verilator/src/V3Stats.cpp
2018-01-02 18:05:06 -05:00

294 lines
9.6 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
// DESCRIPTION: Verilator: Collect and print statistics
//
// Code available from: http://www.veripool.org/verilator
//
//*************************************************************************
//
// Copyright 2005-2018 by Wilson Snyder. This program is free software; you can
// redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
//
// Verilator is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
//*************************************************************************
#include "config_build.h"
#include "verilatedos.h"
#include <cstdio>
#include <cstdarg>
#include <unistd.h>
#include <map>
#include <iomanip>
#include "V3Global.h"
#include "V3Stats.h"
#include "V3Ast.h"
#include "V3File.h"
// This visitor does not edit nodes, and is called at error-exit, so should use constant iterators
#include "V3AstConstOnly.h"
//######################################################################
// Stats class functions
class StatsVisitor : public AstNVisitor {
private:
// NODE STATE/TYPES
typedef map<string,int> NameMap; // Number of times a name appears
// STATE
string m_stage; // Name of the stage we are scanning
/// m_fast = true: Counting only critical branch of fastpath
/// m_fast = false: Counting every node, ignoring structure of program
bool m_fast;
AstCFunc* m_cfuncp; // Current CFUNC
V3Double0 m_statInstrLong; // Instruction count
bool m_counting; // Currently counting
double m_instrs; // Current instr count (for determining branch direction)
bool m_tracingCall; // Iterating into a CCall to a CFunc
vector<V3Double0> m_statTypeCount; // Nodes of given type
V3Double0 m_statAbove[AstType::_ENUM_END][AstType::_ENUM_END]; // Nodes of given type
V3Double0 m_statPred[AstBranchPred::_ENUM_END]; // Nodes of given type
V3Double0 m_statInstr; // Instruction count
V3Double0 m_statInstrFast; // Instruction count, non-slow() eval functions only
vector<V3Double0> m_statVarWidths; // Variables of given width
vector<NameMap> m_statVarWidthNames; // Var names of given width
V3Double0 m_statVarArray; // Statistic tracking
V3Double0 m_statVarBytes; // Statistic tracking
V3Double0 m_statVarClock; // Statistic tracking
V3Double0 m_statVarScpBytes; // Statistic tracking
// METHODS
static int debug() {
static int level = -1;
if (VL_UNLIKELY(level < 0)) level = v3Global.opt.debugSrcLevel(__FILE__);
return level;
}
void allNodes(AstNode* nodep) {
m_instrs += nodep->instrCount();
if (m_counting) {
++m_statTypeCount[nodep->type()];
if (nodep->firstAbovep()) { // Grab only those above, not those "back"
++m_statAbove[nodep->firstAbovep()->type()][nodep->type()];
}
m_statInstr += nodep->instrCount();
if (m_cfuncp && !m_cfuncp->slow()) m_statInstrFast += nodep->instrCount();
}
}
// VISITORS
virtual void visit(AstNodeModule* nodep) {
allNodes(nodep);
if (!m_fast) {
// Count all CFuncs below this module
nodep->iterateChildrenConst(*this);
}
// Else we recursively trace fast CFuncs from the top _eval
// func, see visit(AstNetlist*)
}
virtual void visit(AstVar* nodep) {
allNodes(nodep);
nodep->iterateChildrenConst(*this);
if (m_counting && nodep->dtypep()) {
if (nodep->isUsedClock()) ++m_statVarClock;
if (nodep->dtypeSkipRefp()->castUnpackArrayDType()) ++m_statVarArray;
else m_statVarBytes += nodep->dtypeSkipRefp()->widthTotalBytes();
if (int(m_statVarWidths.size()) <= nodep->width()) {
m_statVarWidths.resize(nodep->width()+5);
if (v3Global.opt.statsVars()) m_statVarWidthNames.resize(nodep->width()+5);
}
++ m_statVarWidths.at(nodep->width());
string pn = nodep->prettyName();
if (v3Global.opt.statsVars()) {
NameMap& nameMapr = m_statVarWidthNames.at(nodep->width());
if (nameMapr.find(pn) != nameMapr.end()) {
nameMapr[pn]++;
} else {
nameMapr[pn]=1;
}
}
}
}
virtual void visit(AstVarScope* nodep) {
allNodes(nodep);
nodep->iterateChildrenConst(*this);
if (m_counting) {
if (nodep->varp()->dtypeSkipRefp()->castBasicDType()) {
m_statVarScpBytes += nodep->varp()->dtypeSkipRefp()->widthTotalBytes();
}
}
}
virtual void visit(AstNodeIf* nodep) {
UINFO(4," IF i="<<m_instrs<<" "<<nodep<<endl);
allNodes(nodep);
// Condition is part of cost allocated to PREVIOUS block
nodep->condp()->iterateAndNextConst(*this);
// Track prediction
if (m_counting) {
++m_statPred[nodep->branchPred()];
}
if (!m_fast) {
// Count everything
nodep->iterateChildrenConst(*this);
} else {
// See which path we want to take
// Need to do even if !m_counting because maybe determining upstream if/else
double ifInstrs = 0.0;
double elseInstrs = 0.0;
if (nodep->branchPred() != AstBranchPred::BP_UNLIKELY) { // Check if
double prevInstr = m_instrs;
bool prevCounting = m_counting;
{
m_counting = false;
m_instrs = 0.0;
nodep->ifsp()->iterateAndNextConst(*this);
ifInstrs = m_instrs;
}
m_instrs = prevInstr;
m_counting = prevCounting;
}
if (nodep->branchPred() != AstBranchPred::BP_LIKELY) { // Check else
double prevInstr = m_instrs;
bool prevCounting = m_counting;
{
m_counting = false;
m_instrs = 0.0;
nodep->elsesp()->iterateAndNextConst(*this);
elseInstrs = m_instrs;
}
m_instrs = prevInstr;
m_counting = prevCounting;
}
// Now collect the stats
if (m_counting) {
if (ifInstrs >= elseInstrs) {
nodep->ifsp()->iterateAndNextConst(*this);
} else {
nodep->elsesp()->iterateAndNextConst(*this);
}
}
}
}
// While's we assume evaluate once.
//virtual void visit(AstWhile* nodep) {
virtual void visit(AstCCall* nodep) {
allNodes(nodep);
nodep->iterateChildrenConst(*this);
if (m_fast && !nodep->funcp()->entryPoint()) {
// Enter the function and trace it
m_tracingCall = true;
nodep->funcp()->accept(*this);
}
}
virtual void visit(AstCFunc* nodep) {
if (m_fast) {
if (!m_tracingCall && !nodep->entryPoint()) return;
m_tracingCall = false;
}
m_cfuncp = nodep;
allNodes(nodep);
nodep->iterateChildrenConst(*this);
m_cfuncp = NULL;
}
virtual void visit(AstNode* nodep) {
allNodes(nodep);
nodep->iterateChildrenConst(*this);
}
virtual void visit(AstNetlist* nodep) {
if (m_fast && nodep->evalp()) {
m_instrs = 0;
m_counting = true;
nodep->evalp()->iterateChildrenConst(*this);
m_counting = false;
}
allNodes(nodep);
nodep->iterateChildrenConst(*this);
}
public:
// CONSTRUCTORS
StatsVisitor(AstNetlist* nodep, const string& stage, bool fast)
: m_stage(stage), m_fast(fast) {
UINFO(9,"Starting stats, fast="<<fast<<endl);
m_cfuncp = NULL;
m_counting = !m_fast;
m_instrs = 0;
m_tracingCall = false;
// Initialize arrays
m_statTypeCount.resize(AstType::_ENUM_END);
// Process
nodep->accept(*this);
}
virtual ~StatsVisitor() {
// Done. Publish statistics
V3Stats::addStat(m_stage, "Instruction count, TOTAL", m_statInstr);
V3Stats::addStat(m_stage, "Instruction count, fast critical", m_statInstrFast);
// Vars
V3Stats::addStat(m_stage, "Vars, unpacked arrayed", m_statVarArray);
V3Stats::addStat(m_stage, "Vars, clock attribute", m_statVarClock);
V3Stats::addStat(m_stage, "Var space, non-arrays, bytes", m_statVarBytes);
if (m_statVarScpBytes!=0.0) {
V3Stats::addStat(m_stage, "Var space, scoped, bytes", m_statVarScpBytes);
}
for (unsigned i=0; i<m_statVarWidths.size(); i++) {
double count = double(m_statVarWidths.at(i));
if (count != 0.0) {
if (v3Global.opt.statsVars()) {
NameMap& nameMapr = m_statVarWidthNames.at(i);
for (NameMap::iterator it=nameMapr.begin(); it!=nameMapr.end(); ++it) {
ostringstream os; os<<"Vars, width "<<setw(5)<<dec<<i<<" "<<it->first;
V3Stats::addStat(m_stage, os.str(), it->second);
}
} else {
ostringstream os; os<<"Vars, width "<<setw(5)<<dec<<i;
V3Stats::addStat(m_stage, os.str(), count);
}
}
}
// Node types
for (int type=0; type<AstType::_ENUM_END; type++) {
double count = double(m_statTypeCount.at(type));
if (count != 0.0) {
V3Stats::addStat(m_stage, string("Node count, ")+AstType(type).ascii(), count);
}
}
for (int type=0; type<AstType::_ENUM_END; type++) {
for (int type2=0; type2<AstType::_ENUM_END; type2++) {
double count = double(m_statAbove[type][type2]);
if (count != 0.0) {
V3Stats::addStat(m_stage, string("Node pairs, ")+AstType(type).ascii()+"_"+AstType(type2).ascii(), count);
}
}
}
// Branch pred
for (int type=0; type<AstBranchPred::_ENUM_END; type++) {
double count = double(m_statPred[type]);
if (count != 0.0) {
V3Stats::addStat(m_stage, string("Branch prediction, ")+AstBranchPred(type).ascii(), count);
}
}
}
};
//######################################################################
// Top Stats class
void V3Stats::statsStageAll(AstNetlist* nodep, const string& stage, bool fast) {
StatsVisitor visitor (nodep, stage, fast);
}
void V3Stats::statsFinalAll(AstNetlist* nodep) {
statsStageAll(nodep, "Final");
statsStageAll(nodep, "Final_Fast", true);
}