verilator/include/verilated_fst_c.h

231 lines
10 KiB
C++

// -*- mode: C++; c-file-style: "cc-mode" -*-
//=============================================================================
//
// THIS MODULE IS PUBLICLY LICENSED
//
// Copyright 2001-2018 by Wilson Snyder. This program is free software;
// you can redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License Version 2.0.
//
// This is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
//=============================================================================
///
/// \file
/// \brief C++ Tracing in FST Format
///
//=============================================================================
// SPDIFF_OFF
#ifndef _VERILATED_FST_C_H_
#define _VERILATED_FST_C_H_ 1
#include "verilatedos.h"
#include "verilated.h"
#include "gtkwave/fstapi.h"
#include <list>
#include <map>
#include <string>
#include <vector>
class VerilatedFst;
class VerilatedFstCallInfo;
typedef void (*VerilatedFstCallback_t)(VerilatedFst* vcdp, void* userthis, vluint32_t code);
//=============================================================================
// VerilatedFst
/// Base class to create a Verilator FST dump
/// This is an internally used class - see VerilatedFstC for what to call from applications
class VerilatedFst {
typedef std::map<vluint32_t, fstHandle> Code2SymbolType;
typedef std::map<int, fstEnumHandle> Local2FstDtype;
typedef std::vector<VerilatedFstCallInfo*> CallbackVec;
private:
void* m_fst;
VerilatedAssertOneThread m_assertOne; ///< Assert only called from single thread
bool m_fullDump;
char m_scopeEscape;
std::string m_module;
CallbackVec m_callbacks; ///< Routines to perform dumping
Code2SymbolType m_code2symbol;
Local2FstDtype m_local2fstdtype;
std::list<std::string> m_curScope;
// CONSTRUCTORS
VL_UNCOPYABLE(VerilatedFst);
void declSymbol(vluint32_t code, const char* name,
int dtypenum, fstVarDir vardir, fstVarType vartype,
int arraynum, vluint32_t len);
// helpers
std::vector<char> m_valueStrBuffer;
char* word2Str(vluint32_t newval, int bits);
char* quad2Str(vluint64_t newval, int bits);
char* array2Str(const vluint32_t *newval, int bits);
public:
explicit VerilatedFst(void* fst=NULL);
~VerilatedFst() { if (m_fst == NULL) { fstWriterClose(m_fst); } }
bool isOpen() const { return m_fst != NULL; }
void open(const char* filename) VL_MT_UNSAFE;
void flush() VL_MT_UNSAFE { fstWriterFlushContext(m_fst); }
void close() VL_MT_UNSAFE {
m_assertOne.check();
fstWriterClose(m_fst);
m_fst = NULL;
}
// void set_time_unit(const char* unitp); ///< Set time units (s/ms, defaults to ns)
// void set_time_unit(const std::string& unit) { set_time_unit(unit.c_str()); }
// void set_time_resolution(const char* unitp); ///< Set time resolution (s/ms, defaults to ns)
// void set_time_resolution(const std::string& unit) { set_time_resolution(unit.c_str()); }
// double timescaleToDouble(const char* unitp);
// std::string doubleToTimescale(double value);
/// Change character that splits scopes. Note whitespace are ALWAYS escapes.
void scopeEscape(char flag) { m_scopeEscape = flag; }
/// Is this an escape?
bool isScopeEscape(char c) { return isspace(c) || c==m_scopeEscape; }
/// Inside dumping routines, called each cycle to make the dump
void dump(vluint64_t timeui);
/// Inside dumping routines, declare callbacks for tracings
void addCallback(VerilatedFstCallback_t initcb, VerilatedFstCallback_t fullcb,
VerilatedFstCallback_t changecb,
void* userthis) VL_MT_UNSAFE_ONE;
/// Inside dumping routines, declare a module
void module(const std::string& name);
/// Inside dumping routines, declare a data type
void declDTypeEnum(int dtypenum, const char* name, vluint32_t elements,
unsigned int minValbits,
const char** itemNamesp, const char** itemValuesp);
/// Inside dumping routines, declare a signal
void declBit(vluint32_t code, const char* name,
int dtypenum, fstVarDir vardir, fstVarType vartype,
int arraynum) {
declSymbol(code, name, dtypenum, vardir, vartype, arraynum, 1);
}
void declBus(vluint32_t code, const char* name,
int dtypenum, fstVarDir vardir, fstVarType vartype,
int arraynum, int msb, int lsb) {
declSymbol(code, name, dtypenum, vardir, vartype, arraynum, msb - lsb + 1);
}
void declDouble(vluint32_t code, const char* name,
int dtypenum, fstVarDir vardir, fstVarType vartype,
int arraynum) {
declSymbol(code, name, dtypenum, vardir, vartype, arraynum, 2);
}
void declFloat(vluint32_t code, const char* name,
int dtypenum, fstVarDir vardir, fstVarType vartype,
int arraynum) {
declSymbol(code, name, dtypenum, vardir, vartype, arraynum, 1);
}
void declQuad(vluint32_t code, const char* name,
int dtypenum, fstVarDir vardir, fstVarType vartype,
int arraynum, int msb, int lsb) {
declSymbol(code, name, dtypenum, vardir, vartype, arraynum, msb - lsb + 1);
}
void declArray(vluint32_t code, const char* name,
int dtypenum, fstVarDir vardir, fstVarType vartype,
int arraynum, int msb, int lsb) {
declSymbol(code, name, dtypenum, vardir, vartype, arraynum, msb - lsb + 1);
}
/// Inside dumping routines, dump one signal if it has changed
void chgBit(vluint32_t code, const vluint32_t newval) {
fstWriterEmitValueChange(m_fst, m_code2symbol[code], newval ? "1" : "0");
}
void chgBus(vluint32_t code, const vluint32_t newval, int bits) {
fstWriterEmitValueChange(m_fst, m_code2symbol[code], word2Str(newval, bits));
}
void chgDouble(vluint32_t code, const double newval) {
double val = newval;
fstWriterEmitValueChange(m_fst, m_code2symbol[code], &val);
}
void chgFloat(vluint32_t code, const float newval) {
double val = (double)newval;
fstWriterEmitValueChange(m_fst, m_code2symbol[code], &val);
}
void chgQuad(vluint32_t code, const vluint64_t newval, int bits) {
fstWriterEmitValueChange(m_fst, m_code2symbol[code], quad2Str(newval, bits));
}
void chgArray(vluint32_t code, const vluint32_t* newval, int bits) {
fstWriterEmitValueChange(m_fst, m_code2symbol[code], array2Str(newval, bits));
}
void fullBit(vluint32_t code, const vluint32_t newval) { chgBit(code, newval); }
void fullBus(vluint32_t code, const vluint32_t newval, int bits) { chgBus(code, newval, bits); }
void fullDouble(vluint32_t code, const double newval) { chgDouble(code, newval); }
void fullFloat(vluint32_t code, const float newval) { chgFloat(code, newval); }
void fullQuad(vluint32_t code, const vluint64_t newval, int bits) { chgQuad(code, newval, bits); }
void fullArray(vluint32_t code, const vluint32_t* newval, int bits) { chgArray(code, newval, bits); }
void declTriBit (vluint32_t code, const char* name, int arraynum);
void declTriBus (vluint32_t code, const char* name, int arraynum, int msb, int lsb);
void declTriQuad (vluint32_t code, const char* name, int arraynum, int msb, int lsb);
void declTriArray (vluint32_t code, const char* name, int arraynum, int msb, int lsb);
void fullTriBit(vluint32_t code, const vluint32_t newval, const vluint32_t newtri);
void fullTriBus(vluint32_t code, const vluint32_t newval, const vluint32_t newtri, int bits);
void fullTriQuad(vluint32_t code, const vluint64_t newval, const vluint32_t newtri, int bits);
void fullTriArray(vluint32_t code, const vluint32_t* newvalp, const vluint32_t* newtrip, int bits);
void fullBitX(vluint32_t code);
void fullBusX(vluint32_t code, int bits);
void fullQuadX(vluint32_t code, int bits);
void fullArrayX(vluint32_t code, int bits);
void chgTriBit(vluint32_t code, const vluint32_t newval, const vluint32_t newtri);
void chgTriBus(vluint32_t code, const vluint32_t newval, const vluint32_t newtri, int bits);
void chgTriQuad(vluint32_t code, const vluint64_t newval, const vluint32_t newtri, int bits);
void chgTriArray(vluint32_t code, const vluint32_t* newvalp, const vluint32_t* newtrip, int bits);
};
//=============================================================================
// VerilatedFstC
/// Create a FST dump file in C standalone (no SystemC) simulations.
/// Also derived for use in SystemC simulations.
/// Thread safety: Unless otherwise indicated, every function is VL_MT_UNSAFE_ONE
class VerilatedFstC {
VerilatedFst m_sptrace; ///< Trace file being created
// CONSTRUCTORS
VL_UNCOPYABLE(VerilatedFstC);
public:
explicit VerilatedFstC(void* filep=NULL) : m_sptrace(filep) {}
~VerilatedFstC() {}
public:
// ACCESSORS
/// Is file open?
bool isOpen() const { return m_sptrace.isOpen(); }
// METHODS
/// Open a new FST file
void open(const char* filename) VL_MT_UNSAFE_ONE { m_sptrace.open(filename); }
/// Close dump
void close() VL_MT_UNSAFE_ONE { m_sptrace.close(); }
/// Flush dump
void flush() VL_MT_UNSAFE_ONE { m_sptrace.flush(); }
/// Write one cycle of dump data
void dump(vluint64_t timeui) { m_sptrace.dump(timeui); }
/// Write one cycle of dump data - backward compatible and to reduce
/// conversion warnings. It's better to use a vluint64_t time instead.
void dump(double timestamp) { dump(static_cast<vluint64_t>(timestamp)); }
void dump(vluint32_t timestamp) { dump(static_cast<vluint64_t>(timestamp)); }
void dump(int timestamp) { dump(static_cast<vluint64_t>(timestamp)); }
/// Set time units (s/ms, defaults to ns)
/// See also VL_TIME_PRECISION, and VL_TIME_MULTIPLIER in verilated.h
void set_time_unit(const char* unit) { /* TODO */ }
void set_time_unit(const std::string& unit) { set_time_unit(unit.c_str()); }
/// Set time resolution (s/ms, defaults to ns)
/// See also VL_TIME_PRECISION, and VL_TIME_MULTIPLIER in verilated.h
void set_time_resolution(const char* unit) { /* TODO */ }
void set_time_resolution(const std::string& unit) { set_time_resolution(unit.c_str()); }
/// Internal class access
inline VerilatedFst* spTrace() { return &m_sptrace; };
};
#endif // guard