verilator/include/verilated_threads.h

331 lines
11 KiB
C++

// -*- mode: C++; c-file-style: "cc-mode" -*-
//=============================================================================
//
// THIS MODULE IS PUBLICLY LICENSED
//
// Copyright 2012-2018 by Wilson Snyder. This program is free software;
// you can redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License Version 2.0.
//
// This is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
//=============================================================================
///
/// \file
/// \brief Thread pool and profiling for Verilated modules
///
//=============================================================================
#ifndef _VERILATED_THREADS_H_
#define _VERILATED_THREADS_H_
#include "verilatedos.h"
#include "verilated.h" // for VerilatedMutex and clang annotations
#include <sched.h> // For sched_getcpu()
#include <set>
#include <vector>
#if defined(__APPLE__)
# include <cpuid.h> // For __cpuid_count()
#endif
// VlMTaskVertex and VlThreadpool will work with multiple symbol table types.
// Since the type is opaque to VlMTaskVertex and VlThreadPool, represent it
// as a void* here.
typedef void* VlThrSymTab;
class VlNotification {
// MEMBERS
std::atomic<bool> m_notified; // Notification pending
static std::atomic<vluint64_t> s_yields; // Statistics
public:
// CONSTRUCTORS
VlNotification()
: m_notified(false) {
assert(atomic_is_lock_free(&m_notified));
}
~VlNotification() {}
// METHODS
static vluint64_t yields() { return s_yields; }
// Block until notify() has occurred, then return.
// If notify() has already occurred, return immediately.
//
// This is logically const: the object will remain in notified state
// after WaitForNotification() returns, so you could notify more than
// one thread of the same event.
inline void waitForNotification() {
unsigned ct = 0;
while (VL_UNLIKELY(!notified())) {
VL_CPU_RELAX();
ct++;
if (VL_UNLIKELY(ct > VL_LOCK_SPINS)) {
ct = 0;
++s_yields; // Statistics
std::this_thread::yield();
}
}
}
// The 'inline' keyword here means nothing to the compiler, it's
// implicit on methods defined within the class body anyway.
//
// 'inline' is attached the this method, and others in this file,
// to remind humans that some routines in this file are called many
// times per cycle in threaded mode. Such routines should be
// inlinable; that's why they're declared in the .h and not the .cpp.
inline bool notified() {
return m_notified.load(std::memory_order_acquire);
}
// Set notified state. If state is already notified,
// it remains so.
inline void notify() {
m_notified.store(true, std::memory_order_release);
}
// Reset the state to un-notified state, which is also the
// state of a new Notification object.
inline void reset() {
m_notified.store(false, std::memory_order_relaxed);
}
};
typedef void (*VlExecFnp)(bool, VlThrSymTab);
/// Track dependencies for a single MTask.
class VlMTaskVertex {
// MEMBERS
// On even cycles, _upstreamDepsDone increases as upstream
// dependencies complete. When it reaches _upstreamDepCount,
// this MTaskVertex is ready.
//
// On odd cycles, _upstreamDepsDone decreases as upstream
// dependencies complete, and when it reaches zero this MTaskVertex
// is ready.
//
// An atomic is smaller than a mutex, and lock-free.
//
// (Why does the size of this class matter? If an mtask has many
// downstream mtasks to notify, we hope these will pack into a
// small number of cache lines to reduce the cost of pointer chasing
// during done-notification. Nobody's quantified that cost though.
// If we were really serious about shrinking this class, we could
// use 16-bit types here...)
std::atomic<vluint32_t> m_upstreamDepsDone;
const vluint32_t m_upstreamDepCount;
public:
// CONSTRUCTORS
// 'upstreamDepCount' is the number of upstream MTaskVertex's
// that must notify this MTaskVertex before it will become ready
// to run.
explicit VlMTaskVertex(vluint32_t upstreamDepCount);
~VlMTaskVertex() {}
// Upstream mtasks must call this when they complete.
// Returns true when the current MTaskVertex becomes ready to execute,
// false while it's still waiting on more dependencies.
inline bool signalUpstreamDone(bool evenCycle) {
if (evenCycle) {
vluint32_t upstreamDepsDone
= 1 + m_upstreamDepsDone.fetch_add(1, std::memory_order_release);
assert(upstreamDepsDone <= m_upstreamDepCount);
return (upstreamDepsDone == m_upstreamDepCount);
} else {
vluint32_t upstreamDepsDone_prev
= m_upstreamDepsDone.fetch_sub(1, std::memory_order_release);
assert(upstreamDepsDone_prev > 0);
return (upstreamDepsDone_prev == 1);
}
}
inline bool areUpstreamDepsDone(bool evenCycle) const {
vluint32_t target = evenCycle ? m_upstreamDepCount : 0;
return m_upstreamDepsDone.load(std::memory_order_acquire) == target;
}
inline void waitUntilUpstreamDone(bool evenCycle) const {
while (VL_UNLIKELY(!areUpstreamDepsDone(evenCycle))) {
VL_CPU_RELAX();
}
}
};
// Profiling support
class VlProfileRec {
protected:
friend class VlThreadPool;
enum VlProfileE {
TYPE_MTASK_RUN,
TYPE_BARRIER
};
VlProfileE m_type; // Record type
vluint32_t m_mtaskId; // Mtask we're logging
vluint32_t m_predictTime; // How long scheduler predicted would take
vluint64_t m_startTime; // Tick at start of execution
vluint64_t m_endTime; // Tick at end of execution
unsigned m_cpu; // Execution CPU number (at start anyways)
public:
class Barrier {};
VlProfileRec() {}
explicit VlProfileRec(Barrier) {
m_type = TYPE_BARRIER;
m_mtaskId = 0;
m_predictTime = 0;
m_startTime = 0;
m_cpu = getcpu();
}
void startRecord(vluint64_t time, uint32_t mtask, uint32_t predict) {
m_type = VlProfileRec::TYPE_MTASK_RUN;
m_mtaskId = mtask;
m_predictTime = predict;
m_startTime = time;
m_cpu = getcpu();
}
void endRecord(vluint64_t time) {
m_endTime = time;
}
static int getcpu() { // Return current executing CPU
#if defined(__linux)
return sched_getcpu();
#elif defined(__APPLE__)
vluint32_t info[4];
__cpuid_count(1, 0, info[0], info[1], info[2], info[3]);
/* info[1] is EBX, bits 24-31 are APIC ID */
if ((info[3] & (1 << 9)) == 0) {
return -1; /* no APIC on chip */
} else {
return (unsigned)info[1] >> 24;
}
#else
return 0;
#endif
}
};
class VlThreadPool;
class VlWorkerThread {
private:
// TYPES
struct ExecRec {
VlExecFnp m_fnp; // Function to execute
VlThrSymTab m_sym; // Symbol table to execute
bool m_evenCycle; // Even/odd for flag alternation
ExecRec() : m_fnp(NULL), m_sym(NULL), m_evenCycle(false) {}
ExecRec(VlExecFnp fnp, bool evenCycle, VlThrSymTab sym)
: m_fnp(fnp), m_sym(sym), m_evenCycle(evenCycle) {}
};
// MEMBERS
VerilatedMutex m_mutex;
// Why a vector? We expect the pending list to be very short, typically
// 0 or 1 or 2, so popping from the front shouldn't be
// expensive. Revisit if we ever have longer queues...
std::vector<ExecRec> m_ready VL_GUARDED_BY(m_mutex);
VlThreadPool* m_poolp; // Our associated thread pool
// If values stored are non-NULL, the thread is asleep pending new
// work. If the thread is not asleep, both parts of m_sleepAlarm must
// be NULL.
std::pair<VlNotification*, ExecRec*> m_sleepAlarm VL_GUARDED_BY(m_mutex);
bool m_profiling; // Is profiling enabled?
std::atomic<bool> m_exiting; // Worker thread should exit
std::thread m_cthread; // Underlying C++ thread record
VL_UNCOPYABLE(VlWorkerThread);
public:
// CONSTRUCTORS
explicit VlWorkerThread(VlThreadPool* poolp, bool profiling);
~VlWorkerThread();
// METHODS
inline void dequeWork(ExecRec* workp) VL_REQUIRES(m_mutex) {
// As noted above this is inefficient if our ready list is ever
// long (but it shouldn't be)
*workp = m_ready.front();
m_ready.erase(m_ready.begin());
}
inline void wakeUp() VL_REQUIRES(m_mutex) {
VlNotification* notifyp = m_sleepAlarm.first;
m_sleepAlarm.first = NULL; // NULL+NULL means wake
m_sleepAlarm.second = NULL;
notifyp->notify();
}
inline bool sleeping() VL_REQUIRES(m_mutex) {
return (m_sleepAlarm.first != NULL);
}
inline void addTask(VlExecFnp fnp, bool evenCycle, VlThrSymTab sym) {
VerilatedLockGuard lk(m_mutex);
m_ready.emplace_back(fnp, evenCycle, sym);
if (VL_LIKELY(sleeping())) { // Generally queue is waiting for work
// Awaken thread
dequeWork(m_sleepAlarm.second);
wakeUp();
}
}
void workerLoop();
static void startWorker(VlWorkerThread* workerp);
};
class VlThreadPool {
// TYPES
typedef std::vector<VlProfileRec> ProfileTrace;
typedef std::set<ProfileTrace*> ProfileSet;
// MEMBERS
std::vector<VlWorkerThread*> m_workers; // our workers
bool m_profiling; // is profiling enabled?
// Support profiling -- we can append records of profiling events
// to this vector with very low overhead, and then dump them out
// later. This prevents the overhead of printf/malloc/IO from
// corrupting the profiling data. It's super cheap to append
// a VlProfileRec struct on the end of a pre-allocated vector;
// this is the only cost we pay in real-time during a profiling cycle.
static VL_THREAD_LOCAL ProfileTrace* t_profilep;
ProfileSet m_allProfiles VL_GUARDED_BY(m_mutex);
VerilatedMutex m_mutex;
public:
// CONSTRUCTORS
// Construct a thread pool with 'nThreads' dedicated threads. The thread
// pool will create these threads and make them available to execute tasks
// via this->workerp(index)->addTask(...)
VlThreadPool(int nThreads, bool profiling);
~VlThreadPool();
// METHODS
inline int numThreads() const {
return m_workers.size();
}
inline VlWorkerThread* workerp(int index) {
assert(index >= 0);
assert(index < m_workers.size());
return m_workers[index];
}
inline VlProfileRec* profileAppend() {
t_profilep->emplace_back();
return &(t_profilep->back());
}
void profileAppendAll(const VlProfileRec& rec);
void profileDump(const char* filenamep, vluint64_t ticksElapsed);
// In profiling mode, each executing thread must call
// this once to setup profiling state:
void setupProfilingClientThread();
void tearDownProfilingClientThread();
private:
VL_UNCOPYABLE(VlThreadPool);
};
#endif