mirror of
https://github.com/verilator/verilator.git
synced 2025-01-25 07:44:14 +00:00
644 lines
23 KiB
C++
644 lines
23 KiB
C++
// -*- mode: C++; c-file-style: "cc-mode" -*-
|
|
//=============================================================================
|
|
//
|
|
// THIS MODULE IS PUBLICLY LICENSED
|
|
//
|
|
// Copyright 2001-2020 by Wilson Snyder. This program is free software; you
|
|
// can redistribute it and/or modify it under the terms of either the GNU
|
|
// Lesser General Public License Version 3 or the Perl Artistic License
|
|
// Version 2.0.
|
|
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
|
|
//
|
|
//=============================================================================
|
|
///
|
|
/// \file
|
|
/// \brief Implementation of tracing functionality common to all trace formats
|
|
///
|
|
//=============================================================================
|
|
// SPDIFF_OFF
|
|
|
|
// clang-format off
|
|
|
|
#ifndef VL_DERIVED_T
|
|
# error "This file should be included in trace format implementations"
|
|
#endif
|
|
|
|
#include "verilated_intrinsics.h"
|
|
#include "verilated_trace.h"
|
|
|
|
#if 0
|
|
# include <iostream>
|
|
# define VL_TRACE_THREAD_DEBUG(msg) std::cout << "TRACE THREAD: " << msg << std::endl
|
|
#else
|
|
# define VL_TRACE_THREAD_DEBUG(msg)
|
|
#endif
|
|
|
|
// clang-format on
|
|
|
|
//=============================================================================
|
|
// Static utility functions
|
|
|
|
static double timescaleToDouble(const char* unitp) {
|
|
char* endp = nullptr;
|
|
double value = strtod(unitp, &endp);
|
|
// On error so we allow just "ns" to return 1e-9.
|
|
if (value == 0.0 && endp == unitp) value = 1;
|
|
unitp = endp;
|
|
for (; *unitp && isspace(*unitp); unitp++) {}
|
|
switch (*unitp) {
|
|
case 's': value *= 1e1; break;
|
|
case 'm': value *= 1e-3; break;
|
|
case 'u': value *= 1e-6; break;
|
|
case 'n': value *= 1e-9; break;
|
|
case 'p': value *= 1e-12; break;
|
|
case 'f': value *= 1e-15; break;
|
|
case 'a': value *= 1e-18; break;
|
|
}
|
|
return value;
|
|
}
|
|
|
|
static std::string doubleToTimescale(double value) {
|
|
const char* suffixp = "s";
|
|
// clang-format off
|
|
if (value >= 1e0) { suffixp = "s"; value *= 1e0; }
|
|
else if (value >= 1e-3 ) { suffixp = "ms"; value *= 1e3; }
|
|
else if (value >= 1e-6 ) { suffixp = "us"; value *= 1e6; }
|
|
else if (value >= 1e-9 ) { suffixp = "ns"; value *= 1e9; }
|
|
else if (value >= 1e-12) { suffixp = "ps"; value *= 1e12; }
|
|
else if (value >= 1e-15) { suffixp = "fs"; value *= 1e15; }
|
|
else if (value >= 1e-18) { suffixp = "as"; value *= 1e18; }
|
|
// clang-format on
|
|
char valuestr[100];
|
|
sprintf(valuestr, "%3.0f%s", value, suffixp);
|
|
return valuestr; // Gets converted to string, so no ref to stack
|
|
}
|
|
|
|
#ifdef VL_TRACE_THREADED
|
|
//=========================================================================
|
|
// Buffer management
|
|
|
|
template <> vluint32_t* VerilatedTrace<VL_DERIVED_T>::getTraceBuffer() {
|
|
vluint32_t* bufferp;
|
|
// Some jitter is expected, so some number of alternative trace buffers are
|
|
// required, but don't allocate more than 8 buffers.
|
|
if (m_numTraceBuffers < 8) {
|
|
// Allocate a new buffer if none is available
|
|
if (!m_buffersFromWorker.tryGet(bufferp)) {
|
|
++m_numTraceBuffers;
|
|
// Note: over allocate a bit so pointer comparison is well defined
|
|
// if we overflow only by a small amount
|
|
bufferp = new vluint32_t[m_traceBufferSize + 16];
|
|
}
|
|
} else {
|
|
// Block until a buffer becomes available
|
|
bufferp = m_buffersFromWorker.get();
|
|
}
|
|
return bufferp;
|
|
}
|
|
|
|
template <> void VerilatedTrace<VL_DERIVED_T>::waitForBuffer(const vluint32_t* buffp) {
|
|
// Slow path code only called on flush/shutdown, so use a simple algorithm.
|
|
// Collect buffers from worker and stash them until we get the one we want.
|
|
std::deque<vluint32_t*> stash;
|
|
do { stash.push_back(m_buffersFromWorker.get()); } while (stash.back() != buffp);
|
|
// Now put them back in the queue, in the original order.
|
|
while (!stash.empty()) {
|
|
m_buffersFromWorker.put_front(stash.back());
|
|
stash.pop_back();
|
|
}
|
|
}
|
|
|
|
//=========================================================================
|
|
// Worker thread
|
|
|
|
template <> void VerilatedTrace<VL_DERIVED_T>::workerThreadMain() {
|
|
bool shutdown = false;
|
|
|
|
do {
|
|
vluint32_t* const bufferp = m_buffersToWorker.get();
|
|
|
|
VL_TRACE_THREAD_DEBUG("");
|
|
VL_TRACE_THREAD_DEBUG("Got buffer: " << bufferp);
|
|
|
|
const vluint32_t* readp = bufferp;
|
|
|
|
while (true) {
|
|
const vluint32_t cmd = readp[0];
|
|
const vluint32_t top = cmd >> 4;
|
|
// Always set this up, as it is almost always needed
|
|
vluint32_t* const oldp = m_sigs_oldvalp + readp[1];
|
|
// Note this increment needs to be undone on commands which do not
|
|
// actually contain a code, but those are the rare cases.
|
|
readp += 2;
|
|
|
|
switch (cmd & 0xF) {
|
|
//===
|
|
// CHG_* commands
|
|
case VerilatedTraceCommand::CHG_BIT_0:
|
|
VL_TRACE_THREAD_DEBUG("Command CHG_BIT_0 " << top);
|
|
chgBitImpl(oldp, 0);
|
|
continue;
|
|
case VerilatedTraceCommand::CHG_BIT_1:
|
|
VL_TRACE_THREAD_DEBUG("Command CHG_BIT_1 " << top);
|
|
chgBitImpl(oldp, 1);
|
|
continue;
|
|
case VerilatedTraceCommand::CHG_CDATA:
|
|
VL_TRACE_THREAD_DEBUG("Command CHG_CDATA " << top);
|
|
// Bits stored in bottom byte of command
|
|
chgCDataImpl(oldp, *readp, top);
|
|
readp += 1;
|
|
continue;
|
|
case VerilatedTraceCommand::CHG_SDATA:
|
|
VL_TRACE_THREAD_DEBUG("Command CHG_SDATA " << top);
|
|
// Bits stored in bottom byte of command
|
|
chgSDataImpl(oldp, *readp, top);
|
|
readp += 1;
|
|
continue;
|
|
case VerilatedTraceCommand::CHG_IDATA:
|
|
VL_TRACE_THREAD_DEBUG("Command CHG_IDATA " << top);
|
|
// Bits stored in bottom byte of command
|
|
chgIDataImpl(oldp, *readp, top);
|
|
readp += 1;
|
|
continue;
|
|
case VerilatedTraceCommand::CHG_QDATA:
|
|
VL_TRACE_THREAD_DEBUG("Command CHG_QDATA " << top);
|
|
// Bits stored in bottom byte of command
|
|
chgQDataImpl(oldp, *reinterpret_cast<const QData*>(readp), top);
|
|
readp += 2;
|
|
continue;
|
|
case VerilatedTraceCommand::CHG_WDATA:
|
|
VL_TRACE_THREAD_DEBUG("Command CHG_WDATA " << top);
|
|
chgWDataImpl(oldp, readp, top);
|
|
readp += VL_WORDS_I(top);
|
|
continue;
|
|
case VerilatedTraceCommand::CHG_DOUBLE:
|
|
VL_TRACE_THREAD_DEBUG("Command CHG_DOUBLE " << top);
|
|
chgDoubleImpl(oldp, *reinterpret_cast<const double*>(readp));
|
|
readp += 2;
|
|
continue;
|
|
|
|
//===
|
|
// Rare commands
|
|
case VerilatedTraceCommand::TIME_CHANGE:
|
|
VL_TRACE_THREAD_DEBUG("Command TIME_CHANGE " << top);
|
|
readp -= 1; // No code in this command, undo increment
|
|
emitTimeChange(*reinterpret_cast<const vluint64_t*>(readp));
|
|
readp += 2;
|
|
continue;
|
|
|
|
//===
|
|
// Commands ending this buffer
|
|
case VerilatedTraceCommand::END: VL_TRACE_THREAD_DEBUG("Command END"); break;
|
|
case VerilatedTraceCommand::SHUTDOWN:
|
|
VL_TRACE_THREAD_DEBUG("Command SHUTDOWN");
|
|
shutdown = true;
|
|
break;
|
|
|
|
//===
|
|
// Unknown command
|
|
default: { // LCOV_EXCL_START
|
|
VL_TRACE_THREAD_DEBUG("Command UNKNOWN");
|
|
VL_PRINTF_MT("Trace command: 0x%08x\n", cmd);
|
|
VL_FATAL_MT(__FILE__, __LINE__, "", "Unknown trace command");
|
|
break;
|
|
} // LCOV_EXCL_STOP
|
|
}
|
|
|
|
// The above switch will execute 'continue' when necessary,
|
|
// so if we ever reach here, we are done with the buffer.
|
|
break;
|
|
}
|
|
|
|
VL_TRACE_THREAD_DEBUG("Returning buffer");
|
|
|
|
// Return buffer
|
|
m_buffersFromWorker.put(bufferp);
|
|
} while (VL_LIKELY(!shutdown));
|
|
}
|
|
|
|
template <> void VerilatedTrace<VL_DERIVED_T>::shutdownWorker() {
|
|
// If the worker thread is not running, done..
|
|
if (!m_workerThread) return;
|
|
|
|
// Hand an buffer with a shutdown command to the worker thread
|
|
vluint32_t* const bufferp = getTraceBuffer();
|
|
bufferp[0] = VerilatedTraceCommand::SHUTDOWN;
|
|
m_buffersToWorker.put(bufferp);
|
|
// Wait for it to return
|
|
waitForBuffer(bufferp);
|
|
// Join the thread and delete it
|
|
m_workerThread->join();
|
|
m_workerThread.reset(nullptr);
|
|
}
|
|
|
|
#endif
|
|
|
|
//=============================================================================
|
|
// Life cycle
|
|
|
|
template <> void VerilatedTrace<VL_DERIVED_T>::close() {
|
|
#ifdef VL_TRACE_THREADED
|
|
shutdownWorker();
|
|
while (m_numTraceBuffers) {
|
|
delete[] m_buffersFromWorker.get();
|
|
m_numTraceBuffers--;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
template <> void VerilatedTrace<VL_DERIVED_T>::flush() {
|
|
#ifdef VL_TRACE_THREADED
|
|
// Hand an empty buffer to the worker thread
|
|
vluint32_t* const bufferp = getTraceBuffer();
|
|
*bufferp = VerilatedTraceCommand::END;
|
|
m_buffersToWorker.put(bufferp);
|
|
// Wait for it to be returned. As the processing is in-order,
|
|
// this ensures all previous buffers have been processed.
|
|
waitForBuffer(bufferp);
|
|
#endif
|
|
}
|
|
|
|
//=============================================================================
|
|
// Callbacks to run on global events
|
|
|
|
template <> void VerilatedTrace<VL_DERIVED_T>::onFlush(void* selfp) {
|
|
// Note this calls 'flush' on the derived class
|
|
reinterpret_cast<VL_DERIVED_T*>(selfp)->flush();
|
|
}
|
|
|
|
template <> void VerilatedTrace<VL_DERIVED_T>::onExit(void* selfp) {
|
|
// Note this calls 'close' on the derived class
|
|
reinterpret_cast<VL_DERIVED_T*>(selfp)->close();
|
|
}
|
|
|
|
//=============================================================================
|
|
// VerilatedTrace
|
|
|
|
template <>
|
|
VerilatedTrace<VL_DERIVED_T>::VerilatedTrace()
|
|
: m_sigs_oldvalp{nullptr}
|
|
, m_timeLastDump{0}
|
|
, m_fullDump{true}
|
|
, m_nextCode{0}
|
|
, m_numSignals{0}
|
|
, m_maxBits{0}
|
|
, m_scopeEscape{'.'}
|
|
, m_timeRes{1e-9}
|
|
, m_timeUnit {
|
|
1e-9
|
|
}
|
|
#ifdef VL_TRACE_THREADED
|
|
, m_numTraceBuffers { 0 }
|
|
#endif
|
|
{
|
|
set_time_unit(Verilated::timeunitString());
|
|
set_time_resolution(Verilated::timeprecisionString());
|
|
}
|
|
|
|
template <> VerilatedTrace<VL_DERIVED_T>::~VerilatedTrace() {
|
|
if (m_sigs_oldvalp) VL_DO_CLEAR(delete[] m_sigs_oldvalp, m_sigs_oldvalp = nullptr);
|
|
Verilated::removeFlushCb(VerilatedTrace<VL_DERIVED_T>::onFlush, this);
|
|
Verilated::removeExitCb(VerilatedTrace<VL_DERIVED_T>::onExit, this);
|
|
#ifdef VL_TRACE_THREADED
|
|
close();
|
|
#endif
|
|
}
|
|
|
|
//=========================================================================
|
|
// Internals available to format specific implementations
|
|
|
|
template <> void VerilatedTrace<VL_DERIVED_T>::traceInit() VL_MT_UNSAFE {
|
|
m_assertOne.check();
|
|
|
|
// Note: It is possible to re-open a trace file (VCD in particular),
|
|
// so we must reset the next code here, but it must have the same number
|
|
// of codes on re-open
|
|
const vluint32_t expectedCodes = nextCode();
|
|
m_nextCode = 1;
|
|
m_numSignals = 0;
|
|
m_maxBits = 0;
|
|
|
|
// Call all initialize callbacks, which will:
|
|
// - Call decl* for each signal
|
|
// - Store the base code
|
|
for (vluint32_t i = 0; i < m_initCbs.size(); ++i) {
|
|
const CallbackRecord& cbr = m_initCbs[i];
|
|
cbr.m_initCb(cbr.m_userp, self(), nextCode());
|
|
}
|
|
|
|
if (expectedCodes && nextCode() != expectedCodes) {
|
|
VL_FATAL_MT(__FILE__, __LINE__, "",
|
|
"Reopening trace file with different number of signals");
|
|
}
|
|
|
|
// Now that we know the number of codes, allocate space for the buffer
|
|
// holding previous signal values.
|
|
if (!m_sigs_oldvalp) m_sigs_oldvalp = new vluint32_t[nextCode()];
|
|
|
|
// Set callback so flush/abort will flush this file
|
|
Verilated::addFlushCb(VerilatedTrace<VL_DERIVED_T>::onFlush, this);
|
|
Verilated::addExitCb(VerilatedTrace<VL_DERIVED_T>::onExit, this);
|
|
|
|
#ifdef VL_TRACE_THREADED
|
|
// Compute trace buffer size. we need to be able to store a new value for
|
|
// each signal, which is 'nextCode()' entries after the init callbacks
|
|
// above have been run, plus up to 2 more words of metadata per signal,
|
|
// plus fixed overhead of 1 for a termination flag and 3 for a time stamp
|
|
// update.
|
|
m_traceBufferSize = nextCode() + numSignals() * 2 + 4;
|
|
|
|
// Start the worker thread
|
|
m_workerThread.reset(new std::thread(&VerilatedTrace<VL_DERIVED_T>::workerThreadMain, this));
|
|
#endif
|
|
}
|
|
|
|
template <>
|
|
void VerilatedTrace<VL_DERIVED_T>::declCode(vluint32_t code, vluint32_t bits, bool tri) {
|
|
if (!code) {
|
|
VL_FATAL_MT(__FILE__, __LINE__, "", "Internal: internal trace problem, code 0 is illegal");
|
|
}
|
|
// Note: The tri-state flag is not used by Verilator, but is here for
|
|
// compatibility with some foreign code.
|
|
int codesNeeded = VL_WORDS_I(bits);
|
|
if (tri) codesNeeded *= 2;
|
|
m_nextCode = std::max(m_nextCode, code + codesNeeded);
|
|
++m_numSignals;
|
|
m_maxBits = std::max(m_maxBits, bits);
|
|
}
|
|
|
|
//=========================================================================
|
|
// Internals available to format specific implementations
|
|
|
|
template <> std::string VerilatedTrace<VL_DERIVED_T>::timeResStr() const {
|
|
return doubleToTimescale(m_timeRes);
|
|
}
|
|
|
|
template <> std::string VerilatedTrace<VL_DERIVED_T>::timeUnitStr() const {
|
|
return doubleToTimescale(m_timeUnit);
|
|
}
|
|
|
|
//=========================================================================
|
|
// External interface to client code
|
|
|
|
template <> void VerilatedTrace<VL_DERIVED_T>::set_time_unit(const char* unitp) {
|
|
m_timeUnit = timescaleToDouble(unitp);
|
|
}
|
|
|
|
template <> void VerilatedTrace<VL_DERIVED_T>::set_time_unit(const std::string& unit) {
|
|
set_time_unit(unit.c_str());
|
|
}
|
|
|
|
template <> void VerilatedTrace<VL_DERIVED_T>::set_time_resolution(const char* unitp) {
|
|
m_timeRes = timescaleToDouble(unitp);
|
|
}
|
|
|
|
template <> void VerilatedTrace<VL_DERIVED_T>::set_time_resolution(const std::string& unit) {
|
|
set_time_resolution(unit.c_str());
|
|
}
|
|
|
|
template <> void VerilatedTrace<VL_DERIVED_T>::dump(vluint64_t timeui) {
|
|
m_assertOne.check();
|
|
if (VL_UNCOVERABLE(m_timeLastDump && timeui <= m_timeLastDump)) { // LCOV_EXCL_START
|
|
VL_PRINTF_MT("%%Warning: previous dump at t=%" VL_PRI64 "u, requesting t=%" VL_PRI64
|
|
"u, dump call ignored\n",
|
|
m_timeLastDump, timeui);
|
|
return;
|
|
} // LCOV_EXCL_STOP
|
|
m_timeLastDump = timeui;
|
|
|
|
Verilated::quiesce();
|
|
|
|
// Call hook for format specific behaviour
|
|
if (VL_UNLIKELY(m_fullDump)) {
|
|
if (!preFullDump()) return;
|
|
} else {
|
|
if (!preChangeDump()) return;
|
|
}
|
|
|
|
#ifdef VL_TRACE_THREADED
|
|
// Currently only incremental dumps run on the worker thread
|
|
vluint32_t* bufferp = nullptr;
|
|
if (VL_LIKELY(!m_fullDump)) {
|
|
// Get the trace buffer we are about to fill
|
|
bufferp = getTraceBuffer();
|
|
m_traceBufferWritep = bufferp;
|
|
m_traceBufferEndp = bufferp + m_traceBufferSize;
|
|
|
|
// Tell worker to update time point
|
|
m_traceBufferWritep[0] = VerilatedTraceCommand::TIME_CHANGE;
|
|
*reinterpret_cast<vluint64_t*>(m_traceBufferWritep + 1) = timeui;
|
|
m_traceBufferWritep += 3;
|
|
} else {
|
|
// Update time point
|
|
flush();
|
|
emitTimeChange(timeui);
|
|
}
|
|
#else
|
|
// Update time point
|
|
emitTimeChange(timeui);
|
|
#endif
|
|
|
|
// Run the callbacks
|
|
if (VL_UNLIKELY(m_fullDump)) {
|
|
m_fullDump = false; // No more need for next dump to be full
|
|
for (vluint32_t i = 0; i < m_fullCbs.size(); ++i) {
|
|
const CallbackRecord& cbr = m_fullCbs[i];
|
|
cbr.m_dumpCb(cbr.m_userp, self());
|
|
}
|
|
} else {
|
|
for (vluint32_t i = 0; i < m_chgCbs.size(); ++i) {
|
|
const CallbackRecord& cbr = m_chgCbs[i];
|
|
cbr.m_dumpCb(cbr.m_userp, self());
|
|
}
|
|
}
|
|
|
|
for (vluint32_t i = 0; i < m_cleanupCbs.size(); ++i) {
|
|
const CallbackRecord& cbr = m_cleanupCbs[i];
|
|
cbr.m_dumpCb(cbr.m_userp, self());
|
|
}
|
|
|
|
#ifdef VL_TRACE_THREADED
|
|
if (VL_LIKELY(bufferp)) {
|
|
// Mark end of the trace buffer we just filled
|
|
*m_traceBufferWritep++ = VerilatedTraceCommand::END;
|
|
|
|
// Assert no buffer overflow
|
|
assert(m_traceBufferWritep - bufferp <= m_traceBufferSize);
|
|
|
|
// Pass it to the worker thread
|
|
m_buffersToWorker.put(bufferp);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
//=============================================================================
|
|
// Non-hot path internal interface to Verilator generated code
|
|
|
|
template <>
|
|
void VerilatedTrace<VL_DERIVED_T>::addCallbackRecord(std::vector<CallbackRecord>& cbVec,
|
|
CallbackRecord& cbRec) {
|
|
m_assertOne.check();
|
|
if (VL_UNCOVERABLE(timeLastDump() != 0)) { // LCOV_EXCL_START
|
|
std::string msg = (std::string("Internal: ") + __FILE__ + "::" + __FUNCTION__
|
|
+ " called with already open file");
|
|
VL_FATAL_MT(__FILE__, __LINE__, "", msg.c_str());
|
|
} // LCOV_EXCL_STOP
|
|
cbVec.push_back(cbRec);
|
|
}
|
|
|
|
template <> void VerilatedTrace<VL_DERIVED_T>::addInitCb(initCb_t cb, void* userp) {
|
|
CallbackRecord cbr(cb, userp);
|
|
addCallbackRecord(m_initCbs, cbr);
|
|
}
|
|
template <> void VerilatedTrace<VL_DERIVED_T>::addFullCb(dumpCb_t cb, void* userp) {
|
|
CallbackRecord cbr(cb, userp);
|
|
addCallbackRecord(m_fullCbs, cbr);
|
|
}
|
|
template <> void VerilatedTrace<VL_DERIVED_T>::addChgCb(dumpCb_t cb, void* userp) {
|
|
CallbackRecord cbr(cb, userp);
|
|
addCallbackRecord(m_chgCbs, cbr);
|
|
}
|
|
template <> void VerilatedTrace<VL_DERIVED_T>::addCleanupCb(dumpCb_t cb, void* userp) {
|
|
CallbackRecord cbr(cb, userp);
|
|
addCallbackRecord(m_cleanupCbs, cbr);
|
|
}
|
|
|
|
//=========================================================================
|
|
// Hot path internal interface to Verilator generated code
|
|
|
|
// These functions must write the new value back into the old value store,
|
|
// and subsequently call the format specific emit* implementations. Note
|
|
// that this file must be included in the format specific implementation, so
|
|
// the emit* functions can be inlined for performance.
|
|
|
|
template <> void VerilatedTrace<VL_DERIVED_T>::fullBit(vluint32_t* oldp, CData newval) {
|
|
*oldp = newval;
|
|
self()->emitBit(oldp - m_sigs_oldvalp, newval);
|
|
}
|
|
|
|
template <>
|
|
void VerilatedTrace<VL_DERIVED_T>::fullCData(vluint32_t* oldp, CData newval, int bits) {
|
|
*oldp = newval;
|
|
self()->emitCData(oldp - m_sigs_oldvalp, newval, bits);
|
|
}
|
|
|
|
template <>
|
|
void VerilatedTrace<VL_DERIVED_T>::fullSData(vluint32_t* oldp, SData newval, int bits) {
|
|
*oldp = newval;
|
|
self()->emitSData(oldp - m_sigs_oldvalp, newval, bits);
|
|
}
|
|
|
|
template <>
|
|
void VerilatedTrace<VL_DERIVED_T>::fullIData(vluint32_t* oldp, IData newval, int bits) {
|
|
*oldp = newval;
|
|
self()->emitIData(oldp - m_sigs_oldvalp, newval, bits);
|
|
}
|
|
|
|
template <>
|
|
void VerilatedTrace<VL_DERIVED_T>::fullQData(vluint32_t* oldp, QData newval, int bits) {
|
|
*reinterpret_cast<QData*>(oldp) = newval;
|
|
self()->emitQData(oldp - m_sigs_oldvalp, newval, bits);
|
|
}
|
|
|
|
template <>
|
|
void VerilatedTrace<VL_DERIVED_T>::fullWData(vluint32_t* oldp, const WData* newvalp, int bits) {
|
|
for (int i = 0; i < VL_WORDS_I(bits); ++i) oldp[i] = newvalp[i];
|
|
self()->emitWData(oldp - m_sigs_oldvalp, newvalp, bits);
|
|
}
|
|
|
|
template <> void VerilatedTrace<VL_DERIVED_T>::fullDouble(vluint32_t* oldp, double newval) {
|
|
// cppcheck-suppress invalidPointerCast
|
|
*reinterpret_cast<double*>(oldp) = newval;
|
|
self()->emitDouble(oldp - m_sigs_oldvalp, newval);
|
|
}
|
|
|
|
//=========================================================================
|
|
// Primitives converting binary values to strings...
|
|
|
|
// All of these take a destination pointer where the string will be emitted,
|
|
// and a value to convert. There are a couple of variants for efficiency.
|
|
|
|
inline static void cvtCDataToStr(char* dstp, CData value) {
|
|
#ifdef VL_HAVE_SSE2
|
|
// Similar to cvtSDataToStr but only the bottom 8 byte lanes are used
|
|
const __m128i a = _mm_cvtsi32_si128(value);
|
|
const __m128i b = _mm_unpacklo_epi8(a, a);
|
|
const __m128i c = _mm_shufflelo_epi16(b, 0);
|
|
const __m128i m = _mm_set1_epi64x(0x0102040810204080);
|
|
const __m128i d = _mm_cmpeq_epi8(_mm_and_si128(c, m), m);
|
|
const __m128i result = _mm_sub_epi8(_mm_set1_epi8('0'), d);
|
|
_mm_storel_epi64(reinterpret_cast<__m128i*>(dstp), result);
|
|
#else
|
|
dstp[0] = '0' | static_cast<char>((value >> 7) & 1);
|
|
dstp[1] = '0' | static_cast<char>((value >> 6) & 1);
|
|
dstp[2] = '0' | static_cast<char>((value >> 5) & 1);
|
|
dstp[3] = '0' | static_cast<char>((value >> 4) & 1);
|
|
dstp[4] = '0' | static_cast<char>((value >> 3) & 1);
|
|
dstp[5] = '0' | static_cast<char>((value >> 2) & 1);
|
|
dstp[6] = '0' | static_cast<char>((value >> 1) & 1);
|
|
dstp[7] = '0' | static_cast<char>(value & 1);
|
|
#endif
|
|
}
|
|
|
|
inline static void cvtSDataToStr(char* dstp, SData value) {
|
|
#ifdef VL_HAVE_SSE2
|
|
// We want each bit in the 16-bit input value to end up in a byte lane
|
|
// within the 128-bit XMM register. Note that x86 is little-endian and we
|
|
// want the MSB of the input at the low address, so we will bit-reverse
|
|
// at the same time.
|
|
|
|
// Put value in bottom of 128-bit register a[15:0] = value
|
|
const __m128i a = _mm_cvtsi32_si128(value);
|
|
// Interleave bytes with themselves
|
|
// b[15: 0] = {2{a[ 7:0]}} == {2{value[ 7:0]}}
|
|
// b[31:16] = {2{a[15:8]}} == {2{value[15:8]}}
|
|
const __m128i b = _mm_unpacklo_epi8(a, a);
|
|
// Shuffle bottom 64 bits, note swapping high bytes with low bytes
|
|
// c[31: 0] = {2{b[31:16]}} == {4{value[15:8}}
|
|
// c[63:32] = {2{b[15: 0]}} == {4{value[ 7:0}}
|
|
const __m128i c = _mm_shufflelo_epi16(b, 0x05);
|
|
// Shuffle whole register
|
|
// d[ 63: 0] = {2{c[31: 0]}} == {8{value[15:8}}
|
|
// d[126:54] = {2{c[63:32]}} == {8{value[ 7:0}}
|
|
const __m128i d = _mm_shuffle_epi32(c, 0x50);
|
|
// Test each bit within the bytes, this sets each byte lane to 0
|
|
// if the bit for that lane is 0 and to 0xff if the bit is 1.
|
|
const __m128i m = _mm_set1_epi64x(0x0102040810204080);
|
|
const __m128i e = _mm_cmpeq_epi8(_mm_and_si128(d, m), m);
|
|
// Convert to ASCII by subtracting the masks from ASCII '0':
|
|
// '0' - 0 is '0', '0' - -1 is '1'
|
|
const __m128i result = _mm_sub_epi8(_mm_set1_epi8('0'), e);
|
|
// Store the 16 characters to the un-aligned buffer
|
|
_mm_storeu_si128(reinterpret_cast<__m128i*>(dstp), result);
|
|
#else
|
|
cvtCDataToStr(dstp, value >> 8);
|
|
cvtCDataToStr(dstp + 8, value);
|
|
#endif
|
|
}
|
|
|
|
inline static void cvtIDataToStr(char* dstp, IData value) {
|
|
#ifdef VL_HAVE_AVX2
|
|
// Similar to cvtSDataToStr but the bottom 16-bits are processed in the
|
|
// top half of the YMM registerss
|
|
const __m256i a = _mm256_insert_epi32(_mm256_undefined_si256(), value, 0);
|
|
const __m256i b = _mm256_permute4x64_epi64(a, 0);
|
|
const __m256i s = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2,
|
|
2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3);
|
|
const __m256i c = _mm256_shuffle_epi8(b, s);
|
|
const __m256i m = _mm256_set1_epi64x(0x0102040810204080);
|
|
const __m256i d = _mm256_cmpeq_epi8(_mm256_and_si256(c, m), m);
|
|
const __m256i result = _mm256_sub_epi8(_mm256_set1_epi8('0'), d);
|
|
_mm256_storeu_si256(reinterpret_cast<__m256i*>(dstp), result);
|
|
#else
|
|
cvtSDataToStr(dstp, value >> 16);
|
|
cvtSDataToStr(dstp + 16, value);
|
|
#endif
|
|
}
|
|
|
|
inline static void cvtQDataToStr(char* dstp, QData value) {
|
|
cvtIDataToStr(dstp, value >> 32);
|
|
cvtIDataToStr(dstp + 32, value);
|
|
}
|
|
|
|
#define cvtEDataToStr cvtIDataToStr
|