mirror of
https://github.com/verilator/verilator.git
synced 2025-01-24 23:34:45 +00:00
721 lines
26 KiB
C++
721 lines
26 KiB
C++
// -*- mode: C++; c-file-style: "cc-mode" -*-
|
|
//*************************************************************************
|
|
//
|
|
// Copyright 2012 by Wilson Snyder. This program is free software; you can
|
|
// redistribute it and/or modify it under the terms of either the GNU
|
|
// Lesser General Public License Version 3 or the Perl Artistic License.
|
|
// Version 2.0.
|
|
//
|
|
// Verilator is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
// more details.
|
|
//
|
|
// Contributed by Jeremy Bennett and Jie Xu
|
|
//
|
|
//*************************************************************************
|
|
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
|
|
#include "svdpi.h"
|
|
|
|
#include "Vt_dpi_accessors.h"
|
|
#include "Vt_dpi_accessors__Dpi.h"
|
|
|
|
|
|
using std::cout;
|
|
using std::dec;
|
|
using std::endl;
|
|
using std::hex;
|
|
using std::setfill;
|
|
using std::setw;
|
|
|
|
|
|
// Convenience function to check we didn't finish unexpectedly
|
|
static void checkFinish(const char *msg) {
|
|
if (Verilated::gotFinish ()) {
|
|
vl_fatal(__FILE__, __LINE__, "dut", msg);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
|
|
// Convenience function to log the value of a register in hex. Only in verbose
|
|
// mode.
|
|
static void logReg(int clk,
|
|
const char *desc,
|
|
int val,
|
|
const char *note) {
|
|
#ifdef TEST_VERBOSE
|
|
cout << "clk = " << clk << ", " << desc << " = " << val << note << endl;
|
|
#endif
|
|
}
|
|
|
|
|
|
// Convenience function to log the value of a register in hex. Only in verbose
|
|
// mode.
|
|
static void logRegHex(int clk,
|
|
const char *desc,
|
|
int bitWidth,
|
|
int val,
|
|
const char *note)
|
|
{
|
|
#ifdef TEST_VERBOSE
|
|
cout << "clk = " << clk << ", " << desc << " = " << bitWidth << "\'h" << hex
|
|
<< setw((bitWidth - 1) / 4 + 1) << setfill('0') << val
|
|
<< setfill(' ') << setw(0) << dec << note << endl;
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
// Convenience function to check we got an expected result. Silent on success.
|
|
static void checkResult(bool p, const char *msg_fail) {
|
|
if (!p) {
|
|
vl_fatal(__FILE__, __LINE__, "dut", msg_fail);
|
|
}
|
|
}
|
|
|
|
|
|
// Main function instantiates the model and steps through the test.
|
|
int main() {
|
|
Vt_dpi_accessors *dut = new Vt_dpi_accessors ("dut");
|
|
svSetScope(svGetScopeFromName("dut.t"));
|
|
|
|
// evaluate the model with no signal changes to get the initial blocks
|
|
// executed.
|
|
dut->eval();
|
|
|
|
#ifdef TEST_VERBOSE
|
|
cout << "Initial DPI values" << endl;
|
|
cout << "==================" << endl;
|
|
#endif
|
|
|
|
int a = (int) a_read();
|
|
int b = (int) b_read();
|
|
int mem32 = (int) mem32_read();
|
|
int c = (int) c_read();
|
|
int d = (int) d_read();
|
|
int e = (int) e_read();
|
|
int f = (int) f_read();
|
|
|
|
#ifdef TEST_VERBOSE
|
|
cout << "Read a = " << a << endl;
|
|
cout << "Read b = 8'h" << hex << setw(2) << setfill('0') << b
|
|
<< setfill(' ') << setw(0) << dec << endl;
|
|
cout << "Read mem32 = 8'h" << hex << setw(2) << setfill('0') << mem32
|
|
<< setfill(' ') << setw(0) << dec << endl;
|
|
cout << "Read c = " << c << endl;
|
|
cout << "Read d = 8'h" << hex << setw(2) << setfill('0') << d
|
|
<< setfill(' ') << setw(0) << dec << endl;
|
|
cout << "Read e = 8'h" << hex << setw(2) << setfill('0') << e
|
|
<< setfill(' ') << setw(0) << dec << endl;
|
|
cout << "Read f = 8'h" << hex << setw(2) << setfill('0') << f
|
|
<< setfill(' ') << setw(0) << dec << endl;
|
|
cout << endl;
|
|
#endif
|
|
|
|
checkResult((0 == a) && (0x00 == b) && (0x20 == mem32) && (1 == c)
|
|
&& (0xff == d) && (0x00 == e) && (0x00 == f),
|
|
"Bad initial DPI values.");
|
|
|
|
// Initialize the clock
|
|
dut->clk = 0;
|
|
|
|
// Check we can read a scalar register.
|
|
#ifdef TEST_VERBOSE
|
|
cout << "Test of scalar register reading" << endl;
|
|
cout << "===============================" << endl;
|
|
#endif
|
|
|
|
for (int i = 0; !Verilated::gotFinish () && (i < 4); i++) {
|
|
dut->clk = 1 - dut->clk;
|
|
a = (int) a_read();
|
|
logReg(dut->clk, "read a", a, " (before clk)");
|
|
dut->eval();
|
|
|
|
int a_after = (int) a_read();
|
|
logReg(dut->clk, "read a", a_after, " (after clk)");
|
|
#ifdef TEST_VERBOSE
|
|
cout << endl;
|
|
#endif
|
|
// On a posedge, a should toggle, on a negedge it should stay the
|
|
// same.
|
|
checkResult(((dut->clk == 1) && (a_after == (1 - a)))
|
|
|| ((dut->clk == 0) && (a_after == a )),
|
|
"Test of scalar register reading failed.");
|
|
}
|
|
|
|
checkFinish("t_dpi_accessors unexpected finish");
|
|
|
|
// Check we can read a vector register.
|
|
#ifdef TEST_VERBOSE
|
|
cout << "Test of vector register reading" << endl;
|
|
cout << "===============================" << endl;
|
|
#endif
|
|
|
|
for (int i = 0; !Verilated::gotFinish () && (i < 4); i++) {
|
|
dut->clk = 1 - dut->clk;
|
|
b = (int) b_read();
|
|
logRegHex(dut->clk, "read b", 8, b, " (before clk)");
|
|
|
|
dut->eval();
|
|
|
|
int b_after = (int) b_read();
|
|
logRegHex(dut->clk, "read b", 8, b_after, " (after clk)");
|
|
// b should increment on a posedge and stay the same on a negedge.
|
|
checkResult(((dut->clk == 1) && (b_after == (b + 1)))
|
|
|| ((dut->clk == 0) && (b_after == b )),
|
|
"Test of vector register reading failed.");
|
|
}
|
|
|
|
checkFinish("t_dpi_accessors unexpected finish");
|
|
|
|
// Test we can read an array element
|
|
#ifdef TEST_VERBOSE
|
|
cout << endl;
|
|
cout << "Test of array element reading" << endl;
|
|
cout << "=============================" << endl;
|
|
#endif
|
|
|
|
for (int i = 0; !Verilated::gotFinish () && (i < 4); i++) {
|
|
dut->clk = 1 - dut->clk;
|
|
mem32 = (int) mem32_read();
|
|
logRegHex(dut->clk, "read mem32", 8, mem32, " (before clk)");
|
|
|
|
dut->eval();
|
|
|
|
mem32 = (int) mem32_read();
|
|
logRegHex(dut->clk, "read mem32", 8, mem32, " (after clk)");
|
|
|
|
// In this case, the value never changes. But we should check it is
|
|
// waht we expect (0x20).
|
|
checkResult(mem32 == 0x20, "Test of array element reading failed.");
|
|
}
|
|
|
|
checkFinish("t_dpi_accessors unexpected finish");
|
|
|
|
// Check we can read a scalar wire
|
|
#ifdef TEST_VERBOSE
|
|
cout << endl;
|
|
cout << "Test of scalar wire reading" << endl;
|
|
cout << "===========================" << endl;
|
|
#endif
|
|
|
|
for (int i = 0; !Verilated::gotFinish () && (i < 4); i++) {
|
|
dut->clk = 1 - dut->clk;
|
|
a = (int) a_read();
|
|
c = (int) c_read();
|
|
logReg(dut->clk, "read a", a, " (before clk)");
|
|
logReg(dut->clk, "read c", c, " (before clk)");
|
|
|
|
dut->eval();
|
|
|
|
a = (int) a_read();
|
|
c = (int) c_read();
|
|
logReg(dut->clk, "read a", a, " (after clk)");
|
|
logReg(dut->clk, "read c", c, " (after clk)");
|
|
// "c" is continuously assigned as the inverse of "a", but in
|
|
// Verilator, that means that it will only change value when "a"
|
|
// changes on the posedge of a clock. Put simply, "c" always holds the
|
|
// inverse of the "after clock" value of "a".
|
|
checkResult(c == (1 - a), "Test of scalar wire reading failed.");
|
|
}
|
|
|
|
checkFinish("t_dpi_accessors unexpected finish");
|
|
|
|
// Check we can read a vector wire
|
|
#ifdef TEST_VERBOSE
|
|
cout << endl;
|
|
cout << "Test of vector wire reading" << endl;
|
|
cout << "===========================" << endl;
|
|
#endif
|
|
|
|
for (int i = 0; !Verilated::gotFinish () && (i < 4); i++) {
|
|
dut->clk = 1 - dut->clk;
|
|
b = (int) b_read();
|
|
d = (int) d_read();
|
|
logRegHex(dut->clk, "read b", 8, b, " (before clk)");
|
|
logRegHex(dut->clk, "read d", 8, d, " (before clk)");
|
|
|
|
dut->eval();
|
|
|
|
b = (int) b_read();
|
|
d = (int) d_read();
|
|
logRegHex(dut->clk, "read b", 8, b, " (after clk)");
|
|
logRegHex(dut->clk, "read d", 8, d, " (after clk)");
|
|
|
|
// "d" is continuously assigned as the (8-bit) bitwise inverse of "b",
|
|
// but in Verilator, that means that it will only change value when
|
|
// "b" changes on the posedge of a clock. Put simply, "d" always holds
|
|
// the inverse of the "after clock" value of "b".
|
|
checkResult(d == ((~b) & 0xff), "Test of vector wire reading failed.");
|
|
}
|
|
|
|
checkFinish("t_dpi_accessors unexpected finish");
|
|
|
|
// Check we can write a scalar register
|
|
#ifdef TEST_VERBOSE
|
|
cout << endl;
|
|
cout << "Test of scalar register writing" << endl;
|
|
cout << "===============================" << endl;
|
|
#endif
|
|
|
|
for (int i = 0; !Verilated::gotFinish () && (i < 4); i++) {
|
|
dut->clk = 1 - dut->clk;
|
|
a = 1 - (int) a_read();
|
|
a_write(a);
|
|
logReg(dut->clk, "write a", a, " (before clk)");
|
|
a = a_read();
|
|
logReg(dut->clk, "read a", a, " (before clk)");
|
|
|
|
dut->eval();
|
|
|
|
int a_after = (int) a_read();
|
|
logReg(dut->clk, "read a", a_after, " (after clk)");
|
|
|
|
// On a posedge clock, the value of a that is written should toggle,
|
|
// on a negedge, it should not.
|
|
checkResult(((dut->clk == 1) && (a_after == (1 - a)))
|
|
|| ((dut->clk == 0) && (a_after == a )),
|
|
"Test of scalar register writing failed.");
|
|
}
|
|
|
|
checkFinish("t_dpi_accessors unexpected finish");
|
|
|
|
// Check we can write a vector register
|
|
#ifdef TEST_VERBOSE
|
|
cout << endl;
|
|
cout << "Test of vector register writing" << endl;
|
|
cout << "===============================" << endl;
|
|
#endif
|
|
|
|
for (int i = 0; !Verilated::gotFinish () && (i < 4); i++) {
|
|
dut->clk = 1 - dut->clk;
|
|
b = (int) b_read() - 1;
|
|
b_write((const svBitVecVal *) &b);
|
|
logRegHex(dut->clk, "write b", 8, b, " (before clk)");
|
|
b = (int) b_read();
|
|
logRegHex(dut->clk, "read b", 8, b, " (before clk)");
|
|
|
|
dut->eval();
|
|
|
|
int b_after = (int) b_read();
|
|
logRegHex(dut->clk, "read b", 8, b_after, " (after clk)");
|
|
|
|
// The value of "b" written should increment on a posedge and stay the
|
|
// same on a negedge.
|
|
checkResult(((dut->clk == 1) && (b_after == (b + 1)))
|
|
|| ((dut->clk == 0) && (b_after == b )),
|
|
"Test of vector register writing failed.");
|
|
}
|
|
|
|
checkFinish("t_dpi_accessors unexpected finish");
|
|
|
|
// Test we can write an array element
|
|
#ifdef TEST_VERBOSE
|
|
cout << endl;
|
|
cout << "Test of array element writing" << endl;
|
|
cout << "=============================" << endl;
|
|
#endif
|
|
|
|
for (int i = 0; !Verilated::gotFinish () && (i < 4); i++) {
|
|
dut->clk = 1 - dut->clk;
|
|
mem32 = (int) mem32_read() - 1;
|
|
mem32_write((const svBitVecVal *) &mem32);
|
|
logRegHex(dut->clk, "write mem32", 8, mem32, " (before clk)");
|
|
mem32 = (int) mem32_read();
|
|
logRegHex(dut->clk, "read mem32", 8, mem32, " (before clk)");
|
|
|
|
dut->eval();
|
|
|
|
int mem32_after = (int) mem32_read();
|
|
logRegHex(dut->clk, "read mem32", 8, mem32_after, " (after clk)");
|
|
|
|
// In this case, the value we write never changes (this would only
|
|
// happen if this part of the test coincided with the 32nd element
|
|
// being overwritten, which it does not. Check that the value after
|
|
// the clock is the same as before the clock.
|
|
checkResult(mem32_after == mem32,
|
|
"Test of array element writing failed.");
|
|
}
|
|
|
|
checkFinish("t_dpi_accessors unexpected finish");
|
|
|
|
// Check we can read a vector register slice
|
|
#ifdef TEST_VERBOSE
|
|
cout << endl;
|
|
cout << "Test of vector register slice reading" << endl;
|
|
cout << "=====================================" << endl;
|
|
#endif
|
|
|
|
for (int i = 0; !Verilated::gotFinish () && (i < 4); i++) {
|
|
dut->clk = 1 - dut->clk;
|
|
b = (int) b_read();
|
|
int b_slice = (int) b_slice_read();
|
|
logRegHex(dut->clk, "read b [7:0]", 8, b, " (before clk)");
|
|
logRegHex(dut->clk, "read b [3:0]", 4, b_slice, " (before clk)");
|
|
|
|
dut->eval();
|
|
|
|
b = (int) b_read();
|
|
b_slice = (int) b_slice_read();
|
|
logRegHex(dut->clk, "read b [7:0]", 8, b, " (after clk)");
|
|
logRegHex(dut->clk, "read b [3:0]", 4, b_slice, " (after clk)");
|
|
|
|
// The slice of "b" should always be the bottom 4 bits of "b"
|
|
checkResult(b_slice == (b & 0x0f),
|
|
"Test of vector register slice reading failed.");
|
|
}
|
|
|
|
checkFinish("t_dpi_accessors unexpected finish");
|
|
|
|
// Test we can read an array element slice
|
|
#ifdef TEST_VERBOSE
|
|
cout << endl;
|
|
cout << "Test of array element slice reading" << endl;
|
|
cout << "===================================" << endl;
|
|
#endif
|
|
|
|
for (int i = 0; !Verilated::gotFinish () && (i < 4); i++) {
|
|
dut->clk = 1 - dut->clk;
|
|
mem32 = (int) mem32_read();
|
|
int mem32_slice = (int) mem32_slice_read();
|
|
logRegHex(dut->clk, "read mem32 [7:0] ", 8, mem32, " (before clk)");
|
|
logRegHex(dut->clk, "read mem32 [7:6,2:0]", 5, mem32_slice,
|
|
" (before clk)");
|
|
|
|
dut->eval();
|
|
|
|
mem32 = (int) mem32_read();
|
|
mem32_slice = (int) mem32_slice_read();
|
|
logRegHex(dut->clk, "read mem32 [7:0] ", 8, mem32," (after clk)");
|
|
logRegHex(dut->clk, "read mem32 [7:6,2:0]", 5, mem32_slice,
|
|
" (after clk)");
|
|
|
|
// The slice of "mem32" should always be the concatenation of the top
|
|
// 2 and bottom 3 bits of "mem32"
|
|
checkResult(mem32_slice == (((mem32 & 0xc0) >> 3) | (mem32 & 0x07)),
|
|
"Test of array element slice reading failed.");
|
|
}
|
|
|
|
checkFinish("t_dpi_accessors unexpected finish");
|
|
|
|
// Check we can read a vector wire slice
|
|
#ifdef TEST_VERBOSE
|
|
cout << endl;
|
|
cout << "Test of vector wire slice reading" << endl;
|
|
cout << "=================================" << endl;
|
|
#endif
|
|
|
|
for (int i = 0; !Verilated::gotFinish () && (i < 4); i++) {
|
|
dut->clk = 1 - dut->clk;
|
|
b = (int) b_read();
|
|
d = (int) d_read();
|
|
int d_slice = (int) d_slice_read();
|
|
logRegHex(dut->clk, "read b [7:0]", 8, b, " (before clk)");
|
|
logRegHex(dut->clk, "read d [7:0]", 8, d, " (before clk)");
|
|
logRegHex(dut->clk, "read d [6:1]", 6, d_slice, " (before clk)");
|
|
|
|
dut->eval();
|
|
|
|
b = (int) b_read();
|
|
d = (int) d_read();
|
|
d_slice = (int) d_slice_read();
|
|
logRegHex(dut->clk, "read b [7:0]", 8, b, " (after clk)");
|
|
logRegHex(dut->clk, "read d [7:0]", 8, d, " (after clk)");
|
|
logRegHex(dut->clk, "read d [6:1]", 6, d_slice, " (after clk)");
|
|
|
|
// The slice of "d" should always be the middle 6 bits of "d".
|
|
checkResult(d_slice == ((d & 0x7e) >> 1),
|
|
"Test of vector wire slice reading failed.");
|
|
}
|
|
|
|
checkFinish("t_dpi_accessors unexpected finish");
|
|
|
|
// Check we can write a vector register slice
|
|
#ifdef TEST_VERBOSE
|
|
cout << endl;
|
|
cout << "Test of vector register slice writing" << endl;
|
|
cout << "=====================================" << endl;
|
|
#endif
|
|
|
|
for (int i = 0; !Verilated::gotFinish () && (i < 4); i++) {
|
|
dut->clk = 1 - dut->clk;
|
|
|
|
b = (int) b_read();
|
|
int b_slice = (int) b_slice_read();
|
|
logRegHex(dut->clk, "read b [7:0]", 8, b, " (before write)");
|
|
logRegHex(dut->clk, "read b [3:0]", 4, b_slice, " (before write)");
|
|
|
|
b_slice--;
|
|
b_slice_write((const svBitVecVal *) &b_slice);
|
|
logRegHex(dut->clk, "write b [3:0]", 4, b_slice, " (before clk)");
|
|
|
|
int b_after = (int) b_read();
|
|
int b_slice_after = (int) b_slice_read();
|
|
logRegHex(dut->clk, "read b [7:0]", 8, b_after,
|
|
" (before clk)");
|
|
logRegHex(dut->clk, "read b [3:0]", 4, b_slice_after,
|
|
" (before clk)");
|
|
|
|
// We must test that when we wrote the slice of "b", we only wrote the
|
|
// correct bits. The slice of b is b[3:0]
|
|
int b_new = (b & 0xf0) | (b_slice &0x0f);
|
|
checkResult(b_after == b_new,
|
|
"Test of vector register slice writing failed.");
|
|
|
|
dut->eval();
|
|
|
|
b = (int) b_read();
|
|
b_slice = (int) b_slice_read();
|
|
logRegHex(dut->clk, "read b [7:0]", 8, b, " (after clk)");
|
|
logRegHex(dut->clk, "read b [3:0]", 4, b_slice, " (after clk)");
|
|
}
|
|
|
|
checkFinish("t_dpi_accessors unexpected finish");
|
|
|
|
// Test we can write an array element slice
|
|
#ifdef TEST_VERBOSE
|
|
cout << endl;
|
|
cout << "Test of array element slice writing" << endl;
|
|
cout << "===================================" << endl;
|
|
#endif
|
|
|
|
for (int i = 0; !Verilated::gotFinish () && (i < 4); i++) {
|
|
dut->clk = 1 - dut->clk;
|
|
|
|
mem32 = (int) mem32_read();
|
|
int mem32_slice = (int) mem32_slice_read();
|
|
logRegHex(dut->clk, "read mem32 [7:0] ", 8, mem32,
|
|
" (before write)");
|
|
logRegHex(dut->clk, "read mem32 [7:6,2:0]", 5, mem32_slice,
|
|
" (before write)");
|
|
|
|
mem32_slice--;
|
|
mem32_slice_write((const svBitVecVal *) &mem32_slice);
|
|
logRegHex(dut->clk, "write mem32 [7:6,2:0]", 5, mem32_slice,
|
|
" (before clk)");
|
|
|
|
int mem32_after = (int) mem32_read();
|
|
int mem32_slice_after = (int) mem32_slice_read();
|
|
logRegHex(dut->clk, "read mem32 [7:0] ", 8, mem32_after,
|
|
" (before clk)");
|
|
logRegHex(dut->clk, "read mem32 [7:6,2:0]", 5, mem32_slice_after,
|
|
" (before clk)");
|
|
|
|
// We must test that when we wrote the slice of "mem32", we only wrote
|
|
// the correct bits. The slice of "mem32" is {mem32[7:6], mem32[2:0]}.
|
|
int mem32_new = (mem32 & 0x38)
|
|
| ((mem32_slice & 0x18) << 3) |
|
|
(mem32_slice & 0x7);
|
|
checkResult(mem32_after == mem32_new,
|
|
"Test of vector register slice writing failed.");
|
|
|
|
dut->eval();
|
|
|
|
mem32 = (int) mem32_read();
|
|
mem32_slice = (int) mem32_slice_read();
|
|
logRegHex(dut->clk, "read mem32 [7:0] ", 8, mem32," (after clk)");
|
|
logRegHex(dut->clk, "read mem32 [7:6,2:0]", 5, mem32_slice,
|
|
" (after clk)");
|
|
|
|
// We have already tested that array element writing works, so we just
|
|
// check that dhe slice of "mem32" after the clock is the
|
|
// concatenation of the top 2 and bottom 3 bits of "mem32"
|
|
checkResult(mem32_slice == (((mem32 & 0xc0) >> 3) | (mem32 & 0x07)),
|
|
"Test of array element slice writing failed.");
|
|
}
|
|
|
|
checkFinish("t_dpi_accessors unexpected finish");
|
|
|
|
// Check we can read complex registers
|
|
#ifdef TEST_VERBOSE
|
|
cout << endl;
|
|
cout << "Test of complex register reading" << endl;
|
|
cout << "================================" << endl;
|
|
#endif
|
|
|
|
for (int i = 0; !Verilated::gotFinish () && (i < 4); i++) {
|
|
dut->clk = 1 - dut->clk;
|
|
|
|
b = (int) b_read();
|
|
mem32 = (int) mem32_read();
|
|
e = (int) e_read();
|
|
int l1 = (int) l1_read();
|
|
logRegHex(dut->clk, "read b ", 8, b, " (before clk)");
|
|
logRegHex(dut->clk, "read mem32", 8, mem32, " (before clk)");
|
|
logRegHex(dut->clk, "read e ", 8, e, " (before clk)");
|
|
logRegHex(dut->clk, "read l1 ", 15, l1, " (before clk)");
|
|
|
|
dut->eval();
|
|
|
|
b = (int) b_read();
|
|
mem32 = (int) mem32_read();
|
|
e = (int) e_read();
|
|
l1 = (int) l1_read();
|
|
logRegHex(dut->clk, "read b ", 8, b, " (after clk)");
|
|
logRegHex(dut->clk, "read mem32", 8, mem32, " (after clk)");
|
|
logRegHex(dut->clk, "read e ", 8, e, " (after clk)");
|
|
logRegHex(dut->clk, "read l1 ", 15, l1, " (after clk)");
|
|
|
|
// We have already tested that reading of registers, memory elements
|
|
// and wires works. So we just need to check that l1 reads back as the
|
|
// correct combination of bits after the clock. It should be the 15
|
|
// bits: {b[3:0],mem[32][7:6],e[6:1],mem[32][2:0]}.
|
|
checkResult(l1 == ( (((b & 0x0f) >> 0) << 11)
|
|
| (((mem32 & 0xc0) >> 6) << 9)
|
|
| (((e & 0x7e) >> 1) << 3)
|
|
| (((mem32 & 0x07) >> 0) << 0)),
|
|
"Test of complex register reading l1 failed.");
|
|
}
|
|
|
|
#ifdef TEST_VERBOSE
|
|
cout << endl;
|
|
#endif
|
|
|
|
checkFinish("t_dpi_accessors unexpected finish");
|
|
|
|
for (int i = 0; !Verilated::gotFinish () && (i < 4); i++) {
|
|
dut->clk = 1 - dut->clk;
|
|
|
|
e = 0x05 | (i << 4);
|
|
f = 0xa0 | i;
|
|
e_write((const svBitVecVal *) &e);
|
|
f_write((const svBitVecVal *) &f);
|
|
|
|
e = (int) e_read();
|
|
f = (int) f_read();
|
|
int l2 = (int) l2_read();
|
|
logRegHex(dut->clk, "read e ", 8, e, " (before clk)");
|
|
logRegHex(dut->clk, "read f ", 8, f, " (before clk)");
|
|
logRegHex(dut->clk, "read l2", 8, l2, " (before clk)");
|
|
|
|
dut->eval();
|
|
|
|
e = (int) e_read();
|
|
f = (int) f_read();
|
|
l2 = (int) l2_read();
|
|
logRegHex(dut->clk, "read e ", 8, e, " (before clk)");
|
|
logRegHex(dut->clk, "read f ", 8, f, " (before clk)");
|
|
logRegHex(dut->clk, "read l2", 8, l2, " (before clk)");
|
|
|
|
// We have already tested that reading of registers, memory elements
|
|
// and wires works. So we just need to check that l1 reads back as the
|
|
// correct combination of bits after the clock. It should be the 8
|
|
// bits: {e[7:4], f[3:0]}.
|
|
checkResult(l2 == ((e & 0xf0) | (f & 0x0f)),
|
|
"Test of complex register reading l2 failed.");
|
|
}
|
|
|
|
checkFinish("t_dpi_accessors unexpected finish");
|
|
|
|
// Test we can write a complex register
|
|
#ifdef TEST_VERBOSE
|
|
cout << endl;
|
|
cout << "Test of complex register writing" << endl;
|
|
cout << "================================" << endl;
|
|
#endif
|
|
|
|
for (int i = 0; !Verilated::gotFinish () && (i < 4); i++) {
|
|
dut->clk = 1 - dut->clk;
|
|
|
|
b = (int) b_read();
|
|
mem32 = (int) mem32_read();
|
|
e = (int) e_read();
|
|
logRegHex(dut->clk, "read b ", 8, b, " (before write)");
|
|
logRegHex(dut->clk, "read mem32", 8, mem32, " (before write)");
|
|
logRegHex(dut->clk, "read e ", 8, e, " (before write)");
|
|
|
|
int l1 = 0x5a5a;
|
|
l1_write((const svBitVecVal *) &l1);
|
|
logRegHex(dut->clk, "write l1 ", 15, l1, " (before clk)");
|
|
|
|
int b_after = (int) b_read();
|
|
int mem32_after = (int) mem32_read();
|
|
int e_after = (int) e_read();
|
|
int l1_after = (int) l1_read();
|
|
logRegHex(dut->clk, "read b ", 8, b_after, " (before clk)");
|
|
logRegHex(dut->clk, "read mem32", 8, mem32_after, " (before clk)");
|
|
logRegHex(dut->clk, "read e ", 8, e_after, " (before clk)");
|
|
logRegHex(dut->clk, "read l1 ", 15, l1_after, " (before clk)");
|
|
|
|
// We need to check that when we write l1, the correct fields, and
|
|
// only the correct fields are set in its component registers, wires
|
|
// and memory elements. l1 is 15 bits:
|
|
// {b[3:0],mem[32][7:6],e[6:1],mem[32][2:0]}.
|
|
int b_new = (b & 0xf0) | ((l1 & 0x7800) >> 11);
|
|
int mem32_new = (mem32 & 0x38) | ((l1 & 0x0600) >> 3) | (l1 & 0x0007);
|
|
int e_new = (e & 0x81) | ((l1 & 0x01f8) >> 2);
|
|
checkResult((b_new == b_after)
|
|
&& (mem32_new == mem32_after)
|
|
&& (e_new == e_after),
|
|
"Test of complex register writing l1 failed.");
|
|
|
|
dut->eval();
|
|
|
|
b = (int) b_read();
|
|
mem32 = (int) mem32_read();
|
|
d = (int) d_read();
|
|
l1 = (int) l1_read();
|
|
logRegHex(dut->clk, "read b ", 8, b, " (after clk)");
|
|
logRegHex(dut->clk, "read mem32", 8, mem32, " (after clk)");
|
|
logRegHex(dut->clk, "read d ", 8, d, " (after clk)");
|
|
logRegHex(dut->clk, "read l1 ", 15, l1, " (after clk)");
|
|
}
|
|
|
|
#ifdef TEST_VERBOSE
|
|
cout << endl;
|
|
#endif
|
|
|
|
checkFinish("t_dpi_accessors unexpected finish");
|
|
|
|
for (int i = 0; !Verilated::gotFinish () && (i < 4); i++) {
|
|
dut->clk = 1 - dut->clk;
|
|
|
|
e = (int) e_read();
|
|
f = (int) f_read();
|
|
logRegHex(dut->clk, "read e ", 8, e, " (before write)");
|
|
logRegHex(dut->clk, "read f ", 8, f, " (before write)");
|
|
|
|
int l2 = 0xa5 + i;
|
|
l2_write((const svBitVecVal *) &l2);
|
|
logRegHex(dut->clk, "write l2", 8, l2, " (before clk)");
|
|
|
|
int e_after = (int) e_read();
|
|
int f_after = (int) f_read();
|
|
int l2_after = (int) l2_read();
|
|
logRegHex(dut->clk, "read e ", 8, e_after, " (before clk)");
|
|
logRegHex(dut->clk, "read f ", 8, f_after, " (before clk)");
|
|
logRegHex(dut->clk, "read l2", 8, l2_after, " (before clk)");
|
|
|
|
// We need to check that when we write l2, the correct fields, and
|
|
// only the correct fields are set in its component registers. l is 8
|
|
// bits: {e[5:2], f[5:2]}
|
|
int e_new = (e & 0xc3) | ((l2 & 0xf0) >> 2);
|
|
int f_new = (f & 0xc3) | ((l2 & 0x0f) << 2);
|
|
checkResult((e_new == e_after) && (f_new == f_after),
|
|
"Test of complex register writing l2 failed.");
|
|
|
|
dut->eval();
|
|
|
|
e = (int) e_read();
|
|
f = (int) f_read();
|
|
l2 = (int) l2_read();
|
|
logRegHex(dut->clk, "read e ", 8, e, " (before clk)");
|
|
logRegHex(dut->clk, "read f ", 8, f, " (before clk)");
|
|
logRegHex(dut->clk, "read l2", 8, l2, " (before clk)");
|
|
}
|
|
|
|
checkFinish("t_dpi_accessors unexpected finish");
|
|
|
|
// Tidy up
|
|
dut->final();
|
|
cout << "*-* All Finished *-*" << endl;;
|
|
}
|
|
|
|
// Local Variables:
|
|
// c-file-style:"cc-mode"
|
|
// End:
|