verilator/test_regress/t/t_vpi_var.cpp

752 lines
23 KiB
C++

// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
//
// Copyright 2010-2011 by Wilson Snyder. This program is free software; you can
// redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//*************************************************************************
#ifdef IS_VPI
#include "vpi_user.h"
#else
#include "verilated.h"
#include "verilated_vcd_c.h"
#include "verilated_vpi.h"
#include "Vt_vpi_var.h"
#include "Vt_vpi_var__Dpi.h"
#include "svdpi.h"
#endif
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
// These require the above. Comment prevents clang-format moving them
#include "TestSimulator.h"
#include "TestVpi.h"
int errors = 0;
// __FILE__ is too long
#define FILENM "t_vpi_var.cpp"
#define TEST_MSG \
if (0) printf
unsigned int main_time = 0;
unsigned int callback_count = 0;
unsigned int callback_count_half = 0;
unsigned int callback_count_quad = 0;
unsigned int callback_count_strs = 0;
unsigned int callback_count_strs_max = 500;
//======================================================================
#ifdef TEST_VERBOSE
bool verbose = true;
#else
bool verbose = false;
#endif
#define CHECK_RESULT_VH(got, exp) \
if ((got) != (exp)) { \
printf("%%Error: %s:%d: GOT = %p EXP = %p\n", FILENM, __LINE__, (got), (exp)); \
return __LINE__; \
}
#define CHECK_RESULT_NZ(got) \
if (!(got)) { \
printf("%%Error: %s:%d: GOT = NULL EXP = !NULL\n", FILENM, __LINE__); \
return __LINE__; \
}
#define CHECK_RESULT_Z(got) \
if ((got)) { \
printf("%%Error: %s:%d: GOT = !NULL EXP = NULL\n", FILENM, __LINE__); \
return __LINE__; \
}
// Use cout to avoid issues with %d/%lx etc
#define CHECK_RESULT(got, exp) \
if ((got) != (exp)) { \
std::cout << std::dec << "%Error: " << FILENM << ":" << __LINE__ << ": GOT = " << (got) \
<< " EXP = " << (exp) << std::endl; \
return __LINE__; \
}
#define CHECK_RESULT_HEX(got, exp) \
if ((got) != (exp)) { \
std::cout << std::dec << "%Error: " << FILENM << ":" << __LINE__ << std::hex \
<< ": GOT = " << (got) << " EXP = " << (exp) << std::endl; \
return __LINE__; \
}
#define CHECK_RESULT_CSTR(got, exp) \
if (std::strcmp((got), (exp))) { \
printf("%%Error: %s:%d: GOT = '%s' EXP = '%s'\n", FILENM, __LINE__, \
((got) != NULL) ? (got) : "<null>", ((exp) != NULL) ? (exp) : "<null>"); \
return __LINE__; \
}
#define CHECK_RESULT_CSTR_STRIP(got, exp) CHECK_RESULT_CSTR(got + strspn(got, " "), exp)
// We cannot replace those with VL_STRINGIFY, not available when PLI is build
#define STRINGIFY(x) STRINGIFY2(x)
#define STRINGIFY2(x) #x
int _mon_check_mcd() {
PLI_INT32 status;
PLI_UINT32 mcd;
PLI_BYTE8* filename = (PLI_BYTE8*)(STRINGIFY(TEST_OBJ_DIR) "/mcd_open.tmp");
mcd = vpi_mcd_open(filename);
CHECK_RESULT_NZ(mcd);
{ // Check it got written
FILE* fp = fopen(filename, "r");
CHECK_RESULT_NZ(fp);
fclose(fp);
}
status = vpi_mcd_printf(mcd, (PLI_BYTE8*)"hello %s", "vpi_mcd_printf");
CHECK_RESULT(status, std::strlen("hello vpi_mcd_printf"));
status = vpi_mcd_printf(0, (PLI_BYTE8*)"empty");
CHECK_RESULT(status, 0);
status = vpi_mcd_flush(mcd);
CHECK_RESULT(status, 0);
status = vpi_mcd_flush(0);
CHECK_RESULT(status, 1);
status = vpi_mcd_close(mcd);
// Icarus says 'error' on ones we're not using, so check only used ones return 0.
CHECK_RESULT(status & mcd, 0);
status = vpi_flush();
CHECK_RESULT(status, 0);
return 0;
}
int _mon_check_callbacks_error(p_cb_data cb_data) {
vpi_printf((PLI_BYTE8*)"%%Error: callback should not be executed\n");
return 1;
}
int _mon_check_callbacks() {
t_cb_data cb_data;
cb_data.reason = cbEndOfSimulation;
cb_data.cb_rtn = _mon_check_callbacks_error;
cb_data.user_data = 0;
cb_data.value = NULL;
cb_data.time = NULL;
TestVpiHandle vh = vpi_register_cb(&cb_data);
CHECK_RESULT_NZ(vh);
PLI_INT32 status = vpi_remove_cb(vh);
vh.freed();
CHECK_RESULT_NZ(status);
return 0;
}
int _value_callback(p_cb_data cb_data) {
if (verbose) vpi_printf(const_cast<char*>(" _value_callback:\n"));
if (TestSimulator::is_verilator()) {
// this check only makes sense in Verilator
CHECK_RESULT(cb_data->value->value.integer + 10, main_time);
}
callback_count++;
return 0;
}
int _value_callback_half(p_cb_data cb_data) {
if (TestSimulator::is_verilator()) {
// this check only makes sense in Verilator
CHECK_RESULT(cb_data->value->value.integer * 2 + 10, main_time);
}
callback_count_half++;
return 0;
}
int _value_callback_quad(p_cb_data cb_data) {
for (int index = 0; index < 2; index++) {
CHECK_RESULT_HEX(cb_data->value->value.vector[1].aval,
(unsigned long)((index == 2) ? 0x1c77bb9bUL : 0x12819213UL));
CHECK_RESULT_HEX(cb_data->value->value.vector[0].aval,
(unsigned long)((index == 2) ? 0x3784ea09UL : 0xabd31a1cUL));
}
callback_count_quad++;
return 0;
}
int _mon_check_value_callbacks() {
s_vpi_value v;
v.format = vpiIntVal;
t_cb_data cb_data;
cb_data.reason = cbValueChange;
cb_data.time = NULL;
{
TestVpiHandle vh1 = VPI_HANDLE("count");
CHECK_RESULT_NZ(vh1);
vpi_get_value(vh1, &v);
cb_data.value = &v;
cb_data.obj = vh1;
cb_data.cb_rtn = _value_callback;
if (verbose) vpi_printf(const_cast<char*>(" vpi_register_cb(_value_callback):\n"));
TestVpiHandle callback_h = vpi_register_cb(&cb_data);
CHECK_RESULT_NZ(callback_h);
}
{
TestVpiHandle vh1 = VPI_HANDLE("half_count");
CHECK_RESULT_NZ(vh1);
cb_data.obj = vh1;
cb_data.cb_rtn = _value_callback_half;
TestVpiHandle callback_h = vpi_register_cb(&cb_data);
CHECK_RESULT_NZ(callback_h);
}
{
TestVpiHandle vh1 = VPI_HANDLE("quads");
CHECK_RESULT_NZ(vh1);
v.format = vpiVectorVal;
cb_data.obj = vh1;
cb_data.cb_rtn = _value_callback_quad;
TestVpiHandle callback_h = vpi_register_cb(&cb_data);
CHECK_RESULT_NZ(callback_h);
}
{
TestVpiHandle vh1 = VPI_HANDLE("quads");
CHECK_RESULT_NZ(vh1);
TestVpiHandle vh2 = vpi_handle_by_index(vh1, 2);
CHECK_RESULT_NZ(vh2);
cb_data.obj = vh2;
cb_data.cb_rtn = _value_callback_quad;
TestVpiHandle callback_h = vpi_register_cb(&cb_data);
CHECK_RESULT_NZ(callback_h);
}
return 0;
}
int _mon_check_var() {
TestVpiHandle vh1 = VPI_HANDLE("onebit");
CHECK_RESULT_NZ(vh1);
TestVpiHandle vh2 = vpi_handle_by_name((PLI_BYTE8*)TestSimulator::top(), NULL);
CHECK_RESULT_NZ(vh2);
// scope attributes
const char* p;
p = vpi_get_str(vpiName, vh2);
CHECK_RESULT_CSTR(p, "t");
p = vpi_get_str(vpiFullName, vh2);
CHECK_RESULT_CSTR(p, TestSimulator::top());
p = vpi_get_str(vpiType, vh2);
CHECK_RESULT_CSTR(p, "vpiModule");
TestVpiHandle vh3 = vpi_handle_by_name((PLI_BYTE8*)"onebit", vh2);
CHECK_RESULT_NZ(vh3);
// onebit attributes
PLI_INT32 d;
d = vpi_get(vpiType, vh3);
CHECK_RESULT(d, vpiReg);
if (TestSimulator::has_get_scalar()) {
d = vpi_get(vpiVector, vh3);
CHECK_RESULT(d, 0);
}
p = vpi_get_str(vpiName, vh3);
CHECK_RESULT_CSTR(p, "onebit");
p = vpi_get_str(vpiFullName, vh3);
CHECK_RESULT_CSTR(p, TestSimulator::rooted("onebit"));
p = vpi_get_str(vpiType, vh3);
CHECK_RESULT_CSTR(p, "vpiReg");
// array attributes
TestVpiHandle vh4 = VPI_HANDLE("fourthreetwoone");
CHECK_RESULT_NZ(vh4);
if (TestSimulator::has_get_scalar()) {
d = vpi_get(vpiVector, vh4);
CHECK_RESULT(d, 1);
p = vpi_get_str(vpiType, vh4);
CHECK_RESULT_CSTR(p, "vpiMemory");
}
t_vpi_value tmpValue;
tmpValue.format = vpiIntVal;
{
TestVpiHandle vh10 = vpi_handle(vpiLeftRange, vh4);
CHECK_RESULT_NZ(vh10);
vpi_get_value(vh10, &tmpValue);
CHECK_RESULT(tmpValue.value.integer, 4);
p = vpi_get_str(vpiType, vh10);
CHECK_RESULT_CSTR(p, "vpiConstant");
}
{
TestVpiHandle vh10 = vpi_handle(vpiRightRange, vh4);
CHECK_RESULT_NZ(vh10);
vpi_get_value(vh10, &tmpValue);
CHECK_RESULT(tmpValue.value.integer, 3);
p = vpi_get_str(vpiType, vh10);
CHECK_RESULT_CSTR(p, "vpiConstant");
}
{
TestVpiHandle vh10 = vpi_iterate(vpiMemoryWord, vh4);
CHECK_RESULT_NZ(vh10);
p = vpi_get_str(vpiType, vh10);
CHECK_RESULT_CSTR(p, "vpiIterator");
TestVpiHandle vh11 = vpi_scan(vh10);
CHECK_RESULT_NZ(vh11);
p = vpi_get_str(vpiType, vh11);
CHECK_RESULT_CSTR(p, "vpiMemoryWord");
TestVpiHandle vh12 = vpi_handle(vpiLeftRange, vh11);
CHECK_RESULT_NZ(vh12);
vpi_get_value(vh12, &tmpValue);
CHECK_RESULT(tmpValue.value.integer, 2);
p = vpi_get_str(vpiType, vh12);
CHECK_RESULT_CSTR(p, "vpiConstant");
TestVpiHandle vh13 = vpi_handle(vpiRightRange, vh11);
CHECK_RESULT_NZ(vh13);
vpi_get_value(vh13, &tmpValue);
CHECK_RESULT(tmpValue.value.integer, 1);
p = vpi_get_str(vpiType, vh13);
CHECK_RESULT_CSTR(p, "vpiConstant");
}
TestVpiHandle vh5 = VPI_HANDLE("quads");
CHECK_RESULT_NZ(vh5);
{
TestVpiHandle vh10 = vpi_handle(vpiLeftRange, vh5);
CHECK_RESULT_NZ(vh10);
vpi_get_value(vh10, &tmpValue);
CHECK_RESULT(tmpValue.value.integer, 2);
p = vpi_get_str(vpiType, vh10);
CHECK_RESULT_CSTR(p, "vpiConstant");
}
{
TestVpiHandle vh10 = vpi_handle(vpiRightRange, vh5);
CHECK_RESULT_NZ(vh10);
vpi_get_value(vh10, &tmpValue);
CHECK_RESULT(tmpValue.value.integer, 3);
p = vpi_get_str(vpiType, vh10);
CHECK_RESULT_CSTR(p, "vpiConstant");
}
return 0;
}
int _mon_check_varlist() {
const char* p;
TestVpiHandle vh2 = VPI_HANDLE("sub");
CHECK_RESULT_NZ(vh2);
TestVpiHandle vh10 = vpi_iterate(vpiReg, vh2);
CHECK_RESULT_NZ(vh10);
CHECK_RESULT(vpi_get(vpiType, vh10), vpiIterator);
{
TestVpiHandle vh11 = vpi_scan(vh10);
CHECK_RESULT_NZ(vh11);
p = vpi_get_str(vpiFullName, vh11);
CHECK_RESULT_CSTR(p, TestSimulator::rooted("sub.subsig1"));
}
{
TestVpiHandle vh12 = vpi_scan(vh10);
CHECK_RESULT_NZ(vh12);
p = vpi_get_str(vpiFullName, vh12);
CHECK_RESULT_CSTR(p, TestSimulator::rooted("sub.subsig2"));
}
{
TestVpiHandle vh13 = vpi_scan(vh10);
vh10.freed(); // IEEE 37.2.2 vpi_scan at end does a vpi_release_handle
CHECK_RESULT(vh13, 0);
}
return 0;
}
int _mon_check_getput() {
TestVpiHandle vh2 = VPI_HANDLE("onebit");
CHECK_RESULT_NZ(vh2);
s_vpi_value v;
v.format = vpiIntVal;
vpi_get_value(vh2, &v);
CHECK_RESULT(v.value.integer, 0);
s_vpi_time t;
t.type = vpiSimTime;
t.high = 0;
t.low = 0;
v.value.integer = 1;
vpi_put_value(vh2, &v, &t, vpiNoDelay);
vpi_get_value(vh2, &v);
CHECK_RESULT(v.value.integer, 1);
return 0;
}
int _mon_check_quad() {
TestVpiHandle vh2 = VPI_HANDLE("quads");
CHECK_RESULT_NZ(vh2);
s_vpi_value v;
t_vpi_vecval vv[2];
bzero(&vv, sizeof(vv));
s_vpi_time t;
t.type = vpiSimTime;
t.high = 0;
t.low = 0;
TestVpiHandle vhidx2 = vpi_handle_by_index(vh2, 2);
CHECK_RESULT_NZ(vhidx2);
TestVpiHandle vhidx3 = vpi_handle_by_index(vh2, 3);
CHECK_RESULT_NZ(vhidx3);
// Memory words should not be indexable
TestVpiHandle vhidx3idx0 = vpi_handle_by_index(vhidx3, 0);
CHECK_RESULT(vhidx3idx0, 0);
TestVpiHandle vhidx2idx2 = vpi_handle_by_index(vhidx2, 2);
CHECK_RESULT(vhidx2idx2, 0);
TestVpiHandle vhidx3idx3 = vpi_handle_by_index(vhidx3, 3);
CHECK_RESULT(vhidx3idx3, 0);
TestVpiHandle vhidx2idx61 = vpi_handle_by_index(vhidx2, 61);
CHECK_RESULT(vhidx2idx61, 0);
v.format = vpiVectorVal;
v.value.vector = vv;
v.value.vector[1].aval = 0x12819213UL;
v.value.vector[0].aval = 0xabd31a1cUL;
vpi_put_value(vhidx2, &v, &t, vpiNoDelay);
v.format = vpiVectorVal;
v.value.vector = vv;
v.value.vector[1].aval = 0x1c77bb9bUL;
v.value.vector[0].aval = 0x3784ea09UL;
vpi_put_value(vhidx3, &v, &t, vpiNoDelay);
vpi_get_value(vhidx2, &v);
CHECK_RESULT(v.value.vector[1].aval, 0x12819213UL);
CHECK_RESULT(v.value.vector[1].bval, 0);
vpi_get_value(vhidx3, &v);
CHECK_RESULT(v.value.vector[1].aval, 0x1c77bb9bUL);
CHECK_RESULT(v.value.vector[1].bval, 0);
return 0;
}
int _mon_check_string() {
static struct {
const char* name;
const char* initial;
const char* value;
} text_test_obs[] = {
{"text_byte", "B", "xxA"}, // x's dropped
{"text_half", "Hf", "xxT2"}, // x's dropped
{"text_word", "Word", "Tree"},
{"text_long", "Long64b", "44Four44"},
{"text", "Verilog Test module", "lorem ipsum"},
};
for (int i = 0; i < 5; i++) {
TestVpiHandle vh1 = VPI_HANDLE(text_test_obs[i].name);
CHECK_RESULT_NZ(vh1);
s_vpi_value v;
s_vpi_time t = {vpiSimTime, 0, 0, 0.0};
s_vpi_error_info e;
v.format = vpiStringVal;
vpi_get_value(vh1, &v);
if (vpi_chk_error(&e)) printf("%%vpi_chk_error : %s\n", e.message);
(void)vpi_chk_error(NULL);
CHECK_RESULT_CSTR_STRIP(v.value.str, text_test_obs[i].initial);
v.value.str = (PLI_BYTE8*)text_test_obs[i].value;
vpi_put_value(vh1, &v, &t, vpiNoDelay);
}
return 0;
}
int _mon_check_putget_str(p_cb_data cb_data) {
static TestVpiHandle cb;
static struct {
TestVpiHandle scope, sig, rfr, check, verbose;
std::string str;
int type; // value type in .str
union {
PLI_INT32 integer;
s_vpi_vecval vector[4];
} value; // reference
} data[129];
if (cb_data) {
if (verbose) vpi_printf(const_cast<char*>(" _mon_check_putget_str callback:\n"));
// this is the callback
static unsigned int seed = 1;
s_vpi_time t;
t.type = vpiSimTime;
t.high = 0;
t.low = 0;
for (int i = 2; i <= 6; i++) {
static s_vpi_value v;
int words = (i + 31) >> 5;
TEST_MSG("========== %d ==========\n", i);
if (callback_count_strs) {
// check persistence
if (data[i].type) {
v.format = data[i].type;
} else {
static PLI_INT32 vals[]
= {vpiBinStrVal, vpiOctStrVal, vpiHexStrVal, vpiDecStrVal};
v.format = vals[rand_r(&seed) % ((words > 2) ? 3 : 4)];
TEST_MSG("new format %d\n", v.format);
}
vpi_get_value(data[i].sig, &v);
TEST_MSG("%s\n", v.value.str);
if (data[i].type) {
CHECK_RESULT_CSTR(v.value.str, data[i].str.c_str());
} else {
data[i].type = v.format;
data[i].str = std::string{v.value.str};
}
}
// check for corruption
v.format = (words == 1) ? vpiIntVal : vpiVectorVal;
vpi_get_value(data[i].sig, &v);
if (v.format == vpiIntVal) {
TEST_MSG("%08x %08x\n", v.value.integer, data[i].value.integer);
CHECK_RESULT(v.value.integer, data[i].value.integer);
} else {
for (int k = 0; k < words; k++) {
TEST_MSG("%d %08x %08x\n", k, v.value.vector[k].aval,
data[i].value.vector[k].aval);
CHECK_RESULT_HEX(v.value.vector[k].aval, data[i].value.vector[k].aval);
}
}
if (callback_count_strs & 7) {
// put same value back - checking encoding/decoding equivalent
v.format = data[i].type;
v.value.str = (PLI_BYTE8*)(data[i].str.c_str()); // Can't reinterpret_cast
vpi_put_value(data[i].sig, &v, &t, vpiNoDelay);
v.format = vpiIntVal;
v.value.integer = 1;
// vpi_put_value(data[i].verbose, &v, &t, vpiNoDelay);
vpi_put_value(data[i].check, &v, &t, vpiNoDelay);
} else {
// stick a new random value in
unsigned int mask = ((i & 31) ? (1 << (i & 31)) : 0) - 1;
if (words == 1) {
v.value.integer = rand_r(&seed);
data[i].value.integer = v.value.integer &= mask;
v.format = vpiIntVal;
TEST_MSG("new value %08x\n", data[i].value.integer);
} else {
TEST_MSG("new value\n");
for (int j = 0; j < 4; j++) {
data[i].value.vector[j].aval = rand_r(&seed);
if (j == (words - 1)) data[i].value.vector[j].aval &= mask;
TEST_MSG(" %08x\n", data[i].value.vector[j].aval);
}
v.value.vector = data[i].value.vector;
v.format = vpiVectorVal;
}
vpi_put_value(data[i].sig, &v, &t, vpiNoDelay);
vpi_put_value(data[i].rfr, &v, &t, vpiNoDelay);
}
if ((callback_count_strs & 1) == 0) data[i].type = 0;
}
if (++callback_count_strs == callback_count_strs_max) {
int success = vpi_remove_cb(cb);
cb.freed();
CHECK_RESULT_NZ(success);
};
} else {
// setup and install
for (int i = 1; i <= 6; i++) {
char buf[32];
snprintf(buf, sizeof(buf), TestSimulator::rooted("arr[%d].arr"), i);
CHECK_RESULT_NZ(data[i].scope = vpi_handle_by_name((PLI_BYTE8*)buf, NULL));
CHECK_RESULT_NZ(data[i].sig = vpi_handle_by_name((PLI_BYTE8*)"sig", data[i].scope));
CHECK_RESULT_NZ(data[i].rfr = vpi_handle_by_name((PLI_BYTE8*)"rfr", data[i].scope));
CHECK_RESULT_NZ(data[i].check
= vpi_handle_by_name((PLI_BYTE8*)"check", data[i].scope));
CHECK_RESULT_NZ(data[i].verbose
= vpi_handle_by_name((PLI_BYTE8*)"verbose", data[i].scope));
}
static t_cb_data cb_data;
static s_vpi_value v;
TestVpiHandle count_h = VPI_HANDLE("count");
cb_data.reason = cbValueChange;
cb_data.cb_rtn = _mon_check_putget_str; // this function
cb_data.obj = count_h;
cb_data.value = &v;
cb_data.time = NULL;
v.format = vpiIntVal;
cb = vpi_register_cb(&cb_data);
// It is legal to free the callback handle immediately if not otherwise needed
CHECK_RESULT_NZ(cb);
}
return 0;
}
int _mon_check_vlog_info() {
s_vpi_vlog_info vlog_info;
PLI_INT32 rtn = vpi_get_vlog_info(&vlog_info);
CHECK_RESULT(rtn, 1);
CHECK_RESULT(vlog_info.argc, 4);
CHECK_RESULT_CSTR(vlog_info.argv[1], "+PLUS");
CHECK_RESULT_CSTR(vlog_info.argv[2], "+INT=1234");
CHECK_RESULT_CSTR(vlog_info.argv[3], "+STRSTR");
CHECK_RESULT_Z(vlog_info.argv[4]);
if (TestSimulator::is_verilator()) {
CHECK_RESULT_CSTR(vlog_info.product, "Verilator");
CHECK_RESULT(std::strlen(vlog_info.version) > 0, 1);
}
return 0;
}
extern "C" int mon_check() {
// Callback from initial block in monitor
#ifdef TEST_VERBOSE
printf("-mon_check()\n");
#endif
if (int status = _mon_check_mcd()) return status;
if (int status = _mon_check_callbacks()) return status;
if (int status = _mon_check_value_callbacks()) return status;
if (int status = _mon_check_var()) return status;
if (int status = _mon_check_varlist()) return status;
if (int status = _mon_check_getput()) return status;
if (int status = _mon_check_quad()) return status;
if (int status = _mon_check_string()) return status;
if (int status = _mon_check_putget_str(NULL)) return status;
if (int status = _mon_check_vlog_info()) return status;
#ifndef IS_VPI
VerilatedVpi::selfTest();
#endif
return 0; // Ok
}
//======================================================================
#ifdef IS_VPI
static int mon_check_vpi() {
TestVpiHandle href = vpi_handle(vpiSysTfCall, 0);
s_vpi_value vpi_value;
vpi_value.format = vpiIntVal;
vpi_value.value.integer = mon_check();
vpi_put_value(href, &vpi_value, NULL, vpiNoDelay);
return 0;
}
static s_vpi_systf_data vpi_systf_data[] = {{vpiSysFunc, vpiIntFunc, (PLI_BYTE8*)"$mon_check",
(PLI_INT32(*)(PLI_BYTE8*))mon_check_vpi, 0, 0, 0},
0};
// cver entry
void vpi_compat_bootstrap(void) {
p_vpi_systf_data systf_data_p;
systf_data_p = &(vpi_systf_data[0]);
while (systf_data_p->type != 0) vpi_register_systf(systf_data_p++);
}
// icarus entry
void (*vlog_startup_routines[])() = {vpi_compat_bootstrap, 0};
#else
double sc_time_stamp() { return main_time; }
int main(int argc, char** argv) {
const std::unique_ptr<VerilatedContext> contextp{new VerilatedContext};
uint64_t sim_time = 1100;
contextp->debug(0);
contextp->commandArgs(argc, argv);
const std::unique_ptr<VM_PREFIX> topp{new VM_PREFIX{contextp.get(),
// Note null name - we're flattening it out
""}};
#ifdef VERILATOR
#ifdef TEST_VERBOSE
contextp->scopesDump();
#endif
#endif
#if VM_TRACE
contextp->traceEverOn(true);
VL_PRINTF("Enabling waves...\n");
VerilatedVcdC* tfp = new VerilatedVcdC;
topp->trace(tfp, 99);
tfp->open(STRINGIFY(TEST_OBJ_DIR) "/simx.vcd");
#endif
topp->eval();
topp->clk = 0;
main_time += 10;
while (vl_time_stamp64() < sim_time && !contextp->gotFinish()) {
main_time += 1;
topp->eval();
VerilatedVpi::callValueCbs();
topp->clk = !topp->clk;
// mon_do();
#if VM_TRACE
if (tfp) tfp->dump(main_time);
#endif
}
CHECK_RESULT(callback_count, 501);
CHECK_RESULT(callback_count_half, 250);
CHECK_RESULT(callback_count_quad, 2);
CHECK_RESULT(callback_count_strs, callback_count_strs_max);
if (!contextp->gotFinish()) {
vl_fatal(FILENM, __LINE__, "main", "%Error: Timeout; never got a $finish");
}
topp->final();
#if VM_TRACE
if (tfp) tfp->close();
#endif
return 0;
}
#endif