verilator/test_regress/t/t_vpi_var.cpp
Rich Porter 85989af031 Fix vpi_get of vpiSize, bug680.
Signed-off-by: Wilson Snyder <wsnyder@wsnyder.org>
2013-10-13 20:05:57 -04:00

703 lines
20 KiB
C++

// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
//
// Copyright 2010-2011 by Wilson Snyder. This program is free software; you can
// redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License.
// Version 2.0.
//
// Verilator is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
//*************************************************************************
#ifdef IS_VPI
#include "vpi_user.h"
#else
#include "Vt_vpi_var.h"
#include "verilated.h"
#include "svdpi.h"
#include "Vt_vpi_var__Dpi.h"
#include "verilated_vpi.h"
#include "verilated_vpi.cpp"
#include "verilated_vcd_c.h"
#endif
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
#include "TestSimulator.h"
#include "TestVpi.h"
// __FILE__ is too long
#define FILENM "t_vpi_var.cpp"
#define TEST_MSG if (0) printf
unsigned int main_time = false;
unsigned int callback_count = false;
unsigned int callback_count_half = false;
unsigned int callback_count_quad = false;
unsigned int callback_count_strs = false;
unsigned int callback_count_strs_max = 500;
//======================================================================
#define CHECK_RESULT_VH(got, exp) \
if ((got) != (exp)) { \
printf("%%Error: %s:%d: GOT = %p EXP = %p\n", \
FILENM,__LINE__, (got), (exp)); \
return __LINE__; \
}
#define CHECK_RESULT_NZ(got) \
if (!(got)) { \
printf("%%Error: %s:%d: GOT = NULL EXP = !NULL\n", FILENM,__LINE__); \
return __LINE__; \
}
// Use cout to avoid issues with %d/%lx etc
#define CHECK_RESULT(got, exp) \
if ((got) != (exp)) { \
cout<<dec<<"%Error: "<<FILENM<<":"<<__LINE__ \
<<": GOT = "<<(got)<<" EXP = "<<(exp)<<endl; \
return __LINE__; \
}
#define CHECK_RESULT_HEX(got, exp) \
if ((got) != (exp)) { \
cout<<dec<<"%Error: "<<FILENM<<":"<<__LINE__<<hex \
<<": GOT = "<<(got)<<" EXP = "<<(exp)<<endl; \
return __LINE__; \
}
#define CHECK_RESULT_CSTR(got, exp) \
if (strcmp((got),(exp))) { \
printf("%%Error: %s:%d: GOT = '%s' EXP = '%s'\n", \
FILENM,__LINE__, (got)?(got):"<null>", (exp)?(exp):"<null>"); \
return __LINE__; \
}
#define CHECK_RESULT_CSTR_STRIP(got, exp) \
CHECK_RESULT_CSTR(got+strspn(got, " "), exp)
int _mon_check_mcd() {
PLI_INT32 status;
PLI_UINT32 mcd;
PLI_BYTE8* filename = (PLI_BYTE8*)"obj_dir/t_vpi_var/mcd_open.tmp";
mcd = vpi_mcd_open(filename);
CHECK_RESULT_NZ(mcd);
{ // Check it got written
FILE* fp = fopen(filename,"r");
CHECK_RESULT_NZ(fp);
fclose(fp);
}
status = vpi_mcd_printf(mcd, (PLI_BYTE8*)"hello %s", "vpi_mcd_printf");
CHECK_RESULT(status, strlen("hello vpi_mcd_printf"));
status = vpi_mcd_flush(mcd);
CHECK_RESULT(status, 0);
status = vpi_mcd_close(mcd);
// Icarus says 'error' on ones we're not using, so check only used ones return 0.
CHECK_RESULT(status & mcd, 0);
status = vpi_flush();
CHECK_RESULT(status, 0);
return 0;
}
int _mon_check_callbacks_error(p_cb_data cb_data) {
vpi_printf((PLI_BYTE8*)"%%Error: callback should not be executed\n");
return 1;
}
int _mon_check_callbacks() {
t_cb_data cb_data;
cb_data.reason = cbEndOfSimulation;
cb_data.cb_rtn = _mon_check_callbacks_error;
cb_data.user_data = 0;
cb_data.value = NULL;
cb_data.time = NULL;
vpiHandle vh = vpi_register_cb(&cb_data);
CHECK_RESULT_NZ(vh);
PLI_INT32 status = vpi_remove_cb(vh);
CHECK_RESULT_NZ(status);
return 0;
}
int _value_callback(p_cb_data cb_data) {
if (TestSimulator::is_verilator()) {
// this check only makes sense in Verilator
CHECK_RESULT(cb_data->value->value.integer+10, main_time);
}
callback_count++;
return 0;
}
int _value_callback_half(p_cb_data cb_data) {
if (TestSimulator::is_verilator()) {
// this check only makes sense in Verilator
CHECK_RESULT(cb_data->value->value.integer*2+10, main_time);
}
callback_count_half++;
return 0;
}
int _value_callback_quad(p_cb_data cb_data) {
for (int index=0;index<2;index++) {
CHECK_RESULT_HEX(cb_data->value->value.vector[1].aval, (unsigned long)((index==2)?0x1c77bb9bUL:0x12819213UL));
CHECK_RESULT_HEX(cb_data->value->value.vector[0].aval, (unsigned long)((index==2)?0x3784ea09UL:0xabd31a1cUL));
}
callback_count_quad++;
return 0;
}
int _mon_check_value_callbacks() {
vpiHandle vh1 = VPI_HANDLE("count");
CHECK_RESULT_NZ(vh1);
s_vpi_value v;
v.format = vpiIntVal;
vpi_get_value(vh1, &v);
t_cb_data cb_data;
cb_data.reason = cbValueChange;
cb_data.cb_rtn = _value_callback;
cb_data.obj = vh1;
cb_data.value = &v;
cb_data.time = NULL;
vpiHandle vh = vpi_register_cb(&cb_data);
CHECK_RESULT_NZ(vh);
vh1 = VPI_HANDLE("half_count");
CHECK_RESULT_NZ(vh1);
cb_data.obj = vh1;
cb_data.cb_rtn = _value_callback_half;
vh = vpi_register_cb(&cb_data);
CHECK_RESULT_NZ(vh);
vh1 = VPI_HANDLE("quads");
CHECK_RESULT_NZ(vh1);
v.format = vpiVectorVal;
cb_data.obj = vh1;
cb_data.cb_rtn = _value_callback_quad;
vh = vpi_register_cb(&cb_data);
CHECK_RESULT_NZ(vh);
vh1 = vpi_handle_by_index(vh1, 2);
CHECK_RESULT_NZ(vh1);
cb_data.obj = vh1;
cb_data.cb_rtn = _value_callback_quad;
vh = vpi_register_cb(&cb_data);
CHECK_RESULT_NZ(vh);
return 0;
}
int _mon_check_var() {
TestVpiHandle vh1 = VPI_HANDLE("onebit");
CHECK_RESULT_NZ(vh1);
TestVpiHandle vh2 = vpi_handle_by_name((PLI_BYTE8*)TestSimulator::top(), NULL);
CHECK_RESULT_NZ(vh2);
// scope attributes
const char* p;
p = vpi_get_str(vpiName, vh2);
CHECK_RESULT_CSTR(p, "t");
p = vpi_get_str(vpiFullName, vh2);
CHECK_RESULT_CSTR(p, TestSimulator::top());
TestVpiHandle vh3 = vpi_handle_by_name((PLI_BYTE8*)"onebit", vh2);
CHECK_RESULT_NZ(vh3);
// onebit attributes
PLI_INT32 d;
d = vpi_get(vpiType, vh3);
CHECK_RESULT(d, vpiReg);
if (TestSimulator::has_get_scalar()) {
d = vpi_get(vpiVector, vh3);
CHECK_RESULT(d, 0);
}
p = vpi_get_str(vpiName, vh3);
CHECK_RESULT_CSTR(p, "onebit");
p = vpi_get_str(vpiFullName, vh3);
CHECK_RESULT_CSTR(p, TestSimulator::rooted("onebit"));
// array attributes
TestVpiHandle vh4 = VPI_HANDLE("fourthreetwoone");
CHECK_RESULT_NZ(vh4);
if (TestSimulator::has_get_scalar()) {
d = vpi_get(vpiVector, vh4);
CHECK_RESULT(d, 1);
}
t_vpi_value tmpValue;
tmpValue.format = vpiIntVal;
{
TestVpiHandle vh10 = vpi_handle(vpiLeftRange, vh4);
CHECK_RESULT_NZ(vh10);
vpi_get_value(vh10, &tmpValue);
CHECK_RESULT(tmpValue.value.integer,4);
}
{
TestVpiHandle vh10 = vpi_handle(vpiRightRange, vh4);
CHECK_RESULT_NZ(vh10);
vpi_get_value(vh10, &tmpValue);
CHECK_RESULT(tmpValue.value.integer,3);
}
{
TestVpiHandle vh10 = vpi_iterate(vpiMemoryWord, vh4);
CHECK_RESULT_NZ(vh10);
TestVpiHandle vh11 = vpi_scan(vh10);
CHECK_RESULT_NZ(vh11);
TestVpiHandle vh12 = vpi_handle(vpiLeftRange, vh11);
CHECK_RESULT_NZ(vh12);
vpi_get_value(vh12, &tmpValue);
CHECK_RESULT(tmpValue.value.integer,2);
TestVpiHandle vh13 = vpi_handle(vpiRightRange, vh11);
CHECK_RESULT_NZ(vh13);
vpi_get_value(vh13, &tmpValue);
CHECK_RESULT(tmpValue.value.integer,1);
}
return 0;
}
int _mon_check_varlist() {
const char* p;
TestVpiHandle vh2 = VPI_HANDLE("sub");
CHECK_RESULT_NZ(vh2);
TestVpiHandle vh10 = vpi_iterate(vpiReg, vh2);
CHECK_RESULT_NZ(vh10.nofree());
TestVpiHandle vh11 = vpi_scan(vh10);
CHECK_RESULT_NZ(vh11);
p = vpi_get_str(vpiFullName, vh11);
CHECK_RESULT_CSTR(p, TestSimulator::rooted("sub.subsig1"));
TestVpiHandle vh12 = vpi_scan(vh10);
CHECK_RESULT_NZ(vh12);
p = vpi_get_str(vpiFullName, vh12);
CHECK_RESULT_CSTR(p, TestSimulator::rooted("sub.subsig2"));
TestVpiHandle vh13 = vpi_scan(vh10);
CHECK_RESULT(vh13,0);
return 0;
}
int _mon_check_getput() {
TestVpiHandle vh2 = VPI_HANDLE("onebit");
CHECK_RESULT_NZ(vh2);
s_vpi_value v;
v.format = vpiIntVal;
vpi_get_value(vh2, &v);
CHECK_RESULT(v.value.integer, 0);
s_vpi_time t;
t.type = vpiSimTime;
t.high = 0;
t.low = 0;
v.value.integer = 1;
vpi_put_value(vh2, &v, &t, vpiNoDelay);
vpi_get_value(vh2, &v);
CHECK_RESULT(v.value.integer, 1);
return 0;
}
int _mon_check_quad() {
TestVpiHandle vh2 = VPI_HANDLE("quads");
CHECK_RESULT_NZ(vh2);
s_vpi_value v;
t_vpi_vecval vv[2]; bzero(&vv,sizeof(vv));
s_vpi_time t;
t.type = vpiSimTime;
t.high = 0;
t.low = 0;
TestVpiHandle vhidx2 = vpi_handle_by_index(vh2, 2);
CHECK_RESULT_NZ(vhidx2);
TestVpiHandle vhidx3 = vpi_handle_by_index(vh2, 3);
CHECK_RESULT_NZ(vhidx2);
v.format = vpiVectorVal;
v.value.vector = vv;
v.value.vector[1].aval = 0x12819213UL;
v.value.vector[0].aval = 0xabd31a1cUL;
vpi_put_value(vhidx2, &v, &t, vpiNoDelay);
v.format = vpiVectorVal;
v.value.vector = vv;
v.value.vector[1].aval = 0x1c77bb9bUL;
v.value.vector[0].aval = 0x3784ea09UL;
vpi_put_value(vhidx3, &v, &t, vpiNoDelay);
vpi_get_value(vhidx2, &v);
CHECK_RESULT(v.value.vector[1].aval, 0x12819213UL);
CHECK_RESULT(v.value.vector[1].bval, 0);
vpi_get_value(vhidx3, &v);
CHECK_RESULT(v.value.vector[1].aval, 0x1c77bb9bUL);
CHECK_RESULT(v.value.vector[1].bval, 0);
return 0;
}
int _mon_check_string() {
static struct {
const char *name;
const char *initial;
const char *value;
} text_test_obs[] = {
{"text_byte", "B", "xxA"}, // x's dropped
{"text_half", "Hf", "xxT2"}, // x's dropped
{"text_word", "Word", "Tree"},
{"text_long", "Long64b", "44Four44"},
{"text" , "Verilog Test module", "lorem ipsum"},
};
for (int i=0; i<5; i++) {
TestVpiHandle vh1 = VPI_HANDLE(text_test_obs[i].name);
CHECK_RESULT_NZ(vh1);
s_vpi_value v;
s_vpi_time t = { vpiSimTime, 0, 0};
s_vpi_error_info e;
v.format = vpiStringVal;
vpi_get_value(vh1, &v);
if (vpi_chk_error(&e)) {
printf("%%vpi_chk_error : %s\n", e.message);
}
CHECK_RESULT_CSTR_STRIP(v.value.str, text_test_obs[i].initial);
v.value.str = (PLI_BYTE8*)text_test_obs[i].value;
vpi_put_value(vh1, &v, &t, vpiNoDelay);
}
return 0;
}
int _mon_check_putget_str(p_cb_data cb_data) {
static TestVpiHandle cb;
static struct {
TestVpiHandle scope, sig, rfr, check, verbose;
char str[128+1]; // char per bit plus null terminator
int type; // value type in .str
union {
PLI_INT32 integer;
s_vpi_vecval vector[4];
} value; // reference
} data[129];
if (cb_data) {
// this is the callback
static unsigned int seed = 1;
s_vpi_time t;
t.type = vpiSimTime;
t.high = 0;
t.low = 0;
for (int i=2; i<=128; i++) {
static s_vpi_value v;
int words = (i+31)>>5;
TEST_MSG("========== %d ==========\n", i);
if (callback_count_strs) {
// check persistance
if (data[i].type) {
v.format = data[i].type;
} else {
static PLI_INT32 vals[] = {vpiBinStrVal, vpiOctStrVal, vpiHexStrVal, vpiDecStrVal};
v.format = vals[rand_r(&seed) % ((words>2)?3:4)];
TEST_MSG("new format %d\n", v.format);
}
vpi_get_value(data[i].sig, &v);
TEST_MSG("%s\n", v.value.str);
if (data[i].type) {
CHECK_RESULT_CSTR(v.value.str, data[i].str);
} else {
data[i].type = v.format;
strcpy(data[i].str, v.value.str);
}
}
// check for corruption
v.format = (words==1)?vpiIntVal:vpiVectorVal;
vpi_get_value(data[i].sig, &v);
if (v.format == vpiIntVal) {
TEST_MSG("%08x %08x\n", v.value.integer, data[i].value.integer);
CHECK_RESULT(v.value.integer, data[i].value.integer);
} else {
for (int k=0; k < words; k++) {
TEST_MSG("%d %08x %08x\n", k, v.value.vector[k].aval, data[i].value.vector[k].aval);
CHECK_RESULT_HEX(v.value.vector[k].aval, data[i].value.vector[k].aval);
}
}
if (callback_count_strs & 7) {
// put same value back - checking encoding/decoding equivalent
v.format = data[i].type;
v.value.str = data[i].str;
vpi_put_value(data[i].sig, &v, &t, vpiNoDelay);
v.format = vpiIntVal;
v.value.integer = 1;
//vpi_put_value(data[i].verbose, &v, &t, vpiNoDelay);
vpi_put_value(data[i].check, &v, &t, vpiNoDelay);
} else {
// stick a new random value in
unsigned int mask = ((i&31)?(1<<(i&31)):0)-1;
if (words == 1) {
v.value.integer = rand_r(&seed);
data[i].value.integer = v.value.integer &= mask;
v.format = vpiIntVal;
TEST_MSG("new value %08x\n", data[i].value.integer);
} else {
TEST_MSG("new value\n");
for (int j=0; j<4; j++) {
data[i].value.vector[j].aval = rand_r(&seed);
if (j==(words-1)) {
data[i].value.vector[j].aval &= mask;
}
TEST_MSG(" %08x\n", data[i].value.vector[j].aval);
}
v.value.vector = data[i].value.vector;
v.format = vpiVectorVal;
}
vpi_put_value(data[i].sig, &v, &t, vpiNoDelay);
vpi_put_value(data[i].rfr, &v, &t, vpiNoDelay);
}
if ((callback_count_strs & 1) == 0) data[i].type = 0;
}
if (++callback_count_strs == callback_count_strs_max) {
int success = vpi_remove_cb(cb);
CHECK_RESULT_NZ(success);
};
} else {
// setup and install
for (int i=1; i<=128; i++) {
char buf[32];
snprintf(buf, sizeof(buf), TestSimulator::rooted("arr[%d].arr"), i);
CHECK_RESULT_NZ(data[i].scope = vpi_handle_by_name((PLI_BYTE8*)buf, NULL));
CHECK_RESULT_NZ(data[i].sig = vpi_handle_by_name((PLI_BYTE8*)"sig", data[i].scope));
CHECK_RESULT_NZ(data[i].rfr = vpi_handle_by_name((PLI_BYTE8*)"rfr", data[i].scope));
CHECK_RESULT_NZ(data[i].check = vpi_handle_by_name((PLI_BYTE8*)"check", data[i].scope));
CHECK_RESULT_NZ(data[i].verbose = vpi_handle_by_name((PLI_BYTE8*)"verbose", data[i].scope));
}
static t_cb_data cb_data;
static s_vpi_value v;
static TestVpiHandle count_h = VPI_HANDLE("count");
cb_data.reason = cbValueChange;
cb_data.cb_rtn = _mon_check_putget_str; // this function
cb_data.obj = count_h;
cb_data.value = &v;
cb_data.time = NULL;
v.format = vpiIntVal;
cb = vpi_register_cb(&cb_data);
CHECK_RESULT_NZ(cb);
}
return 0;
}
int _mon_check_vlog_info() {
s_vpi_vlog_info vlog_info;
PLI_INT32 rtn = vpi_get_vlog_info(&vlog_info);
CHECK_RESULT(rtn, 1);
CHECK_RESULT(vlog_info.argc, 4);
CHECK_RESULT_CSTR(vlog_info.argv[1], "+PLUS");
CHECK_RESULT_CSTR(vlog_info.argv[2], "+INT=1234");
CHECK_RESULT_CSTR(vlog_info.argv[3], "+STRSTR");
if (TestSimulator::is_verilator()) {
CHECK_RESULT_CSTR(vlog_info.product, "Verilator");
CHECK_RESULT(strlen(vlog_info.version) > 0, 1);
}
return 0;
}
#ifndef IS_VPI
#define CHECK_ENUM_STR(fn, enum) \
do { \
const char* strVal = VerilatedVpiError::fn(enum); \
CHECK_RESULT_CSTR(strVal, #enum); \
} while (0)
int _mon_check_vl_str() {
CHECK_ENUM_STR(strFromVpiVal, vpiBinStrVal);
CHECK_ENUM_STR(strFromVpiVal, vpiRawFourStateVal);
CHECK_ENUM_STR(strFromVpiObjType, vpiAlways);
CHECK_ENUM_STR(strFromVpiObjType, vpiWhile);
CHECK_ENUM_STR(strFromVpiObjType, vpiAttribute);
CHECK_ENUM_STR(strFromVpiObjType, vpiUdpArray);
CHECK_ENUM_STR(strFromVpiObjType, vpiContAssignBit);
CHECK_ENUM_STR(strFromVpiObjType, vpiGenVar);
CHECK_ENUM_STR(strFromVpiMethod, vpiCondition);
CHECK_ENUM_STR(strFromVpiMethod, vpiStmt);
CHECK_ENUM_STR(strFromVpiCallbackReason, cbValueChange);
CHECK_ENUM_STR(strFromVpiCallbackReason, cbAtEndOfSimTime);
CHECK_ENUM_STR(strFromVpiProp, vpiType);
CHECK_ENUM_STR(strFromVpiProp, vpiProtected);
CHECK_ENUM_STR(strFromVpiProp, vpiDirection);
CHECK_ENUM_STR(strFromVpiProp, vpiTermIndex);
CHECK_ENUM_STR(strFromVpiProp, vpiConstType);
CHECK_ENUM_STR(strFromVpiProp, vpiAutomatic);
CHECK_ENUM_STR(strFromVpiProp, vpiOffset);
CHECK_ENUM_STR(strFromVpiProp, vpiStop);
CHECK_ENUM_STR(strFromVpiProp, vpiIsProtected);
return 0;
}
#endif
int mon_check() {
// Callback from initial block in monitor
if (int status = _mon_check_mcd()) return status;
if (int status = _mon_check_callbacks()) return status;
if (int status = _mon_check_value_callbacks()) return status;
if (int status = _mon_check_var()) return status;
if (int status = _mon_check_varlist()) return status;
if (int status = _mon_check_getput()) return status;
if (int status = _mon_check_quad()) return status;
if (int status = _mon_check_string()) return status;
if (int status = _mon_check_putget_str(NULL)) return status;
if (int status = _mon_check_vlog_info()) return status;
#ifndef IS_VPI
if (int status = _mon_check_vl_str()) return status;
#endif
return 0; // Ok
}
//======================================================================
#ifdef IS_VPI
static int mon_check_vpi() {
vpiHandle href = vpi_handle(vpiSysTfCall, 0);
s_vpi_value vpi_value;
vpi_value.format = vpiIntVal;
vpi_value.value.integer = mon_check();
vpi_put_value(href, &vpi_value, NULL, vpiNoDelay);
return 0;
}
static s_vpi_systf_data vpi_systf_data[] = {
{vpiSysFunc, vpiIntFunc, (PLI_BYTE8*)"$mon_check", (PLI_INT32(*)(PLI_BYTE8*))mon_check_vpi, 0, 0, 0},
0
};
// cver entry
void vpi_compat_bootstrap(void) {
p_vpi_systf_data systf_data_p;
systf_data_p = &(vpi_systf_data[0]);
while (systf_data_p->type != 0) vpi_register_systf(systf_data_p++);
}
// icarus entry
void (*vlog_startup_routines[])() = {
vpi_compat_bootstrap,
0
};
#else
double sc_time_stamp () {
return main_time;
}
int main(int argc, char **argv, char **env) {
double sim_time = 1100;
Verilated::commandArgs(argc, argv);
Verilated::debug(0);
VM_PREFIX* topp = new VM_PREFIX (""); // Note null name - we're flattening it out
#ifdef VERILATOR
# ifdef TEST_VERBOSE
Verilated::scopesDump();
# endif
#endif
Verilated::traceEverOn(true);
VerilatedVcdC* tfp = new VerilatedVcdC;
#if VM_TRACE
VL_PRINTF("Enabling waves...\n");
topp->trace (tfp, 99);
tfp->open ("obj_dir/t_vpi_var/simx.vcd");
#endif
topp->eval();
topp->clk = 0;
main_time += 10;
while (sc_time_stamp() < sim_time && !Verilated::gotFinish()) {
main_time += 1;
topp->eval();
VerilatedVpi::callValueCbs();
topp->clk = !topp->clk;
//mon_do();
#if VM_TRACE
if (tfp) tfp->dump (main_time);
#endif
}
CHECK_RESULT(callback_count, 501);
CHECK_RESULT(callback_count_half, 250);
CHECK_RESULT(callback_count_quad, 2);
CHECK_RESULT(callback_count_strs, callback_count_strs_max);
if (!Verilated::gotFinish()) {
vl_fatal(FILENM,__LINE__,"main", "%Error: Timeout; never got a $finish");
}
topp->final();
#if VM_TRACE
if (tfp) tfp->close();
#endif
delete topp; topp=NULL;
exit(0L);
}
#endif