verilator/include/verilated_trace_imp.h
Geza Lore b51f887567
Perform VCD tracing in parallel when using --threads (#3449)
VCD tracing is now parallelized using the same thread pool as the model.
We achieve this by breaking the top level trace functions into multiple
top level functions (as many as --threads), and after emitting the time
stamp to the VCD file on the main thread, we execute the tracing
functions in parallel on the same thread pool as the model (which we
pass to the trace file during registration), tracing into a secondary
per thread buffer. The main thread will then stitch (memcpy) the buffers
together into the output file.

This makes the `--trace-threads` option redundant with `--trace`, which
now only affects `--trace-fst`. FST tracing uses the previous offloading
scheme.

This obviously helps a lot in VCD tracing performance, and I have seen
better than Amdahl speedup, namely I get 3.9x on XiangShan 4T (2.7x on
OpenTitan 4T).
2022-05-29 19:08:39 +01:00

839 lines
33 KiB
C++

// -*- mode: C++; c-file-style: "cc-mode" -*-
//=============================================================================
//
// Code available from: https://verilator.org
//
// Copyright 2001-2022 by Wilson Snyder. This program is free software; you
// can redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//=============================================================================
//
// Verilated tracing implementation code template common to all formats.
// This file is included by the format specific implementations and
// should not be used otherwise.
//
//=============================================================================
// clang-format off
#ifndef VL_CPPCHECK
#if !defined(VL_SUB_T) || !defined(VL_BUF_T)
# error "This file should be included in trace format implementations"
#endif
#include "verilated_intrinsics.h"
#include "verilated_trace.h"
#ifdef VL_TRACE_PARALLEL
# include "verilated_threads.h"
# include <list>
#endif
#if 0
# include <iostream>
# define VL_TRACE_OFFLOAD_DEBUG(msg) std::cout << "TRACE OFFLOAD THREAD: " << msg << std::endl
#else
# define VL_TRACE_OFFLOAD_DEBUG(msg)
#endif
// clang-format on
//=============================================================================
// Static utility functions
static double timescaleToDouble(const char* unitp) {
char* endp = nullptr;
double value = std::strtod(unitp, &endp);
// On error so we allow just "ns" to return 1e-9.
if (value == 0.0 && endp == unitp) value = 1;
unitp = endp;
for (; *unitp && std::isspace(*unitp); unitp++) {}
switch (*unitp) {
case 's': value *= 1e0; break;
case 'm': value *= 1e-3; break;
case 'u': value *= 1e-6; break;
case 'n': value *= 1e-9; break;
case 'p': value *= 1e-12; break;
case 'f': value *= 1e-15; break;
case 'a': value *= 1e-18; break;
}
return value;
}
static std::string doubleToTimescale(double value) {
const char* suffixp = "s";
// clang-format off
if (value >= 1e0) { suffixp = "s"; value *= 1e0; }
else if (value >= 1e-3 ) { suffixp = "ms"; value *= 1e3; }
else if (value >= 1e-6 ) { suffixp = "us"; value *= 1e6; }
else if (value >= 1e-9 ) { suffixp = "ns"; value *= 1e9; }
else if (value >= 1e-12) { suffixp = "ps"; value *= 1e12; }
else if (value >= 1e-15) { suffixp = "fs"; value *= 1e15; }
else if (value >= 1e-18) { suffixp = "as"; value *= 1e18; }
// clang-format on
char valuestr[100];
VL_SNPRINTF(valuestr, 100, "%0.0f%s", value, suffixp);
return valuestr; // Gets converted to string, so no ref to stack
}
#ifdef VL_TRACE_OFFLOAD
//=========================================================================
// Buffer management
template <> uint32_t* VerilatedTrace<VL_SUB_T, VL_BUF_T>::getOffloadBuffer() {
uint32_t* bufferp;
// Some jitter is expected, so some number of alternative offlaod buffers are
// required, but don't allocate more than 8 buffers.
if (m_numOffloadBuffers < 8) {
// Allocate a new buffer if none is available
if (!m_offloadBuffersFromWorker.tryGet(bufferp)) {
++m_numOffloadBuffers;
// Note: over allocate a bit so pointer comparison is well defined
// if we overflow only by a small amount
bufferp = new uint32_t[m_offloadBufferSize + 16];
}
} else {
// Block until a buffer becomes available
bufferp = m_offloadBuffersFromWorker.get();
}
return bufferp;
}
template <> void VerilatedTrace<VL_SUB_T, VL_BUF_T>::waitForOffloadBuffer(const uint32_t* buffp) {
// Slow path code only called on flush/shutdown, so use a simple algorithm.
// Collect buffers from worker and stash them until we get the one we want.
std::deque<uint32_t*> stash;
do { stash.push_back(m_offloadBuffersFromWorker.get()); } while (stash.back() != buffp);
// Now put them back in the queue, in the original order.
while (!stash.empty()) {
m_offloadBuffersFromWorker.put_front(stash.back());
stash.pop_back();
}
}
//=========================================================================
// Worker thread
template <> void VerilatedTrace<VL_SUB_T, VL_BUF_T>::offloadWorkerThreadMain() {
bool shutdown = false;
do {
uint32_t* const bufferp = m_offloadBuffersToWorker.get();
VL_TRACE_OFFLOAD_DEBUG("");
VL_TRACE_OFFLOAD_DEBUG("Got buffer: " << bufferp);
const uint32_t* readp = bufferp;
std::unique_ptr<VL_BUF_T> traceBufp; // We own the passed tracebuffer
while (true) {
const uint32_t cmd = readp[0];
const uint32_t top = cmd >> 4;
// Always set this up, as it is almost always needed
uint32_t* const oldp = m_sigs_oldvalp + readp[1];
// Note this increment needs to be undone on commands which do not
// actually contain a code, but those are the rare cases.
readp += 2;
switch (cmd & 0xF) {
//===
// CHG_* commands
case VerilatedTraceOffloadCommand::CHG_BIT_0:
VL_TRACE_OFFLOAD_DEBUG("Command CHG_BIT_0 " << top);
traceBufp->chgBitImpl(oldp, 0);
continue;
case VerilatedTraceOffloadCommand::CHG_BIT_1:
VL_TRACE_OFFLOAD_DEBUG("Command CHG_BIT_1 " << top);
traceBufp->chgBitImpl(oldp, 1);
continue;
case VerilatedTraceOffloadCommand::CHG_CDATA:
VL_TRACE_OFFLOAD_DEBUG("Command CHG_CDATA " << top);
// Bits stored in bottom byte of command
traceBufp->chgCDataImpl(oldp, *readp, top);
readp += 1;
continue;
case VerilatedTraceOffloadCommand::CHG_SDATA:
VL_TRACE_OFFLOAD_DEBUG("Command CHG_SDATA " << top);
// Bits stored in bottom byte of command
traceBufp->chgSDataImpl(oldp, *readp, top);
readp += 1;
continue;
case VerilatedTraceOffloadCommand::CHG_IDATA:
VL_TRACE_OFFLOAD_DEBUG("Command CHG_IDATA " << top);
// Bits stored in bottom byte of command
traceBufp->chgIDataImpl(oldp, *readp, top);
readp += 1;
continue;
case VerilatedTraceOffloadCommand::CHG_QDATA:
VL_TRACE_OFFLOAD_DEBUG("Command CHG_QDATA " << top);
// Bits stored in bottom byte of command
traceBufp->chgQDataImpl(oldp, *reinterpret_cast<const QData*>(readp), top);
readp += 2;
continue;
case VerilatedTraceOffloadCommand::CHG_WDATA:
VL_TRACE_OFFLOAD_DEBUG("Command CHG_WDATA " << top);
traceBufp->chgWDataImpl(oldp, readp, top);
readp += VL_WORDS_I(top);
continue;
case VerilatedTraceOffloadCommand::CHG_DOUBLE:
VL_TRACE_OFFLOAD_DEBUG("Command CHG_DOUBLE " << top);
traceBufp->chgDoubleImpl(oldp, *reinterpret_cast<const double*>(readp));
readp += 2;
continue;
//===
// Rare commands
case VerilatedTraceOffloadCommand::TIME_CHANGE:
VL_TRACE_OFFLOAD_DEBUG("Command TIME_CHANGE " << top);
readp -= 1; // No code in this command, undo increment
emitTimeChange(*reinterpret_cast<const uint64_t*>(readp));
readp += 2;
continue;
case VerilatedTraceOffloadCommand::TRACE_BUFFER:
VL_TRACE_OFFLOAD_DEBUG("Command TRACE_BUFFER " << top);
readp -= 1; // No code in this command, undo increment
traceBufp.reset(*reinterpret_cast<VL_BUF_T* const*>(readp));
readp += 2;
continue;
//===
// Commands ending this buffer
case VerilatedTraceOffloadCommand::END: //
VL_TRACE_OFFLOAD_DEBUG("Command END");
break;
case VerilatedTraceOffloadCommand::SHUTDOWN:
VL_TRACE_OFFLOAD_DEBUG("Command SHUTDOWN");
shutdown = true;
break;
//===
// Unknown command
default: { // LCOV_EXCL_START
VL_TRACE_OFFLOAD_DEBUG("Command UNKNOWN " << cmd);
VL_FATAL_MT(__FILE__, __LINE__, "", "Unknown trace command");
break;
} // LCOV_EXCL_STOP
}
// The above switch will execute 'continue' when necessary,
// so if we ever reach here, we are done with the buffer.
break;
}
VL_TRACE_OFFLOAD_DEBUG("Returning buffer");
// Return buffer
m_offloadBuffersFromWorker.put(bufferp);
} while (VL_LIKELY(!shutdown));
}
template <> void VerilatedTrace<VL_SUB_T, VL_BUF_T>::shutdownOffloadWorker() {
// If the worker thread is not running, done..
if (!m_workerThread) return;
// Hand an buffer with a shutdown command to the worker thread
uint32_t* const bufferp = getOffloadBuffer();
bufferp[0] = VerilatedTraceOffloadCommand::SHUTDOWN;
m_offloadBuffersToWorker.put(bufferp);
// Wait for it to return
waitForOffloadBuffer(bufferp);
// Join the thread and delete it
m_workerThread->join();
m_workerThread.reset(nullptr);
}
#endif
//=============================================================================
// Life cycle
template <> void VerilatedTrace<VL_SUB_T, VL_BUF_T>::closeBase() {
#ifdef VL_TRACE_OFFLOAD
shutdownOffloadWorker();
while (m_numOffloadBuffers) {
delete[] m_offloadBuffersFromWorker.get();
--m_numOffloadBuffers;
}
#endif
}
template <> void VerilatedTrace<VL_SUB_T, VL_BUF_T>::flushBase() {
#ifdef VL_TRACE_OFFLOAD
// Hand an empty buffer to the worker thread
uint32_t* const bufferp = getOffloadBuffer();
*bufferp = VerilatedTraceOffloadCommand::END;
m_offloadBuffersToWorker.put(bufferp);
// Wait for it to be returned. As the processing is in-order,
// this ensures all previous buffers have been processed.
waitForOffloadBuffer(bufferp);
#endif
}
//=============================================================================
// Callbacks to run on global events
template <> void VerilatedTrace<VL_SUB_T, VL_BUF_T>::onFlush(void* selfp) {
// This calls 'flush' on the derived class (which must then get any mutex)
reinterpret_cast<VL_SUB_T*>(selfp)->flush();
}
template <> void VerilatedTrace<VL_SUB_T, VL_BUF_T>::onExit(void* selfp) {
// This calls 'close' on the derived class (which must then get any mutex)
reinterpret_cast<VL_SUB_T*>(selfp)->close();
}
//=============================================================================
// VerilatedTrace
template <> VerilatedTrace<VL_SUB_T, VL_BUF_T>::VerilatedTrace() {
set_time_unit(Verilated::threadContextp()->timeunitString());
set_time_resolution(Verilated::threadContextp()->timeprecisionString());
}
template <> VerilatedTrace<VL_SUB_T, VL_BUF_T>::~VerilatedTrace() {
if (m_sigs_oldvalp) VL_DO_CLEAR(delete[] m_sigs_oldvalp, m_sigs_oldvalp = nullptr);
if (m_sigs_enabledp) VL_DO_CLEAR(delete[] m_sigs_enabledp, m_sigs_enabledp = nullptr);
Verilated::removeFlushCb(VerilatedTrace<VL_SUB_T, VL_BUF_T>::onFlush, this);
Verilated::removeExitCb(VerilatedTrace<VL_SUB_T, VL_BUF_T>::onExit, this);
#ifdef VL_TRACE_OFFLOAD
closeBase();
#endif
}
//=========================================================================
// Internals available to format specific implementations
template <> void VerilatedTrace<VL_SUB_T, VL_BUF_T>::traceInit() VL_MT_UNSAFE {
// Note: It is possible to re-open a trace file (VCD in particular),
// so we must reset the next code here, but it must have the same number
// of codes on re-open
const uint32_t expectedCodes = nextCode();
m_nextCode = 1;
m_numSignals = 0;
m_maxBits = 0;
m_sigs_enabledVec.clear();
// Call all initialize callbacks, which will:
// - Call decl* for each signal (these eventually call ::declCode)
// - Store the base code
for (uint32_t i = 0; i < m_initCbs.size(); ++i) {
const CallbackRecord& cbr = m_initCbs[i];
cbr.m_initCb(cbr.m_userp, self(), nextCode());
}
if (expectedCodes && nextCode() != expectedCodes) {
VL_FATAL_MT(__FILE__, __LINE__, "",
"Reopening trace file with different number of signals");
}
// Now that we know the number of codes, allocate space for the buffer
// holding previous signal values.
if (!m_sigs_oldvalp) m_sigs_oldvalp = new uint32_t[nextCode()];
// Apply enables
if (m_sigs_enabledp) VL_DO_CLEAR(delete[] m_sigs_enabledp, m_sigs_enabledp = nullptr);
if (!m_sigs_enabledVec.empty()) {
// Else if was empty, m_sigs_enabledp = nullptr to short circuit tests
// But it isn't, so alloc one bit for each code to indicate enablement
// We don't want to still use m_signs_enabledVec as std::vector<bool> is not
// guarenteed to be fast
m_sigs_enabledp = new uint32_t[1 + VL_WORDS_I(nextCode())]{0};
m_sigs_enabledVec.reserve(nextCode());
for (size_t code = 0; code < nextCode(); ++code) {
if (m_sigs_enabledVec[code]) {
m_sigs_enabledp[VL_BITWORD_I(code)] |= 1U << VL_BITBIT_I(code);
}
}
m_sigs_enabledVec.clear();
}
// Set callback so flush/abort will flush this file
Verilated::addFlushCb(VerilatedTrace<VL_SUB_T, VL_BUF_T>::onFlush, this);
Verilated::addExitCb(VerilatedTrace<VL_SUB_T, VL_BUF_T>::onExit, this);
#ifdef VL_TRACE_OFFLOAD
// Compute offload buffer size. we need to be able to store a new value for
// each signal, which is 'nextCode()' entries after the init callbacks
// above have been run, plus up to 2 more words of metadata per signal,
// plus fixed overhead of 1 for a termination flag and 3 for a time stamp
// update.
m_offloadBufferSize = nextCode() + numSignals() * 2 + 4;
// Start the worker thread
m_workerThread.reset(
new std::thread{&VerilatedTrace<VL_SUB_T, VL_BUF_T>::offloadWorkerThreadMain, this});
#endif
}
template <>
bool VerilatedTrace<VL_SUB_T, VL_BUF_T>::declCode(uint32_t code, const char* namep, uint32_t bits,
bool tri) {
if (VL_UNCOVERABLE(!code)) {
VL_FATAL_MT(__FILE__, __LINE__, "", "Internal: internal trace problem, code 0 is illegal");
}
// To keep it simple, this is O(enables * signals), but we expect few enables
std::string declName = namePrefix() + namep;
bool enabled = false;
if (m_dumpvars.empty()) enabled = true;
for (const auto& item : m_dumpvars) {
const int dumpvarsLevel = item.first;
const char* dvp = item.second.c_str();
const char* np = declName.c_str();
while (*dvp && *dvp == *np) {
++dvp;
++np;
}
if (*dvp) continue; // Didn't match dumpvar item
if (*np && *np != ' ') continue; // e.g. "t" isn't a match for "top"
int levels = 0;
while (*np) {
if (*np++ == ' ') ++levels;
}
if (levels > dumpvarsLevel) continue; // Too deep
// We only need to set first code word if it's a multicode signal
// as that's all we'll check for later
if (m_sigs_enabledVec.size() <= code) m_sigs_enabledVec.resize((code + 1024) * 2);
m_sigs_enabledVec[code] = true;
enabled = true;
break;
}
// Note: The tri-state flag is not used by Verilator, but is here for
// compatibility with some foreign code.
int codesNeeded = VL_WORDS_I(bits);
if (tri) codesNeeded *= 2;
m_nextCode = std::max(m_nextCode, code + codesNeeded);
++m_numSignals;
m_maxBits = std::max(m_maxBits, bits);
return enabled;
}
//=========================================================================
// Internals available to format specific implementations
template <> std::string VerilatedTrace<VL_SUB_T, VL_BUF_T>::timeResStr() const {
return doubleToTimescale(m_timeRes);
}
//=========================================================================
// External interface to client code
template <> void VerilatedTrace<VL_SUB_T, VL_BUF_T>::set_time_unit(const char* unitp) VL_MT_SAFE {
m_timeUnit = timescaleToDouble(unitp);
}
template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::set_time_unit(const std::string& unit) VL_MT_SAFE {
set_time_unit(unit.c_str());
}
template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::set_time_resolution(const char* unitp) VL_MT_SAFE {
m_timeRes = timescaleToDouble(unitp);
}
template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::set_time_resolution(const std::string& unit) VL_MT_SAFE {
set_time_resolution(unit.c_str());
}
template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::dumpvars(int level, const std::string& hier) VL_MT_SAFE {
if (level == 0) {
m_dumpvars.clear(); // empty = everything on
} else {
// Convert Verilog . separators to trace space separators
std::string hierSpaced = hier;
for (auto& i : hierSpaced) {
if (i == '.') i = ' ';
}
m_dumpvars.push_back(std::make_pair(level, hierSpaced));
}
}
#ifdef VL_TRACE_PARALLEL
template <> //
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::parallelWorkerTask(void* datap, bool) {
ParallelWorkerData* const wdp = reinterpret_cast<ParallelWorkerData*>(datap);
// Run the task
wdp->m_cb(wdp->m_userp, wdp->m_bufp);
// Mark buffer as ready
const VerilatedLockGuard lock{wdp->m_mutex};
wdp->m_ready.store(true);
if (wdp->m_waiting) wdp->m_cv.notify_one();
}
template <> VL_ATTR_NOINLINE void VerilatedTrace<VL_SUB_T, VL_BUF_T>::ParallelWorkerData::wait() {
// Spin for a while, waiting for the buffer to become ready
for (int i = 0; i < VL_LOCK_SPINS; ++i) {
if (VL_LIKELY(m_ready.load(std::memory_order_relaxed))) return;
VL_CPU_RELAX();
}
// We have been spinning for a while, so yield the thread
VerilatedLockGuard lock{m_mutex};
m_waiting = true;
m_cv.wait(lock, [this] { return m_ready.load(std::memory_order_relaxed); });
m_waiting = false;
}
#endif
template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::runParallelCallbacks(const ParallelCallbackMap& cbMap) {
for (VlThreadPool* threadPoolp : m_threadPoolps) {
#ifdef VL_TRACE_PARALLEL
// If tracing in parallel, dispatch to the thread pool (if exists)
if (threadPoolp && threadPoolp->numThreads()) {
// List of work items for thread (std::list, as ParallelWorkerData is not movable)
std::list<ParallelWorkerData> workerData;
// We use the whole pool + the main thread
const unsigned threads = threadPoolp->numThreads() + 1;
// Main thread executes all jobs with index % threads == 0
std::vector<ParallelWorkerData*> mainThreadWorkerData;
// The tracing callbacks to execute on this thread-pool
const auto& cbVec = cbMap.at(threadPoolp);
// Enuque all the jobs
for (unsigned i = 0; i < cbVec.size(); ++i) {
const CallbackRecord& cbr = cbVec[i];
// Always get the trace buffer on the main thread
Buffer* const bufp = getTraceBuffer();
// Create new work item
workerData.emplace_back(cbr.m_dumpCb, cbr.m_userp, bufp);
// Grab the new work item
ParallelWorkerData* const itemp = &workerData.back();
// Enqueue task to thread pool, or main thread
if (unsigned rem = i % threads) {
threadPoolp->workerp(rem - 1)->addTask(parallelWorkerTask, itemp, false);
} else {
mainThreadWorkerData.push_back(itemp);
}
}
// Execute main thead jobs
for (ParallelWorkerData* const itemp : mainThreadWorkerData) {
parallelWorkerTask(itemp, false);
}
// Commit all trace buffers in order
for (ParallelWorkerData& item : workerData) {
// Wait until ready
item.wait();
// Commit the buffer
commitTraceBuffer(item.m_bufp);
}
continue;
}
#endif
// Fall back on sequential execution
for (const CallbackRecord& cbr : cbMap.at(threadPoolp)) {
Buffer* const traceBufferp = getTraceBuffer();
cbr.m_dumpCb(cbr.m_userp, traceBufferp);
commitTraceBuffer(traceBufferp);
}
}
}
template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::dump(uint64_t timeui) VL_MT_SAFE_EXCLUDES(m_mutex) {
// Not really VL_MT_SAFE but more VL_MT_UNSAFE_ONE.
// This does get the mutex, but if multiple threads are trying to dump
// chances are the data being dumped will have other problems
const VerilatedLockGuard lock{m_mutex};
if (VL_UNCOVERABLE(m_timeLastDump && timeui <= m_timeLastDump)) { // LCOV_EXCL_START
VL_PRINTF_MT("%%Warning: previous dump at t=%" PRIu64 ", requesting t=%" PRIu64
", dump call ignored\n",
m_timeLastDump, timeui);
return;
} // LCOV_EXCL_STOP
m_timeLastDump = timeui;
Verilated::quiesce();
// Call hook for format specific behaviour
if (VL_UNLIKELY(m_fullDump)) {
if (!preFullDump()) return;
} else {
if (!preChangeDump()) return;
}
#ifdef VL_TRACE_OFFLOAD
// Currently only incremental dumps run on the worker thread
uint32_t* bufferp = nullptr;
if (VL_LIKELY(!m_fullDump)) {
// Get the offload buffer we are about to fill
bufferp = getOffloadBuffer();
m_offloadBufferWritep = bufferp;
m_offloadBufferEndp = bufferp + m_offloadBufferSize;
// Tell worker to update time point
m_offloadBufferWritep[0] = VerilatedTraceOffloadCommand::TIME_CHANGE;
*reinterpret_cast<uint64_t*>(m_offloadBufferWritep + 1) = timeui;
m_offloadBufferWritep += 3;
} else {
// Update time point
flushBase();
emitTimeChange(timeui);
}
#else
// Update time point
emitTimeChange(timeui);
#endif
// Run the callbacks
if (VL_UNLIKELY(m_fullDump)) {
m_fullDump = false; // No more need for next dump to be full
runParallelCallbacks(m_fullCbs);
} else {
runParallelCallbacks(m_chgCbs);
}
for (uint32_t i = 0; i < m_cleanupCbs.size(); ++i) {
const CallbackRecord& cbr = m_cleanupCbs[i];
cbr.m_cleanupCb(cbr.m_userp, self());
}
#ifdef VL_TRACE_OFFLOAD
if (VL_LIKELY(bufferp)) {
// Mark end of the offload buffer we just filled
*m_offloadBufferWritep++ = VerilatedTraceOffloadCommand::END;
// Assert no buffer overflow
assert(m_offloadBufferWritep - bufferp <= m_offloadBufferSize);
// Pass it to the worker thread
m_offloadBuffersToWorker.put(bufferp);
}
#endif
}
//=============================================================================
// Non-hot path internal interface to Verilator generated code
template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::addThreadPool(VlThreadPool* threadPoolp)
VL_MT_SAFE_EXCLUDES(m_mutex) {
const VerilatedLockGuard lock{m_mutex};
for (VlThreadPool* const poolp : m_threadPoolps) {
if (poolp == threadPoolp) return;
}
m_threadPoolps.push_back(threadPoolp);
}
template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::addCallbackRecord(std::vector<CallbackRecord>& cbVec,
CallbackRecord& cbRec)
VL_MT_SAFE_EXCLUDES(m_mutex) {
const VerilatedLockGuard lock{m_mutex};
if (VL_UNCOVERABLE(timeLastDump() != 0)) { // LCOV_EXCL_START
const std::string msg = (std::string{"Internal: "} + __FILE__ + "::" + __FUNCTION__
+ " called with already open file");
VL_FATAL_MT(__FILE__, __LINE__, "", msg.c_str());
} // LCOV_EXCL_STOP
cbVec.push_back(cbRec);
}
template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::addInitCb(initCb_t cb, void* userp) VL_MT_SAFE {
CallbackRecord cbr{cb, userp};
addCallbackRecord(m_initCbs, cbr);
}
template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::addFullCb(dumpCb_t cb, void* userp,
VlThreadPool* threadPoolp) VL_MT_SAFE {
CallbackRecord cbr{cb, userp};
addThreadPool(threadPoolp);
addCallbackRecord(m_fullCbs[threadPoolp], cbr);
}
template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::addChgCb(dumpCb_t cb, void* userp,
VlThreadPool* threadPoolp) VL_MT_SAFE {
CallbackRecord cbr{cb, userp};
addThreadPool(threadPoolp);
addCallbackRecord(m_chgCbs[threadPoolp], cbr);
}
template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::addCleanupCb(cleanupCb_t cb, void* userp) VL_MT_SAFE {
CallbackRecord cbr{cb, userp};
addCallbackRecord(m_cleanupCbs, cbr);
}
template <> void VerilatedTrace<VL_SUB_T, VL_BUF_T>::pushNamePrefix(const std::string& prefix) {
m_namePrefixStack.push_back(m_namePrefixStack.back() + prefix);
}
template <> void VerilatedTrace<VL_SUB_T, VL_BUF_T>::popNamePrefix(unsigned count) {
while (count--) m_namePrefixStack.pop_back();
assert(!m_namePrefixStack.empty());
}
//=========================================================================
// Primitives converting binary values to strings...
// All of these take a destination pointer where the string will be emitted,
// and a value to convert. There are a couple of variants for efficiency.
static inline void cvtCDataToStr(char* dstp, CData value) {
#ifdef VL_HAVE_SSE2
// Similar to cvtSDataToStr but only the bottom 8 byte lanes are used
const __m128i a = _mm_cvtsi32_si128(value);
const __m128i b = _mm_unpacklo_epi8(a, a);
const __m128i c = _mm_shufflelo_epi16(b, 0);
const __m128i m = _mm_set1_epi64x(0x0102040810204080);
const __m128i d = _mm_cmpeq_epi8(_mm_and_si128(c, m), m);
const __m128i result = _mm_sub_epi8(_mm_set1_epi8('0'), d);
_mm_storel_epi64(reinterpret_cast<__m128i*>(dstp), result);
#else
dstp[0] = '0' | static_cast<char>((value >> 7) & 1);
dstp[1] = '0' | static_cast<char>((value >> 6) & 1);
dstp[2] = '0' | static_cast<char>((value >> 5) & 1);
dstp[3] = '0' | static_cast<char>((value >> 4) & 1);
dstp[4] = '0' | static_cast<char>((value >> 3) & 1);
dstp[5] = '0' | static_cast<char>((value >> 2) & 1);
dstp[6] = '0' | static_cast<char>((value >> 1) & 1);
dstp[7] = '0' | static_cast<char>(value & 1);
#endif
}
static inline void cvtSDataToStr(char* dstp, SData value) {
#ifdef VL_HAVE_SSE2
// We want each bit in the 16-bit input value to end up in a byte lane
// within the 128-bit XMM register. Note that x86 is little-endian and we
// want the MSB of the input at the low address, so we will bit-reverse
// at the same time.
// Put value in bottom of 128-bit register a[15:0] = value
const __m128i a = _mm_cvtsi32_si128(value);
// Interleave bytes with themselves
// b[15: 0] = {2{a[ 7:0]}} == {2{value[ 7:0]}}
// b[31:16] = {2{a[15:8]}} == {2{value[15:8]}}
const __m128i b = _mm_unpacklo_epi8(a, a);
// Shuffle bottom 64 bits, note swapping high bytes with low bytes
// c[31: 0] = {2{b[31:16]}} == {4{value[15:8}}
// c[63:32] = {2{b[15: 0]}} == {4{value[ 7:0}}
const __m128i c = _mm_shufflelo_epi16(b, 0x05);
// Shuffle whole register
// d[ 63: 0] = {2{c[31: 0]}} == {8{value[15:8}}
// d[126:54] = {2{c[63:32]}} == {8{value[ 7:0}}
const __m128i d = _mm_shuffle_epi32(c, 0x50);
// Test each bit within the bytes, this sets each byte lane to 0
// if the bit for that lane is 0 and to 0xff if the bit is 1.
const __m128i m = _mm_set1_epi64x(0x0102040810204080);
const __m128i e = _mm_cmpeq_epi8(_mm_and_si128(d, m), m);
// Convert to ASCII by subtracting the masks from ASCII '0':
// '0' - 0 is '0', '0' - -1 is '1'
const __m128i result = _mm_sub_epi8(_mm_set1_epi8('0'), e);
// Store the 16 characters to the un-aligned buffer
_mm_storeu_si128(reinterpret_cast<__m128i*>(dstp), result);
#else
cvtCDataToStr(dstp, value >> 8);
cvtCDataToStr(dstp + 8, value);
#endif
}
static inline void cvtIDataToStr(char* dstp, IData value) {
#ifdef VL_HAVE_AVX2
// Similar to cvtSDataToStr but the bottom 16-bits are processed in the
// top half of the YMM registerss
const __m256i a = _mm256_insert_epi32(_mm256_undefined_si256(), value, 0);
const __m256i b = _mm256_permute4x64_epi64(a, 0);
const __m256i s = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2,
2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3);
const __m256i c = _mm256_shuffle_epi8(b, s);
const __m256i m = _mm256_set1_epi64x(0x0102040810204080);
const __m256i d = _mm256_cmpeq_epi8(_mm256_and_si256(c, m), m);
const __m256i result = _mm256_sub_epi8(_mm256_set1_epi8('0'), d);
_mm256_storeu_si256(reinterpret_cast<__m256i*>(dstp), result);
#else
cvtSDataToStr(dstp, value >> 16);
cvtSDataToStr(dstp + 16, value);
#endif
}
static inline void cvtQDataToStr(char* dstp, QData value) {
cvtIDataToStr(dstp, value >> 32);
cvtIDataToStr(dstp + 32, value);
}
#define cvtEDataToStr cvtIDataToStr
//=========================================================================
// VerilatedTraceBuffer
template <> //
VerilatedTraceBuffer<VL_SUB_T, VL_BUF_T>::VerilatedTraceBuffer(VL_SUB_T& owner)
: m_owner{owner} {
#ifdef VL_TRACE_OFFLOAD
if (m_offloadBufferWritep) {
using This = VerilatedTraceBuffer<VL_SUB_T, VL_BUF_T>*;
// Tack on the buffer address
static_assert(2 * sizeof(uint32_t) >= sizeof(This),
"This should be enough on all plafrorms");
*m_offloadBufferWritep++ = VerilatedTraceOffloadCommand::TRACE_BUFFER;
*reinterpret_cast<This*>(m_offloadBufferWritep) = this;
m_offloadBufferWritep += 2;
}
#endif
}
// These functions must write the new value back into the old value store,
// and subsequently call the format specific emit* implementations. Note
// that this file must be included in the format specific implementation, so
// the emit* functions can be inlined for performance.
template <> //
void VerilatedTraceBuffer<VL_SUB_T, VL_BUF_T>::fullBit(uint32_t* oldp, CData newval) {
const uint32_t code = oldp - m_sigs_oldvalp;
*oldp = newval; // Still copy even if not tracing so chg doesn't call full
if (VL_UNLIKELY(m_sigs_enabledp && !(VL_BITISSET_W(m_sigs_enabledp, code)))) return;
self()->emitBit(code, newval);
}
template <>
void VerilatedTraceBuffer<VL_SUB_T, VL_BUF_T>::fullCData(uint32_t* oldp, CData newval, int bits) {
const uint32_t code = oldp - m_sigs_oldvalp;
*oldp = newval; // Still copy even if not tracing so chg doesn't call full
if (VL_UNLIKELY(m_sigs_enabledp && !(VL_BITISSET_W(m_sigs_enabledp, code)))) return;
self()->emitCData(code, newval, bits);
}
template <>
void VerilatedTraceBuffer<VL_SUB_T, VL_BUF_T>::fullSData(uint32_t* oldp, SData newval, int bits) {
const uint32_t code = oldp - m_sigs_oldvalp;
*oldp = newval; // Still copy even if not tracing so chg doesn't call full
if (VL_UNLIKELY(m_sigs_enabledp && !(VL_BITISSET_W(m_sigs_enabledp, code)))) return;
self()->emitSData(code, newval, bits);
}
template <>
void VerilatedTraceBuffer<VL_SUB_T, VL_BUF_T>::fullIData(uint32_t* oldp, IData newval, int bits) {
const uint32_t code = oldp - m_sigs_oldvalp;
*oldp = newval; // Still copy even if not tracing so chg doesn't call full
if (VL_UNLIKELY(m_sigs_enabledp && !(VL_BITISSET_W(m_sigs_enabledp, code)))) return;
self()->emitIData(code, newval, bits);
}
template <>
void VerilatedTraceBuffer<VL_SUB_T, VL_BUF_T>::fullQData(uint32_t* oldp, QData newval, int bits) {
const uint32_t code = oldp - m_sigs_oldvalp;
*reinterpret_cast<QData*>(oldp) = newval;
if (VL_UNLIKELY(m_sigs_enabledp && !(VL_BITISSET_W(m_sigs_enabledp, code)))) return;
self()->emitQData(code, newval, bits);
}
template <>
void VerilatedTraceBuffer<VL_SUB_T, VL_BUF_T>::fullWData(uint32_t* oldp, const WData* newvalp,
int bits) {
const uint32_t code = oldp - m_sigs_oldvalp;
for (int i = 0; i < VL_WORDS_I(bits); ++i) oldp[i] = newvalp[i];
if (VL_UNLIKELY(m_sigs_enabledp && !(VL_BITISSET_W(m_sigs_enabledp, code)))) return;
self()->emitWData(code, newvalp, bits);
}
template <>
void VerilatedTraceBuffer<VL_SUB_T, VL_BUF_T>::fullDouble(uint32_t* oldp, double newval) {
const uint32_t code = oldp - m_sigs_oldvalp;
*reinterpret_cast<double*>(oldp) = newval;
if (VL_UNLIKELY(m_sigs_enabledp && !(VL_BITISSET_W(m_sigs_enabledp, code)))) return;
// cppcheck-suppress invalidPointerCast
self()->emitDouble(code, newval);
}
#endif // VL_CPPCHECK