verilator/include/verilated_fst_c.cpp
Geza Lore c52f3349d1
Initial implementation of generic multithreaded tracing (#2269)
The --trace-threads option can now be used to perform tracing on a
thread separate from the main thread when using VCD tracing (with
--trace-threads 1). For FST tracing --trace-threads can be 1 or 2, and
--trace-fst --trace-threads 1 is the same a what --trace-fst-threads
used to be (which is now deprecated).

Performance numbers on SweRV EH1 CoreMark, clang 6.0.0, Intel i7-3770 @
3.40GHz, IO to ramdisk, with numactl set to schedule threads on different
physical cores. Relative speedup:

--trace     ->  --trace --trace-threads 1      +22%
--trace-fst ->  --trace-fst --trace-threads 1  +38% (as --trace-fst-thread)
--trace-fst ->  --trace-fst --trace-threads 2  +93%

Speed relative to --trace with no threaded tracing:
--trace                                 1.00 x
--trace --trace-threads 1               0.82 x
--trace-fst                             1.79 x
--trace-fst --trace-threads 1           1.23 x
--trace-fst --trace-threads 2           0.87 x

This means FST tracing with 2 extra threads is now faster than single
threaded VCD tracing, and is on par with threaded VCD tracing. You do
pay for it in total compute though as --trace-fst --trace-threads 2 uses
about 240% CPU vs 150% for --trace-fst --trace-threads 1, and 155% for
--trace --trace threads 1. Still for interactive use it should be
helpful with large designs.
2020-04-21 23:49:07 +01:00

229 lines
8.2 KiB
C++

// -*- mode: C++; c-file-style: "cc-mode" -*-
//=============================================================================
//
// THIS MODULE IS PUBLICLY LICENSED
//
// Copyright 2001-2020 by Wilson Snyder. This program is free software; you
// can redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//=============================================================================
///
/// \file
/// \brief C++ Tracing in FST Format
///
//=============================================================================
// SPDIFF_OFF
// clang-format off
#define __STDC_LIMIT_MACROS // UINT64_MAX
#include "verilated.h"
#include "verilated_fst_c.h"
// GTKWave configuration
#ifdef VL_TRACE_FST_WRITER_THREAD
# define HAVE_LIBPTHREAD
# define FST_WRITER_PARALLEL
#endif
// Include the GTKWave implementation directly
#define FST_CONFIG_INCLUDE "fst_config.h"
#include "gtkwave/fastlz.c"
#include "gtkwave/fstapi.c"
#include "gtkwave/lz4.c"
#include <algorithm>
#include <cerrno>
#include <ctime>
#include <fcntl.h>
#include <iterator>
#include <sstream>
#include <sys/stat.h>
#if defined(_WIN32) && !defined(__MINGW32__) && !defined(__CYGWIN__)
# include <io.h>
#else
# include <stdint.h>
# include <unistd.h>
#endif
// clang-format on
//=============================================================================
// Specialization of the generics for this trace format
#define VL_DERIVED_T VerilatedFst
#include "verilated_trace_imp.cpp"
#undef VL_DERIVED_T
//=============================================================================
// VerilatedFst
VerilatedFst::VerilatedFst(void* fst)
: m_fst(fst)
, m_symbolp(NULL) {}
VerilatedFst::~VerilatedFst() {
if (m_fst) fstWriterClose(m_fst);
if (m_symbolp) VL_DO_CLEAR(delete[] m_symbolp, m_symbolp = NULL);
}
void VerilatedFst::open(const char* filename) VL_MT_UNSAFE {
m_assertOne.check();
m_fst = fstWriterCreate(filename, 1);
fstWriterSetPackType(m_fst, FST_WR_PT_LZ4);
fstWriterSetTimescaleFromString(m_fst, timeResStr().c_str()); // lintok-begin-on-ref
#ifdef VL_TRACE_FST_WRITER_THREAD
fstWriterSetParallelMode(m_fst, 1);
#endif
m_curScope.clear();
VerilatedTrace<VerilatedFst>::traceInit();
// Clear the scope stack
std::list<std::string>::iterator it = m_curScope.begin();
while (it != m_curScope.end()) {
fstWriterSetUpscope(m_fst);
it = m_curScope.erase(it);
}
// convert m_code2symbol into an array for fast lookup
if (!m_symbolp) {
m_symbolp = new fstHandle[nextCode()];
for (Code2SymbolType::iterator it = m_code2symbol.begin(); it != m_code2symbol.end();
++it) {
m_symbolp[it->first] = it->second;
}
}
m_code2symbol.clear();
}
void VerilatedFst::close() {
m_assertOne.check();
VerilatedTrace<VerilatedFst>::close();
fstWriterClose(m_fst);
m_fst = NULL;
}
void VerilatedFst::flush() {
VerilatedTrace<VerilatedFst>::flush();
fstWriterFlushContext(m_fst);
}
void VerilatedFst::emitTimeChange(vluint64_t timeui) { fstWriterEmitTimeChange(m_fst, timeui); }
//=============================================================================
// Decl
void VerilatedFst::declDTypeEnum(int dtypenum, const char* name, vluint32_t elements,
unsigned int minValbits, const char** itemNamesp,
const char** itemValuesp) {
fstEnumHandle enumNum
= fstWriterCreateEnumTable(m_fst, name, elements, minValbits, itemNamesp, itemValuesp);
m_local2fstdtype[dtypenum] = enumNum;
}
void VerilatedFst::declSymbol(vluint32_t code, const char* name, int dtypenum, fstVarDir vardir,
fstVarType vartype, bool array, int arraynum, vluint32_t len,
vluint32_t bits) {
VerilatedTrace<VerilatedFst>::declCode(code, bits, false);
std::pair<Code2SymbolType::iterator, bool> p
= m_code2symbol.insert(std::make_pair(code, static_cast<fstHandle>(NULL)));
std::istringstream nameiss(name);
std::istream_iterator<std::string> beg(nameiss), end;
std::list<std::string> tokens(beg, end); // Split name
std::string symbol_name(tokens.back());
tokens.pop_back(); // Remove symbol name from hierarchy
tokens.insert(tokens.begin(), moduleName()); // Add current module to the hierarchy
// Find point where current and new scope diverge
std::list<std::string>::iterator cur_it = m_curScope.begin();
std::list<std::string>::iterator new_it = tokens.begin();
while (cur_it != m_curScope.end() && new_it != tokens.end()) {
if (*cur_it != *new_it) break;
++cur_it;
++new_it;
}
// Go back to the common point
while (cur_it != m_curScope.end()) {
fstWriterSetUpscope(m_fst);
cur_it = m_curScope.erase(cur_it);
}
// Follow the hierarchy of the new variable from the common scope point
while (new_it != tokens.end()) {
fstWriterSetScope(m_fst, FST_ST_VCD_SCOPE, new_it->c_str(), NULL);
m_curScope.push_back(*new_it);
new_it = tokens.erase(new_it);
}
std::stringstream name_ss;
name_ss << symbol_name;
if (array) name_ss << "(" << arraynum << ")";
std::string name_str = name_ss.str();
if (dtypenum > 0) {
fstEnumHandle enumNum = m_local2fstdtype[dtypenum];
fstWriterEmitEnumTableRef(m_fst, enumNum);
}
if (p.second) { // New
p.first->second = fstWriterCreateVar(m_fst, vartype, vardir, len, name_str.c_str(), 0);
assert(p.first->second);
} else { // Alias
fstWriterCreateVar(m_fst, vartype, vardir, len, name_str.c_str(), p.first->second);
}
}
void VerilatedFst::declBit(vluint32_t code, const char* name, int dtypenum, fstVarDir vardir,
fstVarType vartype, bool array, int arraynum) {
declSymbol(code, name, dtypenum, vardir, vartype, array, arraynum, 1, 1);
}
void VerilatedFst::declBus(vluint32_t code, const char* name, int dtypenum, fstVarDir vardir,
fstVarType vartype, bool array, int arraynum, int msb, int lsb) {
declSymbol(code, name, dtypenum, vardir, vartype, array, arraynum, msb - lsb + 1,
msb - lsb + 1);
}
void VerilatedFst::declQuad(vluint32_t code, const char* name, int dtypenum, fstVarDir vardir,
fstVarType vartype, bool array, int arraynum, int msb, int lsb) {
declSymbol(code, name, dtypenum, vardir, vartype, array, arraynum, msb - lsb + 1,
msb - lsb + 1);
}
void VerilatedFst::declArray(vluint32_t code, const char* name, int dtypenum, fstVarDir vardir,
fstVarType vartype, bool array, int arraynum, int msb, int lsb) {
declSymbol(code, name, dtypenum, vardir, vartype, array, arraynum, msb - lsb + 1,
msb - lsb + 1);
}
void VerilatedFst::declFloat(vluint32_t code, const char* name, int dtypenum, fstVarDir vardir,
fstVarType vartype, bool array, int arraynum) {
declSymbol(code, name, dtypenum, vardir, vartype, array, arraynum, 1, 32);
}
void VerilatedFst::declDouble(vluint32_t code, const char* name, int dtypenum, fstVarDir vardir,
fstVarType vartype, bool array, int arraynum) {
declSymbol(code, name, dtypenum, vardir, vartype, array, arraynum, 2, 64);
}
void VerilatedFst::emitBit(vluint32_t code, vluint32_t newval) {
fstWriterEmitValueChange(m_fst, m_symbolp[code], newval ? "1" : "0");
}
template <int T_Bits> void VerilatedFst::emitBus(vluint32_t code, vluint32_t newval) {
fstWriterEmitValueChange32(m_fst, m_symbolp[code], T_Bits, newval);
}
void VerilatedFst::emitQuad(vluint32_t code, vluint64_t newval, int bits) {
fstWriterEmitValueChange64(m_fst, m_symbolp[code], bits, newval);
}
void VerilatedFst::emitArray(vluint32_t code, const vluint32_t* newvalp, int bits) {
fstWriterEmitValueChangeVec32(m_fst, m_symbolp[code], bits, newvalp);
}
void VerilatedFst::emitFloat(vluint32_t code, float newval) {
fstWriterEmitValueChange(m_fst, m_symbolp[code], &newval);
}
void VerilatedFst::emitDouble(vluint32_t code, double newval) {
fstWriterEmitValueChange(m_fst, m_symbolp[code], &newval);
}