verilator/test_regress/t/t_bench_mux4k.v
2017-09-11 19:18:58 -04:00

178 lines
4.4 KiB
Systemverilog

// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2008 by Lane Brooks.
//
// This implements a 4096:1 mux via two stages of 64:1 muxing.
// change these two parameters to see the speed differences
//`define DATA_WIDTH 12
//`define MUX2_SIZE 32
`define DATA_WIDTH 2
`define MUX2_SIZE 8
// if you change these, then the testbench will break
`define ADDR_WIDTH 12
`define MUX1_SIZE 64
// Total of DATA_WIDTH*MUX2_SIZE*(MUX1_SIZE+1) instantiations of mux64
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
/*AUTOWIRE*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
wire [`DATA_WIDTH-1:0] datao; // From mux4096 of mux4096.v
// End of automatics
reg [`DATA_WIDTH*`MUX1_SIZE*`MUX2_SIZE-1:0] datai;
reg [`ADDR_WIDTH-1:0] addr;
// Mux: takes in addr and datai and outputs datao
mux4096 mux4096 (/*AUTOINST*/
// Outputs
.datao (datao[`DATA_WIDTH-1:0]),
// Inputs
.datai (datai[`DATA_WIDTH*`MUX1_SIZE*`MUX2_SIZE-1:0]),
.addr (addr[`ADDR_WIDTH-1:0]));
// calculate what the answer should be from datai. This is bit
// tricky given the way datai gets sliced. datai is in bit
// planes where all the LSBs are contiguous and then the next bit.
reg [`DATA_WIDTH-1:0] datao_check;
integer j;
always @(datai or addr) begin
for(j=0;j<`DATA_WIDTH;j=j+1) begin
/* verilator lint_off WIDTH */
datao_check[j] = datai >> ((`MUX1_SIZE*`MUX2_SIZE*j)+addr);
/* verilator lint_on WIDTH */
end
end
// Run the test loop. This just increments the address
integer i, result;
always @ (posedge clk) begin
// initial the input data with random values
if (addr == 0) begin
result = 1;
datai = 0;
for(i=0; i<`MUX1_SIZE*`MUX2_SIZE; i=i+1) begin
/* verilator lint_off WIDTH */
datai = (datai << `DATA_WIDTH) | ($random & {`DATA_WIDTH{1'b1}});
/* verilator lint_on WIDTH */
end
end
addr <= addr + 1;
if (datao_check != datao) begin
result = 0;
$stop;
end
$write("Addr=%d datao_check=%d datao=%d\n", addr, datao_check, datao);
// only run the first 10 addresses for now
if (addr > 10) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module mux4096
(input [`DATA_WIDTH*`MUX1_SIZE*`MUX2_SIZE-1:0] datai,
input [`ADDR_WIDTH-1:0] addr,
output [`DATA_WIDTH-1:0] datao
);
// DATA_WIDTH instantiations of mux4096_1bit
mux4096_1bit mux4096_1bit[`DATA_WIDTH-1:0]
(.addr(addr),
.datai(datai),
.datao(datao)
);
endmodule
module mux4096_1bit
(input [`MUX1_SIZE*`MUX2_SIZE-1:0] datai,
input [`ADDR_WIDTH-1:0] addr,
output datao
);
// address decoding
wire [3:0] A = (4'b1) << addr[1:0];
wire [3:0] B = (4'b1) << addr[3:2];
wire [3:0] C = (4'b1) << addr[5:4];
wire [3:0] D = (4'b1) << addr[7:6];
wire [3:0] E = (4'b1) << addr[9:8];
wire [3:0] F = (4'b1) << addr[11:10];
wire [`MUX2_SIZE-1:0] data0;
// DATA_WIDTH*(MUX2_SIZE)*MUX1_SIZE instantiations of mux64
// first stage of 64:1 muxing
mux64 #(.MUX_SIZE(`MUX1_SIZE)) mux1[`MUX2_SIZE-1:0]
(.A(A),
.B(B),
.C(C),
.datai(datai),
.datao(data0));
// DATA_WIDTH*MUX2_SIZE instantiations of mux64
// second stage of 64:1 muxing
mux64 #(.MUX_SIZE(`MUX2_SIZE)) mux2
(.A(D),
.B(E),
.C(F),
.datai(data0),
.datao(datao));
endmodule
module mux64
#(parameter MUX_SIZE=64)
(input [3:0] A,
input [3:0] B,
input [3:0] C,
input [MUX_SIZE-1:0] datai,
output datao
);
wire [63:0] colSelA = { 16{ A[3:0] }};
wire [63:0] colSelB = { 4{ {4{B[3]}}, {4{B[2]}}, {4{B[1]}}, {4{B[0]}}}};
wire [63:0] colSelC = { {16{C[3]}}, {16{C[2]}}, {16{C[1]}}, {16{C[0]}}};
wire [MUX_SIZE-1:0] data_bus;
// Note each of these becomes a separate wire.
//.colSelA(colSelA[MUX_SIZE-1:0]),
//.colSelB(colSelB[MUX_SIZE-1:0]),
//.colSelC(colSelC[MUX_SIZE-1:0]),
drv drv[MUX_SIZE-1:0]
(.colSelA(colSelA[MUX_SIZE-1:0]),
.colSelB(colSelB[MUX_SIZE-1:0]),
.colSelC(colSelC[MUX_SIZE-1:0]),
.datai(datai),
.datao(data_bus)
);
assign datao = |data_bus;
endmodule
module drv
(input colSelA,
input colSelB,
input colSelC,
input datai,
output datao
);
assign datao = colSelC & colSelB & colSelA & datai;
endmodule