verilator/test_regress/t/t_order_multidriven.v
2017-09-11 19:18:58 -04:00

193 lines
4.5 KiB
Verilog

// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2013 by Ted Campbell.
//With MULTI_CLK defined shows bug, without it is hidden
`define MULTI_CLK
//bug634
module t (
input i_clk_wr,
input i_clk_rd
);
wire wr$wen;
wire [7:0] wr$addr;
wire [7:0] wr$wdata;
wire [7:0] wr$rdata;
wire rd$wen;
wire [7:0] rd$addr;
wire [7:0] rd$wdata;
wire [7:0] rd$rdata;
wire clk_wr;
wire clk_rd;
`ifdef MULTI_CLK
assign clk_wr = i_clk_wr;
assign clk_rd = i_clk_rd;
`else
assign clk_wr = i_clk_wr;
assign clk_rd = i_clk_wr;
`endif
FooWr u_wr (
.i_clk ( clk_wr ),
.o_wen ( wr$wen ),
.o_addr ( wr$addr ),
.o_wdata ( wr$wdata ),
.i_rdata ( wr$rdata )
);
FooRd u_rd (
.i_clk ( clk_rd ),
.o_wen ( rd$wen ),
.o_addr ( rd$addr ),
.o_wdata ( rd$wdata ),
.i_rdata ( rd$rdata )
);
FooMem u_mem (
.iv_clk ( {clk_wr, clk_rd } ),
.iv_wen ( {wr$wen, rd$wen } ),
.iv_addr ( {wr$addr, rd$addr } ),
.iv_wdata ( {wr$wdata,rd$wdata} ),
.ov_rdata ( {wr$rdata,rd$rdata} )
);
endmodule
// Memory Writer
module FooWr(
input i_clk,
output o_wen,
output [7:0] o_addr,
output [7:0] o_wdata,
input [7:0] i_rdata
);
reg [7:0] cnt = 0;
// Count [0,200]
always @( posedge i_clk )
if ( cnt < 8'd50 )
cnt <= cnt + 8'd1;
// Write addr in (10,30) if even
assign o_wen = ( cnt > 8'd10 ) && ( cnt < 8'd30 ) && ( cnt[0] == 1'b0 );
assign o_addr = cnt;
assign o_wdata = cnt;
endmodule
// Memory Reader
module FooRd(
input i_clk,
output o_wen,
output [7:0] o_addr,
output [7:0] o_wdata,
input [7:0] i_rdata
);
reg [7:0] cnt = 0;
reg [7:0] addr_r;
reg en_r;
// Count [0,200]
always @( posedge i_clk )
if ( cnt < 8'd200 )
cnt <= cnt + 8'd1;
// Read data
assign o_wen = 0;
assign o_addr = cnt - 8'd100;
// Track issued read
always @( posedge i_clk )
begin
addr_r <= o_addr;
en_r <= ( cnt > 8'd110 ) && ( cnt < 8'd130 ) && ( cnt[0] == 1'b0 );
end
// Display to console 100 cycles after writer
always @( negedge i_clk )
if ( en_r ) begin
`ifdef TEST_VERBOSE
$display( "MEM[%x] == %x", addr_r, i_rdata );
`endif
if (addr_r != i_rdata) $stop;
end
endmodule
// Multi-port memory abstraction
module FooMem(
input [2 -1:0] iv_clk,
input [2 -1:0] iv_wen,
input [2*8-1:0] iv_addr,
input [2*8-1:0] iv_wdata,
output [2*8-1:0] ov_rdata
);
FooMemImpl u_impl (
.a_clk ( iv_clk [0*1+:1] ),
.a_wen ( iv_wen [0*1+:1] ),
.a_addr ( iv_addr [0*8+:8] ),
.a_wdata ( iv_wdata[0*8+:8] ),
.a_rdata ( ov_rdata[0*8+:8] ),
.b_clk ( iv_clk [1*1+:1] ),
.b_wen ( iv_wen [1*1+:1] ),
.b_addr ( iv_addr [1*8+:8] ),
.b_wdata ( iv_wdata[1*8+:8] ),
.b_rdata ( ov_rdata[1*8+:8] )
);
endmodule
// Dual-Port L1 Memory Implementation
module FooMemImpl(
input a_clk,
input a_wen,
input [7:0] a_addr,
input [7:0] a_wdata,
output [7:0] a_rdata,
input b_clk,
input b_wen,
input [7:0] b_addr,
input [7:0] b_wdata,
output [7:0] b_rdata
);
/* verilator lint_off MULTIDRIVEN */
reg [7:0] mem[0:255];
/* verilator lint_on MULTIDRIVEN */
always @( posedge a_clk )
if ( a_wen )
mem[a_addr] <= a_wdata;
always @( posedge b_clk )
if ( b_wen )
mem[b_addr] <= b_wdata;
always @( posedge a_clk )
a_rdata <= mem[a_addr];
always @( posedge b_clk )
b_rdata <= mem[b_addr];
endmodule