verilator/src/V3OrderGraph.h
2024-01-01 03:19:59 -05:00

303 lines
12 KiB
C++

// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
// DESCRIPTION: Verilator: Ordering constraint graph
//
// Code available from: https://verilator.org
//
//*************************************************************************
//
// Copyright 2003-2024 by Wilson Snyder. This program is free software; you
// can redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//*************************************************************************
//
// OrderGraph is a bipartite graph, with the two parts being formed of only OrderLogicVertex and
// OrderVarVertex vertices respectively (i.e.: edges are always between OrderLogicVertex and
// OrderVarVertex, and never between two OrderLogicVertex or OrderVarVertex). The graph represents
// both fine-grained dependencies, and additional ordering constraints between logic blocks and
// variables. The fact that OrderGraph is bipartite is important and we take advantage of this fact
// in various algorithms, so this property must be maintained.
//
// Both OrderLogicVertex and OrderVarVertex derives from OrderEitherVertex, so OrderGraph is
// composed only of OrderEitherVertex vertices.
//
// OrderLogicVertex holds a 'logic block', which is just some computational construct that is
// ordered as a single unit. Ordering of these logic blocks is determined by the variables they
// read and write, which is represented by the edges between OrderLogicVertex and OrderVarVertex
// instances (and hence the graph is bipartite).
//
// OrderVarVertex is abstract, and has various concrete subtypes that represent various ordering
// constraints imposed by variables accessed by logic blocks. The concrete subtypes and their
// roles are:
//
// OrderVarStdVertex: Data dependencies for combinational logic and delayed assignment
// updates (AssignPost).
// OrderVarPostVertex: Ensures all sequential logic blocks reading a signal do so before any
// combinational or delayed assignments update that signal.
// OrderVarPordVertex: Ensures a _d = _q AssignPre used to implement delayed (non-blocking)
// assignments is the first write of a _d, before any sequential blocks
// write to that _d.
// OrderVarPreVertex: This is an optimization. Try to ensure that a _d = _q AssignPre is the
// last read of a _q, after all reads of that _q by sequential logic. The
// model is still correct if we cannot satisfy this due to other interfering
// constraints. If respecting this constraint is possible, then combined
// with the OrderVarPordVertex constraint we get that all writes to _d are
// after all reads of a _q, which then allows us to eliminate the _d
// completely and assign to the _q directly. This means these delayed
// assignments can be implemented without temporary storage (the redundant
// storage is eliminated in V3LifePost).
//
// Ordering constraints are represented by directed edges, where the source of an edge needs to be
// ordered before the sink of an edge. A constraint can be either hard (must be satisfied),
// represented by a non cutable edge, or a constraint can be soft (ideally should be satisfied, but
// is ok not to if other hard constraints interfere), represented by a cutable edge. Edges
// otherwise carry no additional information. TODO: what about weight?
//
// Note: It is required for hard (non-cutable) constraints to form a DAG, but together with the
// soft constraints the graph can be arbitrary so long as it remains bipartite.
//
//*************************************************************************
#ifndef VERILATOR_V3ORDERGRAPH_H_
#define VERILATOR_V3ORDERGRAPH_H_
#include "config_build.h"
#include "verilatedos.h"
#include "V3Ast.h"
#include "V3Graph.h"
class OrderLogicVertex;
class OrderVarVertex;
//======================================================================
enum OrderWeights : uint8_t {
WEIGHT_COMBO = 1, // Breakable combo logic
WEIGHT_POST = 2, // Post-delayed used var
WEIGHT_PRE = 3, // Breakable pre-delayed used var
WEIGHT_MEDIUM = 8, // Medium weight just so dot graph looks nice
WEIGHT_NORMAL = 32 // High weight just so dot graph looks nice
};
//======================================================================
// Graph type
class OrderGraph final : public V3Graph {
public:
// METHODS
// Methods to add edges representing constraints, utilizing the type system to help us ensure
// the graph remains bipartite.
inline void addHardEdge(OrderLogicVertex* fromp, OrderVarVertex* top,
int weight) VL_MT_DISABLED;
inline void addHardEdge(OrderVarVertex* fromp, OrderLogicVertex* top,
int weight) VL_MT_DISABLED;
inline void addSoftEdge(OrderLogicVertex* fromp, OrderVarVertex* top,
int weight) VL_MT_DISABLED;
inline void addSoftEdge(OrderVarVertex* fromp, OrderLogicVertex* top,
int weight) VL_MT_DISABLED;
};
//======================================================================
// Vertex types
class OrderEitherVertex VL_NOT_FINAL : public V3GraphVertex {
VL_RTTI_IMPL(OrderEitherVertex, V3GraphVertex)
// Event domain of vertex. For OrderLogicVertex this represents the conditions when the logic
// block must be executed. For OrderVarVertex, this is the union of the domains of all the
// OrderLogicVertex vertices that drive the variable. If initially set to nullptr (e.g.: all
// OrderVarVertex and those OrderLogicVertices that represent combinational logic), then the
// ordering algorithm will compute the domain automatically based on the edges representing
// data-flow (those between OrderLogicVertex and OrderVarStdVertex), otherwise the domain is
// as given (e.g.: for those OrderLogicVertices that represent clocked logic).
AstSenTree* m_domainp;
protected:
// CONSTRUCTOR
OrderEitherVertex(OrderGraph* graphp, AstSenTree* domainp) VL_MT_DISABLED
: V3GraphVertex{graphp},
m_domainp{domainp} {}
~OrderEitherVertex() override = default;
public:
// METHODS
virtual bool domainMatters() = 0;
// ACCESSORS
AstSenTree* domainp() const VL_MT_STABLE { return m_domainp; }
void domainp(AstSenTree* domainp) VL_MT_DISABLED {
#if VL_DEBUG
UASSERT(!m_domainp, "Domain should only be set once");
#endif
m_domainp = domainp;
}
};
class OrderLogicVertex final : public OrderEitherVertex {
VL_RTTI_IMPL(OrderLogicVertex, OrderEitherVertex)
AstNode* const m_nodep; // The logic this vertex represents
AstScope* const m_scopep; // Scope the logic is under
AstSenTree* const m_hybridp; // Additional sensitivities for hybrid combinational logic
public:
// CONSTRUCTOR
OrderLogicVertex(OrderGraph* graphp, AstScope* scopep, AstSenTree* domainp,
AstSenTree* hybridp, AstNode* nodep) VL_MT_DISABLED
: OrderEitherVertex{graphp, domainp},
m_nodep{nodep},
m_scopep{scopep},
m_hybridp{hybridp} {
UASSERT_OBJ(scopep, nodep, "Must not be null");
UASSERT_OBJ(!(domainp && hybridp), nodep, "Cannot have bot domainp and hybridp set");
}
~OrderLogicVertex() override = default;
// METHODS
bool domainMatters() override { return true; }
// ACCESSORS
AstNode* nodep() const VL_MT_STABLE { return m_nodep; }
AstScope* scopep() const VL_MT_STABLE { return m_scopep; }
AstSenTree* hybridp() const { return m_hybridp; }
// LCOV_EXCL_START // Debug code
string name() const override VL_MT_STABLE {
return (cvtToHex(m_nodep) + "\\n " + cvtToStr(nodep()->typeName()));
}
string dotShape() const override { return VN_IS(m_nodep, Active) ? "doubleoctagon" : "rect"; }
// LCOV_EXCL_STOP
};
class OrderVarVertex VL_NOT_FINAL : public OrderEitherVertex {
VL_RTTI_IMPL(OrderVarVertex, OrderEitherVertex)
AstVarScope* const m_vscp;
public:
// CONSTRUCTOR
OrderVarVertex(OrderGraph* graphp, AstVarScope* vscp) VL_MT_DISABLED
: OrderEitherVertex{graphp, nullptr},
m_vscp{vscp} {}
~OrderVarVertex() override = default;
// ACCESSORS
AstVarScope* vscp() const { return m_vscp; }
// LCOV_EXCL_START // Debug code
string dotShape() const override final { return "ellipse"; }
virtual string nameSuffix() const VL_MT_SAFE = 0;
string name() const override final VL_MT_STABLE {
return cvtToHex(m_vscp) + " " + nameSuffix() + "\\n " + m_vscp->name();
}
// LCOV_EXCL_STOP
};
class OrderVarStdVertex final : public OrderVarVertex {
VL_RTTI_IMPL(OrderVarStdVertex, OrderVarVertex)
public:
// CONSTRUCTOR
OrderVarStdVertex(OrderGraph* graphp, AstVarScope* vscp) VL_MT_DISABLED
: OrderVarVertex{graphp, vscp} {}
~OrderVarStdVertex() override = default;
// METHODS
bool domainMatters() override { return true; }
// LCOV_EXCL_START // Debug code
string nameSuffix() const override VL_MT_SAFE { return ""; }
string dotColor() const override { return "grey"; }
// LCOV_EXCL_STOP
};
class OrderVarPreVertex final : public OrderVarVertex {
VL_RTTI_IMPL(OrderVarPreVertex, OrderVarVertex)
public:
// CONSTRUCTOR
OrderVarPreVertex(OrderGraph* graphp, AstVarScope* vscp) VL_MT_DISABLED
: OrderVarVertex{graphp, vscp} {}
~OrderVarPreVertex() override = default;
// METHODS
bool domainMatters() override { return false; }
// LCOV_EXCL_START // Debug code
string nameSuffix() const override VL_MT_SAFE { return "PRE"; }
string dotColor() const override { return "green"; }
// LCOV_EXCL_STOP
};
class OrderVarPostVertex final : public OrderVarVertex {
VL_RTTI_IMPL(OrderVarPostVertex, OrderVarVertex)
public:
// CONSTRUCTOR
OrderVarPostVertex(OrderGraph* graphp, AstVarScope* vscp) VL_MT_DISABLED
: OrderVarVertex{graphp, vscp} {}
~OrderVarPostVertex() override = default;
// METHODS
bool domainMatters() override { return false; }
// LCOV_EXCL_START // Debug code
string nameSuffix() const override VL_MT_SAFE { return "POST"; }
string dotColor() const override { return "red"; }
// LCOV_EXCL_STOP
};
class OrderVarPordVertex final : public OrderVarVertex {
VL_RTTI_IMPL(OrderVarPordVertex, OrderVarVertex)
public:
// CONSTRUCTOR
OrderVarPordVertex(OrderGraph* graphp, AstVarScope* vscp) VL_MT_DISABLED
: OrderVarVertex{graphp, vscp} {}
~OrderVarPordVertex() override = default;
// METHODS
bool domainMatters() override { return false; }
// LCOV_EXCL_START // Debug code
string nameSuffix() const override VL_MT_SAFE { return "PORD"; }
string dotColor() const override { return "blue"; }
// LCOV_EXCL_STOP
};
//======================================================================
// Edge type
class OrderEdge final : public V3GraphEdge {
VL_RTTI_IMPL(OrderEdge, V3GraphEdge)
friend class OrderGraph; // Only the OrderGraph can create these
// CONSTRUCTOR
OrderEdge(OrderGraph* graphp, OrderEitherVertex* fromp, OrderEitherVertex* top, int weight,
bool cutable) VL_MT_DISABLED : V3GraphEdge{graphp, fromp, top, weight, cutable} {}
~OrderEdge() override = default;
// LCOV_EXCL_START // Debug code
string dotColor() const override { return cutable() ? "green" : "red"; }
// LCOV_EXCL_STOP
};
//======================================================================
// Inline methods
void OrderGraph::addHardEdge(OrderLogicVertex* fromp, OrderVarVertex* top,
int weight) VL_MT_DISABLED {
new OrderEdge{this, fromp, top, weight, /* cutable: */ false};
}
void OrderGraph::addHardEdge(OrderVarVertex* fromp, OrderLogicVertex* top,
int weight) VL_MT_DISABLED {
new OrderEdge{this, fromp, top, weight, /* cutable: */ false};
}
void OrderGraph::addSoftEdge(OrderLogicVertex* fromp, OrderVarVertex* top,
int weight) VL_MT_DISABLED {
new OrderEdge{this, fromp, top, weight, /* cutable: */ true};
}
void OrderGraph::addSoftEdge(OrderVarVertex* fromp, OrderLogicVertex* top,
int weight) VL_MT_DISABLED {
new OrderEdge{this, fromp, top, weight, /* cutable: */ true};
}
#endif // Guard