluint32_t s_profThreadsWindow; ///< +prof+threads window size // Slow path const char* s_profThreadsFilenamep; ///< +prof+threads filename NonSerialized(); ~NonSerialized(); } s_ns; // no need to be save-restored (serialized) the // assumption is that the restore is allowed to pass different arguments static struct CommandArgValues { VerilatedMutex m_argMutex; ///< Mutex for s_args members, when VL_THREADED int argc; const char** argv; CommandArgValues() : argc(0), argv(NULL) {} ~CommandArgValues() {} } s_args; // Not covered by mutex, as per-thread static VL_THREAD_LOCAL struct ThreadLocal { #ifdef VL_THREADED vluint32_t t_mtaskId; ///< Current mtask# executing on this thread vluint32_t t_endOfEvalReqd; ///< Messages may be pending, thread needs endOf-eval calls #endif const VerilatedScope* t_dpiScopep; ///< DPI context scope const char* t_dpiFilename; ///< DPI context filename int t_dpiLineno; ///< DPI context line number ThreadLocal(); ~ThreadLocal(); } t_s; private: // CONSTRUCTORS VL_UNCOPYABLE(Verilated); public: // METHODS - User called /// Select initial value of otherwise uninitialized signals. //// /// 0 = Set to zeros /// 1 = Set all bits to one /// 2 = Randomize all bits static void randReset(int val) VL_MT_SAFE; static int randReset() VL_MT_SAFE { return s_s.s_randReset; } ///< Return randReset value static void randSeed(int val) VL_MT_SAFE; static int randSeed() VL_MT_SAFE { return s_s.s_randSeed; } ///< Return randSeed value /// Enable debug of internal verilated code static void debug(int level) VL_MT_SAFE; #ifdef VL_DEBUG /// Return debug level /// When multithreaded this may not immediately react to another thread /// changing the level (no mutex) static inline int debug() VL_MT_SAFE { return s_s.s_debug; } #else static inline int debug() VL_PURE { return 0; } ///< Return constant 0 debug level, so C++'s optimizer rips up #endif /// Enable calculation of unused signals static void calcUnusedSigs(bool flag) VL_MT_SAFE; static bool calcUnusedSigs() VL_MT_SAFE { ///< Return calcUnusedSigs value return s_s.s_calcUnusedSigs; } /// Did the simulation $finish? static void gotFinish(bool flag) VL_MT_SAFE; static bool gotFinish() VL_MT_SAFE { return s_s.s_gotFinish; } ///< Return if got a $finish /// Allow traces to at some point be enabled (disables some optimizations) static void traceEverOn(bool flag) VL_MT_SAFE { if (flag) { calcUnusedSigs(flag); } } /// Enable/disable assertions static void assertOn(bool flag) VL_MT_SAFE; static bool assertOn() VL_MT_SAFE { return s_s.s_assertOn; } /// Enable/disable vpi fatal static void fatalOnVpiError(bool flag) VL_MT_SAFE; static bool fatalOnVpiError() VL_MT_SAFE { return s_s.s_fatalOnVpiError; } /// --prof-threads related settings static void profThreadsStart(vluint64_t flag) VL_MT_SAFE; static vluint64_t profThreadsStart() VL_MT_SAFE { return s_ns.s_profThreadsStart; } static void profThreadsWindow(vluint64_t flag) VL_MT_SAFE; static vluint32_t profThreadsWindow() VL_MT_SAFE { return s_ns.s_profThreadsWindow; } static void profThreadsFilenamep(const char* flagp) VL_MT_SAFE; static const char* profThreadsFilenamep() VL_MT_SAFE { return s_ns.s_profThreadsFilenamep; } /// Flush callback for VCD waves static void flushCb(VerilatedVoidCb cb) VL_MT_SAFE; static void flushCall() VL_MT_SAFE; /// Record command line arguments, for retrieval by $test$plusargs/$value$plusargs, /// and for parsing +verilator+ run-time arguments. /// This should be called before the first model is created. static void commandArgs(int argc, const char** argv) VL_MT_SAFE; static void commandArgs(int argc, char** argv) VL_MT_SAFE { commandArgs(argc, const_cast(argv)); } static void commandArgsAdd(int argc, const char** argv); static CommandArgValues* getCommandArgs() VL_MT_SAFE { return &s_args; } /// Match plusargs with a given prefix. Returns static char* valid only for a single call static const char* commandArgsPlusMatch(const char* prefixp) VL_MT_SAFE; /// Produce name & version for (at least) VPI static const char* productName() VL_PURE; static const char* productVersion() VL_PURE; /// Convenience OS utilities static void mkdir(const char* dirname) VL_MT_UNSAFE; /// When multithreaded, quiesce the model to prepare for trace/saves/coverage /// This may only be called when no locks are held. static void quiesce() VL_MT_SAFE; /// For debugging, print much of the Verilator internal state. /// The output of this function may change in future /// releases - contact the authors before production use. static void internalsDump() VL_MT_SAFE; /// For debugging, print text list of all scope names with /// dpiImport/Export context. This function may change in future /// releases - contact the authors before production use. static void scopesDump() VL_MT_SAFE; public: // METHODS - INTERNAL USE ONLY (but public due to what uses it) // Internal: Create a new module name by concatenating two strings static const char* catName(const char* n1, const char* n2); // Returns static data // Internal: Throw signal assertion static void overWidthError(const char* signame) VL_MT_SAFE; // Internal: Find scope static const VerilatedScope* scopeFind(const char* namep) VL_MT_SAFE; static const VerilatedScopeNameMap* scopeNameMap() VL_MT_SAFE; // Internal: Get and set DPI context static const VerilatedScope* dpiScope() VL_MT_SAFE { return t_s.t_dpiScopep; } static void dpiScope(const VerilatedScope* scopep) VL_MT_SAFE { t_s.t_dpiScopep = scopep; } static void dpiContext(const VerilatedScope* scopep, const char* filenamep, int lineno) VL_MT_SAFE { t_s.t_dpiScopep = scopep; t_s.t_dpiFilename = filenamep; t_s.t_dpiLineno = lineno; } static void dpiClearContext() VL_MT_SAFE { t_s.t_dpiScopep = NULL; } static bool dpiInContext() VL_MT_SAFE { return t_s.t_dpiScopep != NULL; } static const char* dpiFilenamep() VL_MT_SAFE { return t_s.t_dpiFilename; } static int dpiLineno() VL_MT_SAFE { return t_s.t_dpiLineno; } static int exportFuncNum(const char* namep) VL_MT_SAFE; static size_t serializedSize() VL_PURE { return sizeof(s_s); } static void* serializedPtr() VL_MT_UNSAFE { return &s_s; } // Unsafe, for Serialize only #ifdef VL_THREADED /// Set the mtaskId, called when an mtask starts static void mtaskId(vluint32_t id) VL_MT_SAFE { t_s.t_mtaskId = id; } static vluint32_t mtaskId() VL_MT_SAFE { return t_s.t_mtaskId; } static void endOfEvalReqdInc() VL_MT_SAFE { ++t_s.t_endOfEvalReqd; } static void endOfEvalReqdDec() VL_MT_SAFE { --t_s.t_endOfEvalReqd; } /// Called at end of each thread mtask, before finishing eval static void endOfThreadMTask(VerilatedEvalMsgQueue* evalMsgQp) VL_MT_SAFE { if (VL_UNLIKELY(t_s.t_endOfEvalReqd)) { endOfThreadMTaskGuts(evalMsgQp); } } /// Called at end of eval loop static void endOfEval(VerilatedEvalMsgQueue* evalMsgQp) VL_MT_SAFE { // It doesn't work to set endOfEvalReqd on the threadpool thread // and then check it on the eval thread since it's thread local. // It should be ok to call into endOfEvalGuts, it returns immediately // if there are no transactions. endOfEvalGuts(evalMsgQp); } #endif private: #ifdef VL_THREADED static void endOfThreadMTaskGuts(VerilatedEvalMsgQueue* evalMsgQp) VL_MT_SAFE; static void endOfEvalGuts(VerilatedEvalMsgQueue* evalMsgQp) VL_MT_SAFE; #endif }; //========================================================================= // Extern functions -- User may override -- See verilated.cpp /// Routine to call for $finish /// User code may wish to replace this function, to do so, define VL_USER_FINISH. /// This code does not have to be thread safe. /// Verilator internal code must call VL_FINISH_MT instead, which eventually calls this. extern void vl_finish(const char* filename, int linenum, const char* hier); /// Routine to call for $stop /// User code may wish to replace this function, to do so, define VL_USER_STOP. /// This code does not have to be thread safe. /// Verilator internal code must call VL_FINISH_MT instead, which eventually calls this. extern void vl_stop(const char* filename, int linenum, const char* hier); /// Routine to call for a couple of fatal messages /// User code may wish to replace this function, to do so, define VL_USER_FATAL. /// This code does not have to be thread safe. /// Verilator internal code must call VL_FINISH_MT instead, which eventually calls this. extern void vl_fatal(const char* filename, int linenum, const char* hier, const char* msg); //========================================================================= // Extern functions -- Slow path /// Multithread safe wrapper for calls to $finish extern void VL_FINISH_MT(const char* filename, int linenum, const char* hier) VL_MT_SAFE; /// Multithread safe wrapper for calls to $stop extern void VL_STOP_MT(const char* filename, int linenum, const char* hier) VL_MT_SAFE; /// Multithread safe wrapper to call for a couple of fatal messages extern void VL_FATAL_MT(const char* filename, int linenum, const char* hier, const char* msg) VL_MT_SAFE; /// Print a string, multithread safe. Eventually VL_PRINTF will get called. #ifdef VL_THREADED extern void VL_PRINTF_MT(const char* formatp, ...) VL_ATTR_PRINTF(1) VL_MT_SAFE; #else # define VL_PRINTF_MT VL_PRINTF // The following parens will take care of themselves #endif /// Print a debug message from internals with standard prefix, with printf style format extern void VL_DBG_MSGF(const char* formatp, ...) VL_ATTR_PRINTF(1) VL_MT_SAFE; extern IData VL_RANDOM_I(int obits); ///< Randomize a signal extern QData VL_RANDOM_Q(int obits); ///< Randomize a signal extern WDataOutP VL_RANDOM_W(int obits, WDataOutP outwp); ///< Randomize a signal /// Init time only, so slow is fine extern IData VL_RAND_RESET_I(int obits); ///< Random reset a signal extern QData VL_RAND_RESET_Q(int obits); ///< Random reset a signal extern WDataOutP VL_RAND_RESET_W(int obits, WDataOutP outwp); ///< Random reset a signal extern WDataOutP VL_ZERO_RESET_W(int obits, WDataOutP outwp); ///< Zero reset a signal (slow - else use VL_ZERO_W) #if VL_THREADED /// Return high-precision counter for profiling, or 0x0 if not available inline QData VL_RDTSC_Q() { vluint64_t val; VL_RDTSC(val); return val; } #endif /// Math extern WDataOutP _vl_moddiv_w(int lbits, WDataOutP owp, WDataInP lwp, WDataInP rwp, bool is_modulus); /// File I/O extern IData VL_FGETS_IXI(int obits, void* destp, IData fpi); extern IData VL_FOPEN_S(const char* filenamep, const char* modep); extern IData VL_FOPEN_WI(int fnwords, WDataInP filenamep, IData mode); extern IData VL_FOPEN_QI(QData filename, IData mode); inline IData VL_FOPEN_II(IData filename, IData mode) VL_MT_SAFE { return VL_FOPEN_QI(filename, mode); } extern void VL_FCLOSE_I(IData fdi); extern IData VL_FREAD_I(int width, int array_lsb, int array_size, void* memp, IData fpi, IData start, IData count); extern void VL_READMEM_W(bool hex, int width, int depth, int array_lsb, int fnwords, WDataInP filenamep, void* memp, IData start, IData end); extern void VL_READMEM_Q(bool hex, int width, int depth, int array_lsb, int fnwords, QData filename, void* memp, IData start, IData end); inline void VL_READMEM_I(bool hex, int width, int depth, int array_lsb, int fnwords, IData filename, void* memp, IData start, IData end) VL_MT_SAFE { VL_READMEM_Q(hex, width, depth, array_lsb, fnwords, filename, memp, start, end); } extern void VL_WRITEMEM_W(bool hex, int width, int depth, int array_lsb, int fnwords, WDataInP filenamep, const void* memp, IData start, IData end); extern void VL_WRITEMEM_Q(bool hex, int width, int depth, int array_lsb, int fnwords, QData filename, const void* memp, IData start, IData end); inline void VL_WRITEMEM_I(bool hex, int width, int depth, int array_lsb, int fnwords, IData filename, const void* memp, IData start, IData end) VL_MT_SAFE { VL_WRITEMEM_Q(hex, width, depth, array_lsb, fnwords, filename, memp, start, end); } extern void VL_WRITEF(const char* formatp, ...); extern void VL_FWRITEF(IData fpi, const char* formatp, ...); extern IData VL_FSCANF_IX(IData fpi, const char* formatp, ...); extern IData VL_SSCANF_IIX(int lbits, IData ld, const char* formatp, ...); extern IData VL_SSCANF_IQX(int lbits, QData ld, const char* formatp, ...); extern IData VL_SSCANF_IWX(int lbits, WDataInP lwp, const char* formatp, ...); extern void VL_SFORMAT_X(int obits, CData& destr, const char* formatp, ...); extern void VL_SFORMAT_X(int obits, SData& destr, const char* formatp, ...); extern void VL_SFORMAT_X(int obits, IData& destr, const char* formatp, ...); extern void VL_SFORMAT_X(int obits, QData& destr, const char* formatp, ...); extern void VL_SFORMAT_X(int obits, void* destp, const char* formatp, ...); extern IData VL_SYSTEM_IW(int lhswords, WDataInP lhsp); extern IData VL_SYSTEM_IQ(QData lhs); inline IData VL_SYSTEM_II(IData lhs) VL_MT_SAFE { return VL_SYSTEM_IQ(lhs); } extern IData VL_TESTPLUSARGS_I(const char* formatp); extern const char* vl_mc_scan_plusargs(const char* prefixp); // PLIish //========================================================================= // Base macros /// Return true if data[bit] set; not 0/1 return, but 0/non-zero return. #define VL_BITISSET_I(data,bit) ((data) & (VL_UL(1) << VL_BITBIT_I(bit))) #define VL_BITISSET_Q(data,bit) ((data) & (VL_ULL(1) << VL_BITBIT_Q(bit))) #define VL_BITISSET_W(data,bit) ((data)[VL_BITWORD_I(bit)] & (VL_UL(1) << VL_BITBIT_I(bit))) #define VL_BITISSETLIMIT_W(data,width,bit) \ (((bit)<(width)) && (data)[VL_BITWORD_I(bit)] & (VL_UL(1) << VL_BITBIT_I(bit))) /// Shift appropriate word by bit. Does not account for wrapping between two words #define VL_BITRSHIFT_W(data,bit) ((data)[VL_BITWORD_I(bit)] >> VL_BITBIT_I(bit)) /// Create two 32-bit words from quadword /// WData is always at least 2 words; does not clean upper bits #define VL_SET_WQ(owp,data) { (owp)[0] = static_cast(data); \ (owp)[1] = static_cast((data)>>VL_WORDSIZE); } #define VL_SET_WI(owp,data) { (owp)[0] = static_cast(data); (owp)[1] = 0; } #define VL_SET_QW(lwp) \ ( (static_cast((lwp)[0])) \ | (static_cast((lwp)[1]) << (static_cast(VL_WORDSIZE)) )) #define _VL_SET_QII(ld,rd) ((static_cast(ld)<(rd)) /// Return FILE* from IData extern FILE* VL_CVT_I_FP(IData lhs); // Use a union to avoid cast-to-different-size warnings /// Return void* from QData static inline void* VL_CVT_Q_VP(QData lhs) VL_PURE { union { void* fp; QData q; } u; u.q=lhs; return u.fp; } /// Return QData from void* static inline QData VL_CVT_VP_Q(void* fp) VL_PURE { union { void* fp; QData q; } u; u.q=0; u.fp=fp; return u.q; } /// Return double from QData (bits, not numerically) static inline double VL_CVT_D_Q(QData lhs) VL_PURE { union { double d; QData q; } u; u.q=lhs; return u.d; } /// Return QData from double (bits, not numerically) static inline QData VL_CVT_Q_D(double lhs) VL_PURE { union { double d; QData q; } u; u.d=lhs; return u.q; } /// Return double from QData (numeric) static inline double VL_ITOR_D_I(IData lhs) VL_PURE { return static_cast(static_cast(lhs)); } /// Return QData from double (numeric) static inline IData VL_RTOI_I_D(double lhs) VL_PURE { return static_cast(VL_TRUNC(lhs)); } /// Return QData from double (numeric) static inline IData VL_RTOIROUND_I_D(double lhs) VL_PURE { return static_cast(VL_ROUND(lhs)); } // Sign extend such that if MSB set, we get ffff_ffff, else 0s // (Requires clean input) #define VL_SIGN_I(nbits,lhs) ((lhs) >> VL_BITBIT_I((nbits) - VL_UL(1))) #define VL_SIGN_Q(nbits,lhs) ((lhs) >> VL_BITBIT_Q((nbits) - VL_ULL(1))) #define VL_SIGN_W(nbits,rwp) ((rwp)[VL_BITWORD_I((nbits)-VL_UL(1))] >> VL_BITBIT_I((nbits)-VL_UL(1))) #define VL_SIGNONES_I(nbits,lhs) (-(VL_SIGN_I(nbits, lhs))) // Sign bit extended up to MSB, doesn't include unsigned portion // Optimization bug in GCC 3.3 returns different bitmasks to later states for static inline IData VL_EXTENDSIGN_I(int lbits, IData lhs) VL_PURE { return (-((lhs)&(VL_UL(1)<<(lbits-1)))); } static inline QData VL_EXTENDSIGN_Q(int lbits, QData lhs) VL_PURE { return (-((lhs)&(VL_ULL(1)<<(lbits-1)))); } // Debugging prints extern void _VL_DEBUG_PRINT_W(int lbits, WDataInP iwp); //========================================================================= // Pli macros #ifndef VL_TIME_PRECISION # define VL_TIME_PRECISION (-12) ///< Timescale units only for for VPI return - picoseconds #endif #ifndef VL_TIME_MULTIPLIER # define VL_TIME_MULTIPLIER 1 #endif /// Return current simulation time #if defined(SYSTEMC_VERSION) && (SYSTEMC_VERSION>20011000) # define VL_TIME_I() (static_cast(sc_time_stamp().to_default_time_units()*VL_TIME_MULTIPLIER)) # define VL_TIME_Q() (static_cast(sc_time_stamp().to_default_time_units()*VL_TIME_MULTIPLIER)) # define VL_TIME_D() (static_cast(sc_time_stamp().to_default_time_units()*VL_TIME_MULTIPLIER)) #else # define VL_TIME_I() (static_cast(sc_time_stamp()*VL_TIME_MULTIPLIER)) # define VL_TIME_Q() (static_cast(sc_time_stamp()*VL_TIME_MULTIPLIER)) # define VL_TIME_D() (static_cast(sc_time_stamp()*VL_TIME_MULTIPLIER)) extern double sc_time_stamp(); #endif /// Evaluate expression if debug enabled #ifdef VL_DEBUG # define VL_DEBUG_IF(text) {if (VL_UNLIKELY(Verilated::debug())) {text}} #else # define VL_DEBUG_IF(text) #endif /// Collect coverage analysis for this line #ifndef SP_AUTO_COVER3 # define SP_AUTO_COVER3(what,file,line) #endif //========================================================================= // Functional macros/routines // These all take the form // VL_func_IW(bits, bits, op, op) // VL_func_WW(bits, bits, out, op, op) // The I/W indicates if it's a integer or wide for the output and each operand. // The bits indicate the bit width of the output and each operand. // If wide output, a temporary storage location is specified. //=================================================================== // SETTING OPERATORS // Output clean // EMIT_RULE: VL_CLEAN: oclean=clean; obits=lbits; #define VL_CLEAN_II(obits,lbits,lhs) ((lhs) & VL_MASK_I(obits)) #define VL_CLEAN_QQ(obits,lbits,lhs) ((lhs) & VL_MASK_Q(obits)) // EMIT_RULE: VL_ASSIGNCLEAN: oclean=clean; obits==lbits; #define VL_ASSIGNCLEAN_W(obits,owp,lwp) VL_CLEAN_WW((obits), (obits), (owp), (lwp)) static inline WDataOutP _VL_CLEAN_INPLACE_W(int obits, WDataOutP owp) VL_MT_SAFE { int words = VL_WORDS_I(obits); owp[words-1] &= VL_MASK_I(obits); return owp; } static inline WDataOutP VL_CLEAN_WW(int obits, int, WDataOutP owp, WDataInP lwp) VL_MT_SAFE { int words = VL_WORDS_I(obits); for (int i=0; (i < (words-1)); ++i) owp[i] = lwp[i]; owp[words-1] = lwp[words-1] & VL_MASK_I(obits); return owp; } static inline WDataOutP VL_ZERO_W(int obits, WDataOutP owp) VL_MT_SAFE { int words = VL_WORDS_I(obits); for (int i=0; i < words; ++i) owp[i] = 0; return owp; } static inline WDataOutP VL_ALLONES_W(int obits, WDataOutP owp) VL_MT_SAFE { int words = VL_WORDS_I(obits); for (int i=0; (i < (words-1)); ++i) owp[i] = ~VL_UL(0); owp[words-1] = VL_MASK_I(obits); return owp; } // EMIT_RULE: VL_ASSIGN: oclean=rclean; obits==lbits; // For now, we always have a clean rhs. // Note: If a ASSIGN isn't clean, use VL_ASSIGNCLEAN instead to do the same thing. static inline WDataOutP VL_ASSIGN_W(int obits, WDataOutP owp, WDataInP lwp) VL_MT_SAFE { int words = VL_WORDS_I(obits); for (int i=0; i < words; ++i) owp[i] = lwp[i]; return owp; } // EMIT_RULE: VL_ASSIGNBIT: rclean=clean; static inline void VL_ASSIGNBIT_II(int, int bit, CData& lhsr, IData rhs) VL_PURE { lhsr = ((lhsr & ~(VL_UL(1)<((svar).read().get_word(1)))< _butemp = (svar).read(); \ for (int i=0; i < words; ++i) { \ int msb = ((i+1)*VL_WORDSIZE) - 1; \ msb = (msb >= (obits)) ? ((obits)-1) : msb; \ (owp)[i] = _butemp.range(msb, i*VL_WORDSIZE).to_uint(); \ } \ (owp)[words-1] &= VL_MASK_I(obits); \ } // Copying verilog format from systemc integers and bit vectors. // Set a SystemC variable #define VL_ASSIGN_SII(obits,svar,vvar) { (svar).write(vvar); } #define VL_ASSIGN_SQQ(obits,svar,vvar) { (svar).write(vvar); } #define VL_ASSIGN_SWI(obits,svar,rd) { \ sc_bv<(obits)> _bvtemp; \ _bvtemp.set_word(0, (rd)); \ (svar).write(_bvtemp); \ } #define VL_ASSIGN_SWQ(obits,svar,rd) { \ sc_bv<(obits)> _bvtemp; \ _bvtemp.set_word(0, static_cast(rd)); \ _bvtemp.set_word(1, static_cast((rd)>>VL_WORDSIZE)); \ (svar).write(_bvtemp); \ } #define VL_ASSIGN_SWW(obits,svar,rwp) { \ sc_bv<(obits)> _bvtemp; \ for (int i=0; i < VL_WORDS_I(obits); ++i) _bvtemp.set_word(i, (rwp)[i]); \ (svar).write(_bvtemp); \ } #define VL_ASSIGN_SUI(obits,svar,rd) { (svar).write(rd); } #define VL_ASSIGN_SUQ(obits,svar,rd) { (svar).write(rd); } #define VL_ASSIGN_SBI(obits,svar,rd) { (svar).write(rd); } #define VL_ASSIGN_SBQ(obits,svar,rd) { (svar).write(rd); } #define VL_ASSIGN_SBW(obits,svar,rwp) { \ sc_biguint<(obits)> _butemp; \ for (int i=0; i < VL_WORDS_I(obits); ++i) { \ int msb = ((i+1)*VL_WORDSIZE) - 1; \ msb = (msb >= (obits)) ? ((obits)-1) : msb; \ _butemp.range(msb, i*VL_WORDSIZE) = (rwp)[i]; \ } \ (svar).write(_butemp); \ } //=================================================================== // Extending sizes // CAREFUL, we're width changing, so obits!=lbits // Right must be clean because otherwise size increase would pick up bad bits // EMIT_RULE: VL_EXTEND: oclean=clean; rclean==clean; #define VL_EXTEND_II(obits,lbits,lhs) ((lhs)) #define VL_EXTEND_QI(obits,lbits,lhs) (static_cast(lhs)) #define VL_EXTEND_QQ(obits,lbits,lhs) ((lhs)) static inline WDataOutP VL_EXTEND_WI(int obits, int, WDataOutP owp, IData ld) VL_MT_SAFE { // Note for extracts that obits != lbits owp[0] = ld; for (int i=1; i < VL_WORDS_I(obits); ++i) owp[i] = 0; return owp; } static inline WDataOutP VL_EXTEND_WQ(int obits, int, WDataOutP owp, QData ld) VL_MT_SAFE { VL_SET_WQ(owp, ld); for (int i=2; i < VL_WORDS_I(obits); ++i) owp[i] = 0; return owp; } static inline WDataOutP VL_EXTEND_WW(int obits, int lbits, WDataOutP owp, WDataInP lwp) VL_MT_SAFE { for (int i=0; i < VL_WORDS_I(lbits); ++i) owp[i] = lwp[i]; for (int i=VL_WORDS_I(lbits); i < VL_WORDS_I(obits); ++i) owp[i] = 0; return owp; } // EMIT_RULE: VL_EXTENDS: oclean=*dirty*; obits=lbits; // Sign extension; output dirty static inline IData VL_EXTENDS_II(int, int lbits, IData lhs) VL_PURE { return VL_EXTENDSIGN_I(lbits, lhs) | lhs; } static inline QData VL_EXTENDS_QI(int, int lbits, QData lhs/*Q_as_need_extended*/) VL_PURE { return VL_EXTENDSIGN_Q(lbits, lhs) | lhs; } static inline QData VL_EXTENDS_QQ(int, int lbits, QData lhs) VL_PURE { return VL_EXTENDSIGN_Q(lbits, lhs) | lhs; } static inline WDataOutP VL_EXTENDS_WI(int obits, int lbits, WDataOutP owp, IData ld) VL_MT_SAFE { IData sign = VL_SIGNONES_I(lbits, ld); owp[0] = ld | (sign & ~VL_MASK_I(lbits)); for (int i=1; i < VL_WORDS_I(obits); ++i) owp[i] = sign; return owp; } static inline WDataOutP VL_EXTENDS_WQ(int obits, int lbits, WDataOutP owp, QData ld) VL_MT_SAFE { VL_SET_WQ(owp, ld); IData sign = VL_SIGNONES_I(lbits, owp[1]); owp[1] |= sign & ~VL_MASK_I(lbits); for (int i=2; i < VL_WORDS_I(obits); ++i) owp[i] = sign; return owp; } static inline WDataOutP VL_EXTENDS_WW(int obits, int lbits, WDataOutP owp, WDataInP lwp) VL_MT_SAFE { for (int i=0; i < VL_WORDS_I(lbits)-1; ++i) owp[i] = lwp[i]; int lmsw = VL_WORDS_I(lbits)-1; IData sign = VL_SIGNONES_I(lbits, lwp[lmsw]); owp[lmsw] = lwp[lmsw] | (sign & ~VL_MASK_I(lbits)); for (int i=VL_WORDS_I(lbits); i < VL_WORDS_I(obits); ++i) owp[i] = sign; return owp; } //=================================================================== // REDUCTION OPERATORS // EMIT_RULE: VL_REDAND: oclean=clean; lclean==clean; obits=1; #define VL_REDAND_II(obits,lbits,lhs) ((lhs) == VL_MASK_I(lbits)) #define VL_REDAND_IQ(obits,lbits,lhs) ((lhs) == VL_MASK_Q(lbits)) static inline IData VL_REDAND_IW(int, int lbits, WDataInP lwp) VL_MT_SAFE { int words = VL_WORDS_I(lbits); IData combine = lwp[0]; for (int i=1; i < words-1; ++i) combine &= lwp[i]; combine &= ~VL_MASK_I(lbits) | lwp[words-1]; return ((~combine)==0); } // EMIT_RULE: VL_REDOR: oclean=clean; lclean==clean; obits=1; #define VL_REDOR_I(lhs) ((lhs)!=0) #define VL_REDOR_Q(lhs) ((lhs)!=0) static inline IData VL_REDOR_W(int words, WDataInP lwp) VL_MT_SAFE { IData equal = 0; for (int i=0; i < words; ++i) equal |= lwp[i]; return (equal != 0); } // EMIT_RULE: VL_REDXOR: oclean=dirty; obits=1; static inline IData VL_REDXOR_2(IData r) VL_PURE { // Experiments show VL_REDXOR_2 is faster than __builtin_parityl r=(r^(r>>1)); return r; } static inline IData VL_REDXOR_4(IData r) VL_PURE { #if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS) return __builtin_parityl(r); #else r=(r^(r>>1)); r=(r^(r>>2)); return r; #endif } static inline IData VL_REDXOR_8(IData r) VL_PURE { #if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS) return __builtin_parityl(r); #else r=(r^(r>>1)); r=(r^(r>>2)); r=(r^(r>>4)); return r; #endif } static inline IData VL_REDXOR_16(IData r) VL_PURE { #if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS) return __builtin_parityl(r); #else r=(r^(r>>1)); r=(r^(r>>2)); r=(r^(r>>4)); r=(r^(r>>8)); return r; #endif } static inline IData VL_REDXOR_32(IData r) VL_PURE { #if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS) return __builtin_parityl(r); #else r=(r^(r>>1)); r=(r^(r>>2)); r=(r^(r>>4)); r=(r^(r>>8)); r=(r^(r>>16)); return r; #endif } static inline IData VL_REDXOR_64(QData r) VL_PURE { #if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS) return __builtin_parityll(r); #else r=(r^(r>>1)); r=(r^(r>>2)); r=(r^(r>>4)); r=(r^(r>>8)); r=(r^(r>>16)); r=(r^(r>>32)); return static_cast(r); #endif } static inline IData VL_REDXOR_W(int words, WDataInP lwp) VL_MT_SAFE { IData r = lwp[0]; for (int i=1; i < words; ++i) r ^= lwp[i]; return VL_REDXOR_32(r); } // EMIT_RULE: VL_COUNTONES_II: oclean = false; lhs clean static inline IData VL_COUNTONES_I(IData lhs) VL_PURE { // This is faster than __builtin_popcountl IData r = lhs - ((lhs >> 1) & 033333333333) - ((lhs >> 2) & 011111111111); r = (r + (r>>3)) & 030707070707; r = (r + (r>>6)); r = (r + (r>>12) + (r>>24)) & 077; return r; } static inline IData VL_COUNTONES_Q(QData lhs) VL_PURE { return VL_COUNTONES_I(static_cast(lhs)) + VL_COUNTONES_I(static_cast(lhs>>32)); } static inline IData VL_COUNTONES_W(int words, WDataInP lwp) VL_MT_SAFE { IData r = 0; for (int i=0; (i < words); ++i) r+=VL_COUNTONES_I(lwp[i]); return r; } static inline IData VL_ONEHOT_I(IData lhs) VL_PURE { return (((lhs & (lhs-1))==0) & (lhs!=0)); } static inline IData VL_ONEHOT_Q(QData lhs) VL_PURE { return (((lhs & (lhs-1))==0) & (lhs!=0)); } static inline IData VL_ONEHOT_W(int words, WDataInP lwp) VL_MT_SAFE { IData one = 0; for (int i=0; (i < words); ++i) { if (lwp[i]) { if (one) return 0; one = 1; if (lwp[i] & (lwp[i]-1)) return 0; } } return one; } static inline IData VL_ONEHOT0_I(IData lhs) VL_PURE { return ((lhs & (lhs-1))==0); } static inline IData VL_ONEHOT0_Q(QData lhs) VL_PURE { return ((lhs & (lhs-1))==0); } static inline IData VL_ONEHOT0_W(int words, WDataInP lwp) VL_MT_SAFE { bool one = false; for (int i=0; (i < words); ++i) { if (lwp[i]) { if (one) return 0; one = true; if (lwp[i] & (lwp[i]-1)) return 0; } } return 1; } static inline IData VL_CLOG2_I(IData lhs) VL_PURE { // There are faster algorithms, or fls GCC4 builtins, but rarely used if (VL_UNLIKELY(!lhs)) return 0; lhs--; int shifts = 0; for (; lhs!=0; ++shifts) lhs = lhs >> 1; return shifts; } static inline IData VL_CLOG2_Q(QData lhs) VL_PURE { if (VL_UNLIKELY(!lhs)) return 0; lhs--; int shifts = 0; for (; lhs!=0; ++shifts) lhs = lhs >> VL_ULL(1); return shifts; } static inline IData VL_CLOG2_W(int words, WDataInP lwp) VL_MT_SAFE { IData adjust = (VL_COUNTONES_W(words, lwp)==1) ? 0 : 1; for (int i=words-1; i>=0; --i) { if (VL_UNLIKELY(lwp[i])) { // Shorter worst case if predict not taken for (int bit=31; bit>=0; --bit) { if (VL_UNLIKELY(VL_BITISSET_I(lwp[i], bit))) { return i*VL_WORDSIZE + bit + adjust; } } // Can't get here - one bit must be set } } return 0; } static inline IData VL_MOSTSETBITP1_W(int words, WDataInP lwp) VL_MT_SAFE { // MSB set bit plus one; similar to FLS. 0=value is zero for (int i=words-1; i>=0; --i) { if (VL_UNLIKELY(lwp[i])) { // Shorter worst case if predict not taken for (int bit=31; bit>=0; --bit) { if (VL_UNLIKELY(VL_BITISSET_I(lwp[i], bit))) { return i*VL_WORDSIZE + bit + 1; } } // Can't get here - one bit must be set } } return 0; } //=================================================================== // SIMPLE LOGICAL OPERATORS // EMIT_RULE: VL_AND: oclean=lclean||rclean; obits=lbits; lbits==rbits; static inline WDataOutP VL_AND_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE { for (int i=0; (i < words); ++i) owp[i] = (lwp[i] & rwp[i]); return owp; } // EMIT_RULE: VL_OR: oclean=lclean&&rclean; obits=lbits; lbits==rbits; static inline WDataOutP VL_OR_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE { for (int i=0; (i < words); ++i) owp[i] = (lwp[i] | rwp[i]); return owp; } // EMIT_RULE: VL_CHANGEXOR: oclean=1; obits=32; lbits==rbits; static inline IData VL_CHANGEXOR_W(int words, WDataInP lwp, WDataInP rwp) VL_MT_SAFE { IData od = 0; for (int i=0; (i < words); ++i) od |= (lwp[i] ^ rwp[i]); return(od); } // EMIT_RULE: VL_XOR: oclean=lclean&&rclean; obits=lbits; lbits==rbits; static inline WDataOutP VL_XOR_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE { for (int i=0; (i < words); ++i) owp[i] = (lwp[i] ^ rwp[i]); return owp; } // EMIT_RULE: VL_XNOR: oclean=dirty; obits=lbits; lbits==rbits; static inline WDataOutP VL_XNOR_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE { for (int i=0; (i < words); ++i) owp[i] = (lwp[i] ^ ~rwp[i]); return owp; } // EMIT_RULE: VL_NOT: oclean=dirty; obits=lbits; static inline WDataOutP VL_NOT_W(int words, WDataOutP owp, WDataInP lwp) VL_MT_SAFE { for (int i=0; i < words; ++i) owp[i] = ~(lwp[i]); return owp; } //========================================================================= // Logical comparisons // EMIT_RULE: VL_EQ: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits; // EMIT_RULE: VL_NEQ: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits; // EMIT_RULE: VL_LT: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits; // EMIT_RULE: VL_GT: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits; // EMIT_RULE: VL_GTE: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits; // EMIT_RULE: VL_LTE: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits; #define VL_NEQ_W(words,lwp,rwp) (!VL_EQ_W(words,lwp,rwp)) #define VL_LT_W(words,lwp,rwp) (_VL_CMP_W(words,lwp,rwp)<0) #define VL_LTE_W(words,lwp,rwp) (_VL_CMP_W(words,lwp,rwp)<=0) #define VL_GT_W(words,lwp,rwp) (_VL_CMP_W(words,lwp,rwp)>0) #define VL_GTE_W(words,lwp,rwp) (_VL_CMP_W(words,lwp,rwp)>=0) // Output clean, AND MUST BE CLEAN static inline IData VL_EQ_W(int words, WDataInP lwp, WDataInP rwp) VL_MT_SAFE { int nequal = 0; for (int i=0; (i < words); ++i) nequal |= (lwp[i] ^ rwp[i]); return (nequal==0); } // Internal usage static inline int _VL_CMP_W(int words, WDataInP lwp, WDataInP rwp) VL_MT_SAFE { for (int i=words-1; i>=0; --i) { if (lwp[i] > rwp[i]) return 1; if (lwp[i] < rwp[i]) return -1; } return(0); // == } #define VL_LTS_IWW(obits,lbits,rbbits,lwp,rwp) (_VL_CMPS_W(lbits,lwp,rwp)<0) #define VL_LTES_IWW(obits,lbits,rbits,lwp,rwp) (_VL_CMPS_W(lbits,lwp,rwp)<=0) #define VL_GTS_IWW(obits,lbits,rbits,lwp,rwp) (_VL_CMPS_W(lbits,lwp,rwp)>0) #define VL_GTES_IWW(obits,lbits,rbits,lwp,rwp) (_VL_CMPS_W(lbits,lwp,rwp)>=0) static inline IData VL_GTS_III(int, int lbits, int, IData lhs, IData rhs) VL_PURE { // For lbits==32, this becomes just a single instruction, otherwise ~5. // GCC 3.3.4 sign extension bugs on AMD64 architecture force us to use quad logic vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); // Q for gcc vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); // Q for gcc return lhs_signed > rhs_signed; } static inline IData VL_GTS_IQQ(int, int lbits, int, QData lhs, QData rhs) VL_PURE { vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); return lhs_signed > rhs_signed; } static inline IData VL_GTES_III(int, int lbits, int, IData lhs, IData rhs) VL_PURE { vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); // Q for gcc vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); // Q for gcc return lhs_signed >= rhs_signed; } static inline IData VL_GTES_IQQ(int, int lbits, int, QData lhs, QData rhs) VL_PURE { vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); return lhs_signed >= rhs_signed; } static inline IData VL_LTS_III(int, int lbits, int, IData lhs, IData rhs) VL_PURE { vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); // Q for gcc vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); // Q for gcc return lhs_signed < rhs_signed; } static inline IData VL_LTS_IQQ(int, int lbits, int, QData lhs, QData rhs) VL_PURE { vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); return lhs_signed < rhs_signed; } static inline IData VL_LTES_III(int, int lbits, int, IData lhs, IData rhs) VL_PURE { vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); // Q for gcc vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); // Q for gcc return lhs_signed <= rhs_signed; } static inline IData VL_LTES_IQQ(int, int lbits, int, QData lhs, QData rhs) VL_PURE { vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); return lhs_signed <= rhs_signed; } static inline int _VL_CMPS_W(int lbits, WDataInP lwp, WDataInP rwp) VL_MT_SAFE { int words = VL_WORDS_I(lbits); int i = words-1; // We need to flip sense if negative comparison IData lsign = VL_SIGN_I(lbits, lwp[i]); IData rsign = VL_SIGN_I(lbits, rwp[i]); if (!lsign && rsign) return 1; // + > - if (lsign && !rsign) return -1; // - < + for (; i>=0; --i) { if (lwp[i] > rwp[i]) return 1; if (lwp[i] < rwp[i]) return -1; } return(0); // == } //========================================================================= // Math // EMIT_RULE: VL_MUL: oclean=dirty; lclean==clean; rclean==clean; // EMIT_RULE: VL_DIV: oclean=dirty; lclean==clean; rclean==clean; // EMIT_RULE: VL_MODDIV: oclean=dirty; lclean==clean; rclean==clean; #define VL_DIV_III(lbits,lhs,rhs) (((rhs)==0)?0:(lhs)/(rhs)) #define VL_DIV_QQQ(lbits,lhs,rhs) (((rhs)==0)?0:(lhs)/(rhs)) #define VL_DIV_WWW(lbits,owp,lwp,rwp) (_vl_moddiv_w(lbits,owp,lwp,rwp,0)) #define VL_MODDIV_III(lbits,lhs,rhs) (((rhs)==0)?0:(lhs)%(rhs)) #define VL_MODDIV_QQQ(lbits,lhs,rhs) (((rhs)==0)?0:(lhs)%(rhs)) #define VL_MODDIV_WWW(lbits,owp,lwp,rwp) (_vl_moddiv_w(lbits,owp,lwp,rwp,1)) static inline WDataOutP VL_ADD_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE { QData carry = 0; for (int i=0; i(lwp[i]) + static_cast(rwp[i]); owp[i] = (carry & VL_ULL(0xffffffff)); carry = (carry >> VL_ULL(32)) & VL_ULL(0xffffffff); } return owp; } static inline WDataOutP VL_SUB_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE { QData carry = 0; for (int i=0; i(lwp[i]) + static_cast(static_cast(~rwp[i]))); if (i==0) ++carry; // Negation of temp2 owp[i] = (carry & VL_ULL(0xffffffff)); carry = (carry >> VL_ULL(32)) & VL_ULL(0xffffffff); } return owp; } // Optimization bug in GCC 2.96 and presumably all-pre GCC 3 versions need this workaround, // we can't just //# define VL_NEGATE_I(data) (-(data)) static inline IData VL_NEGATE_I(IData data) VL_PURE { return -data; } static inline QData VL_NEGATE_Q(QData data) VL_PURE { return -data; } static inline WDataOutP VL_NEGATE_W(int words, WDataOutP owp, WDataInP lwp) VL_MT_SAFE { QData carry = 0; for (int i=0; i(static_cast(~lwp[i])); if (i==0) ++carry; // Negation of temp2 owp[i] = (carry & VL_ULL(0xffffffff)); carry = (carry >> VL_ULL(32)) & VL_ULL(0xffffffff); } return owp; } static inline WDataOutP VL_MUL_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE { for (int i=0; i(lwp[lword]) * static_cast(rwp[rword]); for (int qword=lword+rword; qword(owp[qword]); owp[qword] = (mul & VL_ULL(0xffffffff)); mul = (mul >> VL_ULL(32)) & VL_ULL(0xffffffff); } } } // Last output word is dirty return owp; } static inline IData VL_MULS_III(int, int lbits, int, IData lhs, IData rhs) VL_PURE { vlsint32_t lhs_signed = VL_EXTENDS_II(32, lbits, lhs); vlsint32_t rhs_signed = VL_EXTENDS_II(32, lbits, rhs); return lhs_signed * rhs_signed; } static inline QData VL_MULS_QQQ(int, int lbits, int, QData lhs, QData rhs) VL_PURE { vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); return lhs_signed * rhs_signed; } static inline WDataOutP VL_MULS_WWW(int, int lbits, int, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE { int words = VL_WORDS_I(lbits); // cppcheck-suppress variableScope WData lwstore[VL_MULS_MAX_WORDS]; // Fixed size, as MSVC++ doesn't allow [words] here // cppcheck-suppress variableScope WData rwstore[VL_MULS_MAX_WORDS]; WDataInP lwusp = lwp; WDataInP rwusp = rwp; IData lneg = VL_SIGN_I(lbits, lwp[words-1]); if (lneg) { // Negate lhs lwusp = lwstore; VL_NEGATE_W(words, lwstore, lwp); lwstore[words-1] &= VL_MASK_I(lbits); // Clean it } IData rneg = VL_SIGN_I(lbits, rwp[words-1]); if (rneg) { // Negate rhs rwusp = rwstore; VL_NEGATE_W(words, rwstore, rwp); rwstore[words-1] &= VL_MASK_I(lbits); // Clean it } VL_MUL_W(words, owp, lwusp, rwusp); owp[words-1] &= VL_MASK_I(lbits); // Clean. Note it's ok for the multiply to overflow into the sign bit if ((lneg ^ rneg) & 1) { // Negate output (not using NEGATE, as owp==lwp) QData carry = 0; for (int i=0; i(static_cast(~owp[i])); if (i==0) ++carry; // Negation of temp2 owp[i] = (carry & VL_ULL(0xffffffff)); carry = (carry >> VL_ULL(32)) & VL_ULL(0xffffffff); } //Not needed: owp[words-1] |= 1<0) power = power*power; if (rhs & (VL_ULL(1)<0) power = power*power; if (rhs & (VL_ULL(1)<>nbitsonright) & hinsmask); } } } // INTERNAL: Stuff large LHS bit 0++ into OUTPUT at specified offset // lwp may be "dirty" static inline void _VL_INSERT_WW(int, WDataOutP owp, WDataInP lwp, int hbit, int lbit) VL_MT_SAFE { int hoffset = hbit & VL_SIZEBITS_I; int loffset = lbit & VL_SIZEBITS_I; int lword = VL_BITWORD_I(lbit); int words = VL_WORDS_I(hbit-lbit+1); if (hoffset==VL_SIZEBITS_I && loffset==0) { // Fast and common case, word based insertion for (int i=0; i>nbitsonright; IData od = (d & ~linsmask) | (owp[oword] & linsmask); if (oword==hword) owp[oword] = (owp[oword] & ~hinsmask) | (od & hinsmask); else owp[oword] = od; } } } } } static inline void _VL_INSERT_WQ(int obits, WDataOutP owp, QData ld, int hbit, int lbit) VL_MT_SAFE { WData lwp[2]; VL_SET_WQ(lwp, ld); _VL_INSERT_WW(obits, owp, lwp, hbit, lbit); } // EMIT_RULE: VL_REPLICATE: oclean=clean>width32, dirty<=width32; lclean=clean; rclean==clean; // RHS MUST BE CLEAN CONSTANT. #define VL_REPLICATE_IOI(obits,lbits,rbits, ld, rep) (-(ld)) // Iff lbits==1 #define VL_REPLICATE_QOI(obits,lbits,rbits, ld, rep) (-(static_cast(ld))) // Iff lbits==1 static inline IData VL_REPLICATE_III(int, int lbits, int, IData ld, IData rep) VL_PURE { IData returndata = ld; for (unsigned i=1; i < rep; ++i){ returndata = returndata << lbits; returndata |= ld; } return (returndata); } static inline QData VL_REPLICATE_QII(int, int lbits, int, IData ld, IData rep) VL_PURE { QData returndata = ld; for (unsigned i=1; i < rep; ++i){ returndata = returndata << lbits; returndata |= static_cast(ld); } return (returndata); } static inline WDataOutP VL_REPLICATE_WII(int obits, int lbits, int, WDataOutP owp, IData ld, IData rep) VL_MT_SAFE { owp[0] = ld; for (unsigned i=1; i < rep; ++i){ _VL_INSERT_WI(obits, owp, ld, i*lbits+lbits-1, i*lbits); } return owp; } static inline WDataOutP VL_REPLICATE_WQI(int obits, int lbits, int, WDataOutP owp, QData ld, IData rep) VL_MT_SAFE { VL_SET_WQ(owp, ld); for (unsigned i=1; i < rep; ++i){ _VL_INSERT_WQ(obits, owp, ld, i*lbits+lbits-1, i*lbits); } return owp; } static inline WDataOutP VL_REPLICATE_WWI(int obits, int lbits, int, WDataOutP owp, WDataInP lwp, IData rep) VL_MT_SAFE { for (int i=0; i < VL_WORDS_I(lbits); ++i) owp[i] = lwp[i]; for (unsigned i=1; i < rep; ++i){ _VL_INSERT_WW(obits, owp, lwp, i*lbits+lbits-1, i*lbits); } return owp; } // Left stream operator. Output will always be clean. LHS and RHS must be clean. // Special "fast" versions for slice sizes that are a power of 2. These use // shifts and masks to execute faster than the slower for-loop approach where a // subset of bits is copied in during each iteration. static inline IData VL_STREAML_FAST_III(int, int lbits, int, IData ld, IData rd_log2) VL_PURE { // Pre-shift bits in most-significant slice: // // If lbits is not a multiple of the slice size (i.e., lbits % rd != 0), // then we end up with a "gap" in our reversed result. For example, if we // have a 5-bit Verlilog signal (lbits=5) in an 8-bit C data type: // // ld = ---43210 // // (where numbers are the Verilog signal bit numbers and '-' is an unused bit). // Executing the switch statement below with a slice size of two (rd=2, // rd_log2=1) produces: // // ret = 1032-400 // // Pre-shifting the bits in the most-significant slice allows us to avoid // this gap in the shuffled data: // // ld_adjusted = --4-3210 // ret = 10324--- IData ret = ld; if (rd_log2) { vluint32_t lbitsFloor = lbits & ~VL_MASK_I(rd_log2); // max multiple of rd <= lbits vluint32_t lbitsRem = lbits - lbitsFloor; // number of bits in most-sig slice (MSS) IData msbMask = VL_MASK_I(lbitsRem) << lbitsFloor; // mask to sel only bits in MSS ret = (ret & ~msbMask) | ((ret & msbMask) << ((VL_UL(1) << rd_log2) - lbitsRem)); } switch (rd_log2) { case 0: ret = ((ret >> 1) & VL_UL(0x55555555)) | ((ret & VL_UL(0x55555555)) << 1); // FALLTHRU case 1: ret = ((ret >> 2) & VL_UL(0x33333333)) | ((ret & VL_UL(0x33333333)) << 2); // FALLTHRU case 2: ret = ((ret >> 4) & VL_UL(0x0f0f0f0f)) | ((ret & VL_UL(0x0f0f0f0f)) << 4); // FALLTHRU case 3: ret = ((ret >> 8) & VL_UL(0x00ff00ff)) | ((ret & VL_UL(0x00ff00ff)) << 8); // FALLTHRU case 4: ret = ((ret >> 16) | (ret << 16)); } return ret >> (VL_WORDSIZE - lbits); } static inline QData VL_STREAML_FAST_QQI(int, int lbits, int, QData ld, IData rd_log2) VL_PURE { // Pre-shift bits in most-significant slice (see comment in VL_STREAML_FAST_III) QData ret = ld; if (rd_log2) { vluint32_t lbitsFloor = lbits & ~VL_MASK_I(rd_log2); vluint32_t lbitsRem = lbits - lbitsFloor; QData msbMask = VL_MASK_Q(lbitsRem) << lbitsFloor; ret = (ret & ~msbMask) | ((ret & msbMask) << ((VL_ULL(1) << rd_log2) - lbitsRem)); } switch (rd_log2) { case 0: ret = (((ret >> 1) & VL_ULL(0x5555555555555555)) | ((ret & VL_ULL(0x5555555555555555)) << 1)); // FALLTHRU case 1: ret = (((ret >> 2) & VL_ULL(0x3333333333333333)) | ((ret & VL_ULL(0x3333333333333333)) << 2)); // FALLTHRU case 2: ret = (((ret >> 4) & VL_ULL(0x0f0f0f0f0f0f0f0f)) | ((ret & VL_ULL(0x0f0f0f0f0f0f0f0f)) << 4)); // FALLTHRU case 3: ret = (((ret >> 8) & VL_ULL(0x00ff00ff00ff00ff)) | ((ret & VL_ULL(0x00ff00ff00ff00ff)) << 8)); // FALLTHRU case 4: ret = (((ret >> 16) & VL_ULL(0x0000ffff0000ffff)) | ((ret & VL_ULL(0x0000ffff0000ffff)) << 16)); // FALLTHRU case 5: ret = ((ret >> 32) | (ret << 32)); } return ret >> (VL_QUADSIZE - lbits); } // Regular "slow" streaming operators static inline IData VL_STREAML_III(int, int lbits, int, IData ld, IData rd) VL_PURE { IData ret = 0; // Slice size should never exceed the lhs width IData mask = VL_MASK_I(rd); for (int istart=0; istart 0 ? ostart : 0; ret |= ((ld >> istart) & mask) << ostart; } return ret; } static inline QData VL_STREAML_QQI(int, int lbits, int, QData ld, IData rd) VL_PURE { QData ret = 0; // Slice size should never exceed the lhs width QData mask = VL_MASK_Q(rd); for (int istart=0; istart 0 ? ostart : 0; ret |= ((ld >> istart) & mask) << ostart; } return ret; } static inline WDataOutP VL_STREAML_WWI(int, int lbits, int, WDataOutP owp, WDataInP lwp, IData rd) VL_MT_SAFE { VL_ZERO_W(lbits, owp); // Slice size should never exceed the lhs width int ssize = (rd < static_cast(lbits)) ? rd : (static_cast(lbits)); for (int istart=0; istart 0 ? ostart : 0; for (int sbit=0; sbit(ld)<<(rbits) | static_cast(rd)) #define VL_CONCAT_QII(obits,lbits,rbits,ld,rd) \ (static_cast(ld)<<(rbits) | static_cast(rd)) #define VL_CONCAT_QIQ(obits,lbits,rbits,ld,rd) \ (static_cast(ld)<<(rbits) | static_cast(rd)) #define VL_CONCAT_QQI(obits,lbits,rbits,ld,rd) \ (static_cast(ld)<<(rbits) | static_cast(rd)) #define VL_CONCAT_QQQ(obits,lbits,rbits,ld,rd) \ (static_cast(ld)<<(rbits) | static_cast(rd)) static inline WDataOutP VL_CONCAT_WII(int obits, int lbits, int rbits, WDataOutP owp, IData ld, IData rd) VL_MT_SAFE { owp[0] = rd; for (int i=1; i < VL_WORDS_I(obits); ++i) owp[i] = 0; _VL_INSERT_WI(obits, owp, ld, rbits+lbits-1, rbits); return owp; } static inline WDataOutP VL_CONCAT_WWI(int obits, int lbits, int rbits, WDataOutP owp, WDataInP lwp, IData rd) VL_MT_SAFE { owp[0] = rd; for (int i=1; i < VL_WORDS_I(obits); ++i) owp[i] = 0; _VL_INSERT_WW(obits, owp, lwp, rbits+lbits-1, rbits); return owp; } static inline WDataOutP VL_CONCAT_WIW(int obits, int lbits, int rbits, WDataOutP owp, IData ld, WDataInP rwp) VL_MT_SAFE { for (int i=0; i < VL_WORDS_I(rbits); ++i) owp[i] = rwp[i]; for (int i=VL_WORDS_I(rbits); i < VL_WORDS_I(obits); ++i) owp[i] = 0; _VL_INSERT_WI(obits, owp, ld, rbits+lbits-1, rbits); return owp; } static inline WDataOutP VL_CONCAT_WIQ(int obits, int lbits, int rbits, WDataOutP owp, IData ld, QData rd) VL_MT_SAFE { VL_SET_WQ(owp, rd); for (int i=2; i < VL_WORDS_I(obits); ++i) owp[i] = 0; _VL_INSERT_WI(obits, owp, ld, rbits+lbits-1, rbits); return owp; } static inline WDataOutP VL_CONCAT_WQI(int obits, int lbits, int rbits, WDataOutP owp, QData ld, IData rd) VL_MT_SAFE { owp[0] = rd; for (int i=1; i < VL_WORDS_I(obits); ++i) owp[i] = 0; _VL_INSERT_WQ(obits, owp, ld, rbits+lbits-1, rbits); return owp; } static inline WDataOutP VL_CONCAT_WQQ(int obits, int lbits, int rbits, WDataOutP owp, QData ld, QData rd) VL_MT_SAFE { VL_SET_WQ(owp, rd); for (int i=2; i < VL_WORDS_I(obits); ++i) owp[i] = 0; _VL_INSERT_WQ(obits, owp, ld, rbits+lbits-1, rbits); return owp; } static inline WDataOutP VL_CONCAT_WWQ(int obits, int lbits, int rbits, WDataOutP owp, WDataInP lwp, QData rd) VL_MT_SAFE { VL_SET_WQ(owp, rd); for (int i=2; i < VL_WORDS_I(obits); ++i) owp[i] = 0; _VL_INSERT_WW(obits, owp, lwp, rbits+lbits-1, rbits); return owp; } static inline WDataOutP VL_CONCAT_WQW(int obits, int lbits, int rbits, WDataOutP owp, QData ld, WDataInP rwp) VL_MT_SAFE { for (int i=0; i < VL_WORDS_I(rbits); ++i) owp[i] = rwp[i]; for (int i=VL_WORDS_I(rbits); i < VL_WORDS_I(obits); ++i) owp[i] = 0; _VL_INSERT_WQ(obits, owp, ld, rbits+lbits-1, rbits); return owp; } static inline WDataOutP VL_CONCAT_WWW(int obits, int lbits, int rbits, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE { for (int i=0; i < VL_WORDS_I(rbits); ++i) owp[i] = rwp[i]; for (int i=VL_WORDS_I(rbits); i < VL_WORDS_I(obits); ++i) owp[i] = 0; _VL_INSERT_WW(obits, owp, lwp, rbits+lbits-1, rbits); return owp; } //=================================================================== // Shifts // Static shift, used by internal functions // The output is the same as the input - it overlaps! static inline void _VL_SHIFTL_INPLACE_W(int obits, WDataOutP iowp, IData rd/*1 or 4*/) VL_MT_SAFE { int words = VL_WORDS_I(obits); IData linsmask = VL_MASK_I(rd); for (int i=words-1; i>=1; --i) { iowp[i] = ((iowp[i]<> (32-rd)) & linsmask); } iowp[0] = ((iowp[0]<= static_cast(obits)) { // rd may be huge with MSB set for (int i=0; i < VL_WORDS_I(obits); ++i) owp[i] = 0; } else if (bit_shift==0) { // Aligned word shift (<<0,<<32,<<64 etc) for (int i=0; i < word_shift; ++i) owp[i] = 0; for (int i=word_shift; i < VL_WORDS_I(obits); ++i) owp[i] = lwp[i-word_shift]; } else { for (int i=0; i < VL_WORDS_I(obits); ++i) owp[i] = 0; _VL_INSERT_WW(obits, owp, lwp, obits-1, rd); } return owp; } static inline WDataOutP VL_SHIFTL_WWW(int obits, int lbits, int rbits, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE { for (int i=1; i < VL_WORDS_I(rbits); ++i) { if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more return VL_ZERO_W(obits, owp); } } return VL_SHIFTL_WWI(obits, lbits, 32, owp, lwp, rwp[0]); } static inline IData VL_SHIFTL_IIW(int obits, int, int rbits, IData lhs, WDataInP rwp) VL_MT_SAFE { for (int i=1; i < VL_WORDS_I(rbits); ++i) { if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more return 0; } } return VL_CLEAN_II(obits, obits, lhs<>32 or more return 0; } } // Above checks rwp[1]==0 so not needed in below shift return VL_CLEAN_QQ(obits, obits, lhs<<(static_cast(rwp[0]))); } // EMIT_RULE: VL_SHIFTR: oclean=lclean; rclean==clean; // Important: Unlike most other funcs, the shift might well be a computed // expression. Thus consider this when optimizing. (And perhaps have 2 funcs?) static inline WDataOutP VL_SHIFTR_WWI(int obits, int, int, WDataOutP owp, WDataInP lwp, IData rd) VL_MT_SAFE { int word_shift = VL_BITWORD_I(rd); // Maybe 0 int bit_shift = VL_BITBIT_I(rd); if (rd >= static_cast(obits)) { // rd may be huge with MSB set for (int i=0; i < VL_WORDS_I(obits); ++i) owp[i] = 0; } else if (bit_shift==0) { // Aligned word shift (>>0,>>32,>>64 etc) int copy_words = (VL_WORDS_I(obits)-word_shift); for (int i=0; i < copy_words; ++i) owp[i] = lwp[i+word_shift]; for (int i=copy_words; i < VL_WORDS_I(obits); ++i) owp[i] = 0; } else { int loffset = rd & VL_SIZEBITS_I; int nbitsonright = 32-loffset; // bits that end up in lword (know loffset!=0) // Middle words int words = VL_WORDS_I(obits-rd); for (int i=0; i>loffset; int upperword = i+word_shift+1; if (upperword < VL_WORDS_I(obits)) { owp[i] |= lwp[upperword]<< nbitsonright; } } for (int i=words; i>32 or more return VL_ZERO_W(obits, owp); } } return VL_SHIFTR_WWI(obits, lbits, 32, owp, lwp, rwp[0]); } static inline IData VL_SHIFTR_IIW(int obits, int, int rbits, IData lhs, WDataInP rwp) VL_MT_SAFE { for (int i=1; i < VL_WORDS_I(rbits); ++i) { if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more return 0; } } return VL_CLEAN_II(obits, obits, lhs>>rwp[0]); } static inline QData VL_SHIFTR_QQW(int obits, int, int rbits, QData lhs, WDataInP rwp) VL_MT_SAFE { for (int i=1; i < VL_WORDS_I(rbits); ++i) { if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more return 0; } } // Above checks rwp[1]==0 so not needed in below shift return VL_CLEAN_QQ(obits, obits, lhs>>(static_cast(rwp[0]))); } // EMIT_RULE: VL_SHIFTRS: oclean=false; lclean=clean, rclean==clean; static inline IData VL_SHIFTRS_III(int obits, int lbits, int, IData lhs, IData rhs) VL_PURE { // Note the C standard does not specify the >> operator as a arithmetic shift! // IEEE says signed if output signed, but bit position from lbits; // must use lbits for sign; lbits might != obits, // an EXTEND(SHIFTRS(...)) can became a SHIFTRS(...) within same 32/64 bit word length IData sign = -(lhs >> (lbits-1)); // ffff_ffff if negative IData signext = ~(VL_MASK_I(lbits) >> rhs); // One with bits where we've shifted "past" return (lhs >> rhs) | (sign & VL_CLEAN_II(obits, obits, signext)); } static inline QData VL_SHIFTRS_QQI(int obits, int lbits, int, QData lhs, IData rhs) VL_PURE { QData sign = -(lhs >> (lbits-1)); QData signext = ~(VL_MASK_Q(lbits) >> rhs); return (lhs >> rhs) | (sign & VL_CLEAN_QQ(obits, obits, signext)); } static inline IData VL_SHIFTRS_IQI(int obits, int lbits, int rbits, QData lhs, IData rhs) VL_PURE { return static_cast(VL_SHIFTRS_QQI(obits, lbits, rbits, lhs, rhs)); } static inline WDataOutP VL_SHIFTRS_WWI(int obits, int lbits, int, WDataOutP owp, WDataInP lwp, IData rd) VL_MT_SAFE { int word_shift = VL_BITWORD_I(rd); int bit_shift = VL_BITBIT_I(rd); int lmsw = VL_WORDS_I(obits)-1; IData sign = VL_SIGNONES_I(lbits, lwp[lmsw]); if (rd >= static_cast(obits)) { // Shifting past end, sign in all of lbits for (int i=0; i <= lmsw; ++i) owp[i] = sign; owp[lmsw] &= VL_MASK_I(lbits); } else if (bit_shift==0) { // Aligned word shift (>>0,>>32,>>64 etc) int copy_words = (VL_WORDS_I(obits)-word_shift); for (int i=0; i < copy_words; ++i) owp[i] = lwp[i+word_shift]; if (copy_words>=0) owp[copy_words-1] |= ~VL_MASK_I(obits) & sign; for (int i=copy_words; i < VL_WORDS_I(obits); ++i) owp[i] = sign; owp[lmsw] &= VL_MASK_I(lbits); } else { int loffset = rd & VL_SIZEBITS_I; int nbitsonright = 32-loffset; // bits that end up in lword (know loffset!=0) // Middle words int words = VL_WORDS_I(obits-rd); for (int i=0; i>loffset; int upperword = i+word_shift+1; if (upperword < VL_WORDS_I(obits)) { owp[i] |= lwp[upperword]<< nbitsonright; } } if (words) owp[words-1] |= sign & ~VL_MASK_I(obits-loffset); for (int i=words; i>32 or more int lmsw = VL_WORDS_I(obits)-1; IData sign = VL_SIGNONES_I(lbits, lwp[lmsw]); for (int j=0; j <= lmsw; ++j) owp[j] = sign; owp[lmsw] &= VL_MASK_I(lbits); return owp; } } return VL_SHIFTRS_WWI(obits, lbits, 32, owp, lwp, rwp[0]); } static inline IData VL_SHIFTRS_IIW(int obits, int lbits, int rbits, IData lhs, WDataInP rwp) VL_MT_SAFE { for (int i=1; i < VL_WORDS_I(rbits); ++i) { if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more IData sign = -(lhs >> (lbits-1)); // ffff_ffff if negative return VL_CLEAN_II(obits, obits, sign); } } return VL_SHIFTRS_III(obits, lbits, 32, lhs, rwp[0]); } static inline QData VL_SHIFTRS_QQW(int obits, int lbits, int rbits, QData lhs, WDataInP rwp) VL_MT_SAFE { for (int i=1; i < VL_WORDS_I(rbits); ++i) { if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more QData sign = -(lhs >> (lbits-1)); // ffff_ffff if negative return VL_CLEAN_QQ(obits, obits, sign); } } return VL_SHIFTRS_QQI(obits, lbits, 32, lhs, rwp[0]); } static inline IData VL_SHIFTRS_IIQ(int obits, int lbits, int rbits, IData lhs, QData rhs) VL_PURE { WData rwp[2]; VL_SET_WQ(rwp, rhs); return VL_SHIFTRS_IIW(obits, lbits, rbits, lhs, rwp); } static inline QData VL_SHIFTRS_QQQ(int obits, int lbits, int rbits, QData lhs, QData rhs) VL_PURE { WData rwp[2]; VL_SET_WQ(rwp, rhs); return VL_SHIFTRS_QQW(obits, lbits, rbits, lhs, rwp); } //=================================================================== // Bit selection // EMIT_RULE: VL_BITSEL: oclean=dirty; rclean==clean; #define VL_BITSEL_IIII(obits,lbits,rbits,zbits,lhs,rhs) ((lhs)>>(rhs)) #define VL_BITSEL_QIII(obits,lbits,rbits,zbits,lhs,rhs) ((lhs)>>(rhs)) #define VL_BITSEL_QQII(obits,lbits,rbits,zbits,lhs,rhs) ((lhs)>>(rhs)) #define VL_BITSEL_IQII(obits,lbits,rbits,zbits,lhs,rhs) (static_cast((lhs)>>(rhs))) static inline IData VL_BITSEL_IWII(int, int lbits, int, int, WDataInP lwp, IData rd) VL_MT_SAFE { int word = VL_BITWORD_I(rd); if (VL_UNLIKELY(rd > static_cast(lbits))) { return ~0; // Spec says you can go outside the range of a array. Don't coredump if so. // We return all 1's as that's more likely to find bugs (?) than 0's. } else { return (lwp[word]>>VL_BITBIT_I(rd)); } } // EMIT_RULE: VL_RANGE: oclean=lclean; out=dirty // & MUST BE CLEAN (currently constant) #define VL_SEL_IIII(obits,lbits,rbits,tbits,lhs,lsb,width) ((lhs)>>(lsb)) #define VL_SEL_QQII(obits,lbits,rbits,tbits,lhs,lsb,width) ((lhs)>>(lsb)) #define VL_SEL_IQII(obits,lbits,rbits,tbits,lhs,lsb,width) (static_cast((lhs)>>(lsb))) static inline IData VL_SEL_IWII(int, int lbits, int, int, WDataInP lwp, IData lsb, IData width) VL_MT_SAFE { int msb = lsb+width-1; if (VL_UNLIKELY(msb>lbits)) { return ~0; // Spec says you can go outside the range of a array. Don't coredump if so. } else if (VL_BITWORD_I(msb)==VL_BITWORD_I(static_cast(lsb))) { return VL_BITRSHIFT_W(lwp, lsb); } else { // 32 bit extraction may span two words int nbitsfromlow = 32-VL_BITBIT_I(lsb); // bits that come from low word return ((lwp[VL_BITWORD_I(msb)]<lbits)) { return ~0; // Spec says you can go outside the range of a array. Don't coredump if so. } else if (VL_BITWORD_I(msb)==VL_BITWORD_I(static_cast(lsb))) { return VL_BITRSHIFT_W(lwp, lsb); } else if (VL_BITWORD_I(msb)==1+VL_BITWORD_I(static_cast(lsb))) { int nbitsfromlow = 32-VL_BITBIT_I(lsb); QData hi = (lwp[VL_BITWORD_I(msb)]); QData lo = VL_BITRSHIFT_W(lwp, lsb); return (hi<lbits)) { // Outside bounds, for (int i=0; i>loffset; int upperword = i+word_shift+1; if (upperword <= static_cast(VL_BITWORD_I(msb))) { owp[i] |= lwp[upperword]<< nbitsfromlow; } } for (int i=words; i= rhs width static inline void VL_ASSIGNSEL_WIII(int obits, int lsb, WDataOutP owp, IData rhs) VL_MT_SAFE { _VL_INSERT_WI(obits, owp, rhs, lsb+obits-1, lsb); } static inline void VL_ASSIGNSEL_WIIQ(int obits, int lsb, WDataOutP owp, QData rhs) VL_MT_SAFE { _VL_INSERT_WQ(obits, owp, rhs, lsb+obits-1, lsb); } static inline void VL_ASSIGNSEL_WIIW(int obits, int lsb, WDataOutP owp, WDataInP rwp) VL_MT_SAFE { _VL_INSERT_WW(obits, owp, rwp, lsb+obits-1, lsb); } //====================================================================== // Triops static inline WDataOutP VL_COND_WIWW(int obits, int, int, int, WDataOutP owp, int cond, WDataInP w1p, WDataInP w2p) VL_MT_SAFE { int words = VL_WORDS_I(obits); for (int i=0; i < words; ++i) owp[i] = cond ? w1p[i] : w2p[i]; return owp; } //====================================================================== // Constification // VL_CONST_W_#X(int obits, WDataOutP owp, IData data0, .... IData data(#-1)) // Sets wide vector words to specified constant words. // These macros are used when o might represent more words then are given as constants, // hence all upper words must be zeroed. // If changing the number of functions here, also change EMITCINLINES_NUM_CONSTW #define _END(obits,wordsSet) \ for(int i=(wordsSet);i