verilator/test_regress/t/t_const_opt.v

318 lines
9.2 KiB
Systemverilog
Raw Normal View History

// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed under the Creative Commons Public Domain, for
// any use, without warranty, 2021 Yutetsu TAKATSUKASA.
// SPDX-License-Identifier: CC0-1.0
// This function always returns 0, so safe to take bitwise OR with any value.
// Calling this function stops constant folding as Verialtor does not know
// what this function returns.
import "DPI-C" context function int fake_dependency();
module t(/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc = 0;
reg [63:0] crc;
reg [63:0] sum;
// Take CRC data and apply to testblock inputs
wire [31:0] in = crc[31:0];
/*AUTOWIRE*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
logic o; // From test of Test.v
// End of automatics
wire [31:0] i = crc[31:0];
Test test(/*AUTOINST*/
// Outputs
.o (o),
// Inputs
.clk (clk),
.i (i[31:0]));
// Aggregate outputs into a single result vector
wire [63:0] result = {63'b0, o};
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x result=%x\n", $time, cyc, crc, result);
$display("o %b", o);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63] ^ crc[2] ^ crc[0]};
sum <= result ^ {sum[62:0], sum[63] ^ sum[2] ^ sum[0]};
if (cyc == 0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
sum <= '0;
end
else if (cyc < 10) begin
sum <= '0;
end
else if (cyc < 99) begin
end
else begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n", $time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
// What checksum will we end up with (above print should match)
`define EXPECTED_SUM 64'h9366e49d91bfe942
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module Test(/*AUTOARG*/
// Outputs
o,
// Inputs
clk, i
);
input clk;
input [31:0] i;
logic [31:0] d;
logic d0, d1, d2, d3, d4, d5, d6, d7;
logic bug3182_out;
logic bug3197_out;
logic bug3445_out;
logic bug3470_out;
logic bug3509_out;
wire bug3399_out0;
wire bug3399_out1;
output logic o;
logic [11:0] tmp;
assign o = ^tmp;
always_ff @(posedge clk) begin
d <= i;
d0 <= i[0];
d1 <= i[1];
d2 <= i[2];
d3 <= i[3];
d4 <= i[4];
d5 <= i[5];
d6 <= i[6];
d7 <= i[7];
end
always_ff @(posedge clk) begin
// Cover more lines in V3Const.cpp
tmp[0] <= (d0 || (!d0 && d1)) ^ ((!d2 && d3) || d2); // maatchOrAndNot()
tmp[1] <= ((32'd2 ** i) & 32'h10) == 32'b0; // replacePowShift
tmp[2] <= ((d0 & d1) | (d0 & d2))^ ((d3 & d4) | (d5 & d4)); // replaceAndOr()
tmp[3] <= d0 <-> d1; // replaceLogEq()
tmp[4] <= i[0] & (i[1] & (i[2] & (i[3] | d[4]))); // ConstBitOpTreeVisitor::m_frozenNodes
tmp[5] <= bug3182_out;
tmp[6] <= bug3197_out;
tmp[7] <= bug3445_out;
tmp[8] <= bug3470_out;
tmp[9] <= bug3509_out;
tmp[10]<= bug3399_out0;
tmp[11]<= bug3399_out1;
end
bug3182 i_bug3182(.in(d[4:0]), .out(bug3182_out));
bug3197 i_bug3197(.clk(clk), .in(d), .out(bug3197_out));
bug3445 i_bug3445(.clk(clk), .in(d), .out(bug3445_out));
bug3470 i_bug3470(.clk(clk), .in(d), .out(bug3470_out));
bug3509 i_bug3509(.clk(clk), .in(d), .out(bug3509_out));
bug3399 i_bug3399(.clk(clk), .in(d), .out0(bug3399_out0), .out1(bug3399_out1));
endmodule
module bug3182(in, out);
input wire [4:0] in;
output wire out;
logic [4:0] bit_source;
/* verilator lint_off WIDTH */
always @(in)
bit_source = fake_dependency() | in;
wire [5:0] tmp = bit_source; // V3Gate should inline this
wire out = ~(tmp >> 5) & (bit_source == 5'd10);
/* verilator lint_on WIDTH */
endmodule
module bug3197(input wire clk, input wire [31:0] in, output out);
logic [63:0] d;
always_ff @(posedge clk)
d <= {d[31:0], in[0] ? in : 32'b0};
wire tmp0 = (|d[38:0]);
assign out = (d[39] | tmp0);
endmodule
// Bug #3445
// An unoptimized node is kept as frozen node, but its LSB and polarity were not saved.
// AST of RHS of result0 looks as below:
// AND(SHIFTR(AND(WORDSEL(ARRAYSEL(VARREF)), WORDSEL(ARRAYSEL(VARREF)))), 32'd11)
// ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~
// Two of WORDSELs are frozen nodes. They are under SHIFTR of 11 bits.
//
// Fixing #3445 needs to
// 1. Take AstShiftR and AstNot into op count when diciding optimizable or not
// (result0 and result2 in the test)
// 2. Insert AstShiftR if LSB of the frozen node is not 0 (result1 in the test)
// 3. Insert AstNot if polarity of the frozen node is false (resutl3 in the
// test)
module bug3445(input wire clk, input wire [31:0] in, output wire out);
logic [127:0] d;
always_ff @(posedge clk)
d <= {d[95:0], in};
typedef struct packed {
logic a;
logic [ 2:0] b;
logic [ 2:0] c;
logic [ 1:0] d;
logic [ 7:0] e;
logic [31:0] f;
logic [ 3:0] g;
logic [31:0] h;
logic i;
logic [41:0] j;
} packed_struct;
packed_struct st[4];
// This is always 1'b0, but Verilator cannot notice it.
// This signal helps to reveal wrong optimization of result2 and result3.
logic zero;
always_ff @(posedge clk) begin
st[0] <= d;
st[1] <= st[0];
st[2] <= st[1];
st[3] <= st[2];
zero <= fake_dependency() > 0;
end
logic result0, result1, result2, result3;
always_ff @(posedge clk) begin
// Cannot optimize further.
result0 <= (st[0].g[0] & st[0].h[0]) & (in[0] == 1'b0);
// There are redundant !in[0] terms. They should be simplified.
result1 <= (!in[0] & (st[1].g[0] & st[1].h[0])) & ((in[0] == 1'b0) & !in[0]);
// Cannot optimize further.
result2 <= !(st[2].g[0] & st[2].h[0]) & (zero == 1'b0);
// There are redundant zero terms. They should be simplified.
result3 <= (!zero & !(st[3].g[0] & st[3].h[0])) & ((zero == 1'b0) & !zero);
end
assign out = result0 ^ result1 ^ (result2 | result3);
endmodule
// Bug3470
// CCast had been ignored in bit op tree optimization
// Assume the following HDL input:
// (^d[38:32]) ^ (^d[31:0])
// where d is logic [38:0]
// ^d[31:0] becomes REDXOR(CCast(uint32_t, d)),
// but CCast was ignored and interpreted as ^d[38:0].
// Finally (^d[38:32]) ^ (^d31:0]) was wrongly transformed to
// (^d[38:32]) ^ (^d[38:0])
// -> (^d[38:32]) ^ ((^d[38:32]) ^ (^d[31:0]))
// -> ^d[31:0]
// Of course the correct result is ^d[38:0] = ^d
module bug3470(input wire clk, input wire [31:0] in, output wire out);
logic [38:0] d;
always_ff @(posedge clk)
d <= {d[6:0], in};
logic tmp, expected;
always_ff @(posedge clk) begin
tmp <= ^(d >> 32) ^ (^d[31:0]);
expected <= ^d;
end
always @(posedge clk)
if (tmp != expected) $stop;
assign out = tmp;
endmodule
// Bug3509
// Only bit range of "var" was considered in
// "comp == (mask & var)"
// and
// "comp != (mask & var)"
//
// It caused wrong result if "comp" has wider bit width because
// upper bit of "comp" was ignored.
//
// If "comp" has '1' in upper bit range than "var",
// the result is constant after optimization.
module bug3509(input wire clk, input wire [31:0] in, output reg out);
reg [2:0] r0;
always_ff @(posedge clk)
r0 <= in[2:0];
wire [3:0] w1_0 = {1'b0, in[2:0]};
wire [3:0] w1_1 = {1'b0, r0};
wire tmp[4];
// tmp[0:1] is always 0 because w1[3] == 1'b0
// tmp[2:3] is always 1 because w1[3] == 1'b0
assign tmp[0] = w1_0[3:2] == 2'h2 && w1_0[1:0] != 2'd3;
assign tmp[1] = w1_1[3:2] == 2'h2 && w1_1[1:0] != 2'd3;
assign tmp[2] = w1_0[3:2] != 2'h2 || w1_0[1:0] == 2'd3;
assign tmp[3] = w1_1[3:2] != 2'h2 || w1_1[1:0] == 2'd3;
always_ff @(posedge clk) begin
out <= tmp[0] | tmp[1] | !tmp[2] | !tmp[3];
end
always @(posedge clk) begin
if(tmp[0]) begin
$display("tmp[0] != 0");
$stop;
end
if(tmp[1]) begin
$display("tmp[1] != 0");
$stop;
end
if(!tmp[2]) begin
$display("tmp[2] != 1");
$stop;
end
if(!tmp[3]) begin
$display("tmp[3] != 1");
$stop;
end
end
endmodule
// Bug3399
// replaceShiftSame() in V3Const.cpp optimizes
// Or(Shift(ll,CONSTlr),Shift(rl,CONSTrr==lr)) -> Shift(Or(ll,rl),CONSTlr)
// (Or/And may also be reversed)
//
// dtype of Or after the transformation must be as same as ll and rl, but was dtype of Or BEFORE transformation.
// When the result of Shift was 1 bit width, bit op tree optimization
// optimized the tree even though the graph needs more width.
// Remember that the target of bit op tree optimization is 1 bit width.
module bug3399(input wire clk, input wire [31:0] in, inout wire out0, inout wire out1);
logic [1:0] driver = '0;
logic [1:0] d;
always_ff @(posedge clk) begin
driver <= 2'b11;
d <= in[1:0];
end
assign out0 = driver[0] ? d[0] : 1'bz;
assign out1 = driver[1] ? d[1] : 1'bz;
endmodule