mirror of
https://github.com/verilator/verilator.git
synced 2025-01-23 14:54:15 +00:00
707 lines
25 KiB
C++
707 lines
25 KiB
C++
// -*- mode: C++; c-file-style: "cc-mode" -*-
|
|
//*************************************************************************
|
|
// DESCRIPTION: Verilator: Implementation of Christofides' algorithm to
|
|
// approximate the solution to the traveling salesman problem.
|
|
//
|
|
// ISSUES: This isn't exactly Christofides algorithm; see the TODO
|
|
// in perfectMatching(). True minimum-weight perfect matching
|
|
// would produce a better result. How much better is TBD.
|
|
//
|
|
// Code available from: http://www.veripool.org/verilator
|
|
//
|
|
//*************************************************************************
|
|
//
|
|
// This program is free software; you can redistribute it and/or modify
|
|
// it under the terms of either the GNU Lesser General Public License
|
|
// Version 3 or the Perl Artistic License Version 2.0.
|
|
//
|
|
// Verilator is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
//*************************************************************************
|
|
|
|
#include "config_build.h"
|
|
#include "verilatedos.h"
|
|
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstdlib>
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include <limits>
|
|
#include <list>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <set>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "V3Error.h"
|
|
#include "V3Global.h"
|
|
#include "V3File.h"
|
|
#include "V3Graph.h"
|
|
#include "V3TSP.h"
|
|
#include VL_INCLUDE_UNORDERED_SET
|
|
#include VL_INCLUDE_UNORDERED_MAP
|
|
|
|
//######################################################################
|
|
// Support classes
|
|
|
|
namespace V3TSP {
|
|
static unsigned edgeIdNext = 0;
|
|
|
|
static void selfTestStates();
|
|
static void selfTestString();
|
|
|
|
VL_DEBUG_FUNC; // Declare debug()
|
|
} // namespace V3TSP
|
|
|
|
// Vertex that tracks a per-vertex key
|
|
template <typename T_Key>
|
|
class TspVertexTmpl : public V3GraphVertex {
|
|
private:
|
|
T_Key m_key;
|
|
public:
|
|
TspVertexTmpl(V3Graph* graphp, const T_Key& k)
|
|
: V3GraphVertex(graphp), m_key(k) {}
|
|
virtual ~TspVertexTmpl() {}
|
|
const T_Key& key() const { return m_key; }
|
|
private:
|
|
VL_UNCOPYABLE(TspVertexTmpl);
|
|
};
|
|
|
|
// TspGraphTmpl represents a complete graph, templatized to work with
|
|
// different T_Key types.
|
|
template <typename T_Key>
|
|
class TspGraphTmpl : public V3Graph {
|
|
public:
|
|
// TYPES
|
|
typedef TspVertexTmpl<T_Key> Vertex;
|
|
|
|
// MEMBERS
|
|
typedef vl_unordered_map<T_Key, Vertex*> VMap;
|
|
VMap m_vertices; // T_Key to Vertex lookup map
|
|
|
|
// CONSTRUCTORS
|
|
TspGraphTmpl() : V3Graph() {}
|
|
virtual ~TspGraphTmpl() {}
|
|
|
|
// METHODS
|
|
void addVertex(const T_Key &key) {
|
|
typename VMap::iterator itr = m_vertices.find(key);
|
|
UASSERT(itr == m_vertices.end(), "Vertex already exists with same key");
|
|
Vertex *v = new Vertex(this, key);
|
|
m_vertices[key] = v;
|
|
}
|
|
|
|
// For purposes of TSP, we are using non-directional graphs.
|
|
// Map that onto the normally-directional V3Graph by creating
|
|
// a matched pairs of opposite-directional edges to represent
|
|
// each non-directional edge:
|
|
void addEdge(const T_Key& from, const T_Key& to, int cost) {
|
|
UASSERT(from != to, "Adding edge would form a loop");
|
|
Vertex* fp = findVertex(from);
|
|
Vertex* tp = findVertex(to);
|
|
|
|
// No need to dedup edges.
|
|
// The only time we may create duplicate edges is when
|
|
// combining the MST with the perfect-matched pairs,
|
|
// and in that case, we want to permit duplicate edges.
|
|
unsigned edgeId = ++V3TSP::edgeIdNext;
|
|
|
|
// Record the 'id' which identifies a single bidir edge
|
|
// in the user field of each V3GraphEdge:
|
|
(new V3GraphEdge(this, fp, tp, cost))->user(edgeId);
|
|
(new V3GraphEdge(this, tp, fp, cost))->user(edgeId);
|
|
}
|
|
|
|
bool empty() const { return m_vertices.empty(); }
|
|
|
|
std::list<Vertex*> keysToVertexList(const std::vector<T_Key>& odds) {
|
|
std::list<Vertex*> vertices;
|
|
for(unsigned i = 0; i < odds.size(); ++i) {
|
|
vertices.push_back(findVertex(odds.at(i)));
|
|
}
|
|
return vertices;
|
|
}
|
|
|
|
class EdgeCmp {
|
|
// Provides a deterministic compare for outgoing V3GraphEdge's
|
|
// to be used in Prim's algorithm below. Also used in the
|
|
// perfectMatching() routine.
|
|
public:
|
|
// CONSTRUCTORS
|
|
EdgeCmp() {}
|
|
// METHODS
|
|
bool operator() (const V3GraphEdge* ap, const V3GraphEdge* bp) {
|
|
int aCost = ap->weight();
|
|
int bCost = bp->weight();
|
|
// Sort first on cost, lowest cost edges first:
|
|
if (aCost < bCost) return true;
|
|
if (bCost < aCost) return false;
|
|
// Costs are equal. Compare edgeId's which should be unique.
|
|
return ap->user() < bp->user();
|
|
}
|
|
private:
|
|
VL_UNCOPYABLE(EdgeCmp);
|
|
};
|
|
|
|
static Vertex* castVertexp(V3GraphVertex* vxp) {
|
|
return dynamic_cast<Vertex*>(vxp);
|
|
}
|
|
|
|
// From *this, populate *mstp with the minimum spanning tree.
|
|
// *mstp must be initially empty.
|
|
void makeMinSpanningTree(TspGraphTmpl* mstp) {
|
|
UASSERT(mstp->empty(), "Output graph must start empty");
|
|
|
|
// Use Prim's algorithm to efficiently construct the MST.
|
|
vl_unordered_set<Vertex*> visited_set;
|
|
|
|
EdgeCmp cmp;
|
|
typedef std::set<V3GraphEdge*, EdgeCmp&> PendingEdgeSet;
|
|
// This is the set of pending edges from visited to unvisited
|
|
// nodes.
|
|
PendingEdgeSet pendingEdges(cmp);
|
|
|
|
vluint32_t vertCount = 0;
|
|
for (V3GraphVertex* vxp = verticesBeginp();
|
|
vxp; vxp = vxp->verticesNextp()) {
|
|
mstp->addVertex(castVertexp(vxp)->key());
|
|
vertCount++;
|
|
}
|
|
|
|
// Choose an arbitrary start vertex and visit it;
|
|
// all incident edges from this vertex go into a pending edge set.
|
|
Vertex* start_vertexp = castVertexp(verticesBeginp());
|
|
visited_set.insert(start_vertexp);
|
|
for (V3GraphEdge* edgep = start_vertexp->outBeginp();
|
|
edgep; edgep = edgep->outNextp()) {
|
|
pendingEdges.insert(edgep);
|
|
}
|
|
|
|
// Repeatedly find the least costly edge in the pending set.
|
|
// If it connects to an unvisited node, visit that node and update
|
|
// the pending edge set. If it connects to an already visited node,
|
|
// discard it and repeat again.
|
|
unsigned edges_made = 0;
|
|
while (!pendingEdges.empty()) {
|
|
typename PendingEdgeSet::iterator firstIt = pendingEdges.begin();
|
|
V3GraphEdge* bestEdgep = *firstIt;
|
|
pendingEdges.erase(firstIt);
|
|
|
|
// bestEdgep->fromp() should be already seen
|
|
Vertex* from_vertexp = castVertexp(bestEdgep->fromp());
|
|
UASSERT(visited_set.find(from_vertexp) != visited_set.end(), "Can't find vertex");
|
|
|
|
// If the neighbor is not yet visited, visit it and add its edges
|
|
// to the pending set.
|
|
Vertex* neighborp = castVertexp(bestEdgep->top());
|
|
if (visited_set.find(neighborp) == visited_set.end()) {
|
|
int bestCost = bestEdgep->weight();
|
|
UINFO(6, "bestCost = "<<bestCost
|
|
<<" from "<<from_vertexp->key()
|
|
<<" to "<<neighborp->key()<<endl);
|
|
|
|
// Create the edge in our output MST graph
|
|
mstp->addEdge(from_vertexp->key(), neighborp->key(), bestCost);
|
|
edges_made++;
|
|
|
|
// Mark this vertex as visited
|
|
visited_set.insert(neighborp);
|
|
|
|
// Update the pending edges with new edges
|
|
for (V3GraphEdge* edgep = neighborp->outBeginp();
|
|
edgep; edgep = edgep->outNextp()) {
|
|
pendingEdges.insert(edgep);
|
|
}
|
|
} else {
|
|
UINFO(6, "Discarding edge to already-visited neighbor "
|
|
<<neighborp->key()<<endl);
|
|
}
|
|
}
|
|
|
|
UASSERT(edges_made + 1 == vertCount, "Algorithm failed");
|
|
UASSERT(visited_set.size() == vertCount, "Algorithm failed");
|
|
}
|
|
|
|
// Populate *outp with a minimal perfect matching of *this.
|
|
// *outp must be initially empty.
|
|
void perfectMatching(const std::vector<T_Key>& oddKeys,
|
|
TspGraphTmpl* outp) {
|
|
UASSERT(outp->empty(), "Output graph must start empty");
|
|
|
|
std::list<Vertex*> odds = keysToVertexList(oddKeys);
|
|
vl_unordered_set<Vertex*> unmatchedOdds;
|
|
typedef typename std::list<Vertex*>::iterator VertexListIt;
|
|
for (VertexListIt it = odds.begin(); it != odds.end(); ++it) {
|
|
outp->addVertex((*it)->key());
|
|
unmatchedOdds.insert(*it);
|
|
}
|
|
|
|
UASSERT(odds.size() % 2 == 0, "number of odd-order nodes should be even");
|
|
|
|
// TODO: The true Chrisofides algorithm calls for minimum-weight
|
|
// perfect matching. Instead, we have a simple greedy algorithm
|
|
// which might get close to the minimum, maybe, with luck?
|
|
//
|
|
// TODO: Revisit this. It's possible to compute the true minimum in
|
|
// N*N*log(N) time using variants of the Blossom algorithm.
|
|
// Implementing Blossom looks hard, maybe we can use an existing
|
|
// open source implementation -- for example the "LEMON" library
|
|
// which has a TSP solver.
|
|
|
|
// -----
|
|
|
|
// Reuse the comparator from Prim's routine. The logic is the same
|
|
// here. Note that the two V3GraphEdge's representing a single
|
|
// bidir edge will collide in the pendingEdges set here, but this
|
|
// is OK, we'll ignore the direction on the edge anyway.
|
|
EdgeCmp cmp;
|
|
typedef std::set<V3GraphEdge*, EdgeCmp&> PendingEdgeSet;
|
|
PendingEdgeSet pendingEdges(cmp);
|
|
|
|
for (VertexListIt it = odds.begin(); it != odds.end(); ++it) {
|
|
for (V3GraphEdge* edgep = (*it)->outBeginp();
|
|
edgep; edgep = edgep->outNextp()) {
|
|
pendingEdges.insert(edgep);
|
|
}
|
|
}
|
|
|
|
// Iterate over all edges, in order from low to high cost.
|
|
// For any edge whose ends are both odd-order vertices which
|
|
// haven't been matched yet, match them.
|
|
for (typename PendingEdgeSet::iterator it = pendingEdges.begin();
|
|
it != pendingEdges.end(); ++it) {
|
|
Vertex* fromp = castVertexp((*it)->fromp());
|
|
Vertex* top = castVertexp((*it)->top());
|
|
if ((unmatchedOdds.find(fromp) != unmatchedOdds.end())
|
|
&& (unmatchedOdds.find(top) != unmatchedOdds.end())) {
|
|
outp->addEdge(fromp->key(), top->key(), (*it)->weight());
|
|
unmatchedOdds.erase(fromp);
|
|
unmatchedOdds.erase(top);
|
|
}
|
|
}
|
|
UASSERT(unmatchedOdds.empty(), "Algorithm should have processed all vertices");
|
|
}
|
|
|
|
void combineGraph(const TspGraphTmpl& g) {
|
|
vl_unordered_set<vluint32_t> edges_done;
|
|
for (V3GraphVertex* vxp = g.verticesBeginp(); vxp; vxp = vxp->verticesNextp()) {
|
|
Vertex* fromp = castVertexp(vxp);
|
|
for (V3GraphEdge* edgep = fromp->outBeginp(); edgep; edgep = edgep->outNextp()) {
|
|
Vertex* top = castVertexp(edgep->top());
|
|
if (edges_done.find(edgep->user()) == edges_done.end()) {
|
|
addEdge(fromp->key(), top->key(), edgep->weight());
|
|
edges_done.insert(edgep->user());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void findEulerTourRecurse(vl_unordered_set<unsigned>* markedEdgesp,
|
|
Vertex* startp,
|
|
std::vector<T_Key>* sortedOutp) {
|
|
Vertex* cur_vertexp = startp;
|
|
|
|
// Go on a random tour. Fun!
|
|
std::vector<Vertex*> tour;
|
|
do {
|
|
UINFO(6, "Adding "<<cur_vertexp->key()<<" to tour.\n");
|
|
tour.push_back(cur_vertexp);
|
|
|
|
// Look for an arbitrary edge we've not yet marked
|
|
for (V3GraphEdge* edgep = cur_vertexp->outBeginp();
|
|
edgep; edgep = edgep->outNextp()) {
|
|
vluint32_t edgeId = edgep->user();
|
|
if (markedEdgesp->end() == markedEdgesp->find(edgeId)) {
|
|
// This edge is not yet marked, so follow it.
|
|
markedEdgesp->insert(edgeId);
|
|
Vertex* neighborp = castVertexp(edgep->top());
|
|
UINFO(6, "following edge "<<edgeId
|
|
<<" from "<<cur_vertexp->key()
|
|
<<" to "<<neighborp->key()<<endl);
|
|
cur_vertexp = neighborp;
|
|
goto found;
|
|
}
|
|
}
|
|
v3fatalSrc("No unmarked edges found in tour");
|
|
found:
|
|
;
|
|
} while (cur_vertexp != startp);
|
|
UINFO(6, "stopped, got back to start of tour @ "<<cur_vertexp->key()<<endl);
|
|
|
|
// Look for nodes on the tour that still have
|
|
// un-marked edges. If we find one, recurse.
|
|
for (typename std::vector<Vertex*>::iterator it = tour.begin();
|
|
it != tour.end(); ++it) {
|
|
Vertex* vxp = *it;
|
|
bool recursed;
|
|
do {
|
|
recursed = false;
|
|
// Look for an arbitrary edge at vxp we've not yet marked
|
|
for (V3GraphEdge* edgep = vxp->outBeginp();
|
|
edgep; edgep = edgep->outNextp()) {
|
|
vluint32_t edgeId = edgep->user();
|
|
if (markedEdgesp->end() == markedEdgesp->find(edgeId)) {
|
|
UINFO(6, "Recursing.\n");
|
|
findEulerTourRecurse(markedEdgesp, vxp, sortedOutp);
|
|
recursed = true;
|
|
goto recursed;
|
|
}
|
|
}
|
|
recursed:
|
|
;
|
|
} while (recursed);
|
|
sortedOutp->push_back(vxp->key());
|
|
}
|
|
|
|
UINFO(6, "Tour was: ");
|
|
for (typename std::vector<Vertex*>::iterator it = tour.begin();
|
|
it != tour.end(); ++it) {
|
|
Vertex* vxp = *it;
|
|
UINFONL(6, " "<<vxp->key());
|
|
}
|
|
UINFONL(6, "\n");
|
|
}
|
|
|
|
void dumpGraph(std::ostream& os, const string& nameComment) const {
|
|
// UINFO(0) as controlled by caller
|
|
os<<"At "<<nameComment<<", dumping graph. Keys:\n";
|
|
for (V3GraphVertex* vxp = verticesBeginp(); vxp; vxp = vxp->verticesNextp()) {
|
|
Vertex* tspvp = castVertexp(vxp);
|
|
os<<" "<<tspvp->key()<<endl;
|
|
for (V3GraphEdge* edgep = tspvp->outBeginp(); edgep; edgep = edgep->outNextp()) {
|
|
Vertex* neighborp = castVertexp(edgep->top());
|
|
os<<" has edge "<<edgep->user()<<" to "<<neighborp->key()<<endl;
|
|
}
|
|
}
|
|
}
|
|
void dumpGraphFilePrefixed(const string& nameComment) const {
|
|
if (v3Global.opt.dumpTree()) {
|
|
string filename = v3Global.debugFilename(nameComment)+".txt";
|
|
const vl_unique_ptr<std::ofstream> logp(V3File::new_ofstream(filename));
|
|
if (logp->fail()) v3fatal("Can't write "<<filename);
|
|
dumpGraph(*logp, nameComment);
|
|
}
|
|
}
|
|
|
|
void findEulerTour(std::vector<T_Key>* sortedOutp) {
|
|
UASSERT(sortedOutp->empty(), "Output graph must start empty");
|
|
if (debug() >= 6) dumpDotFilePrefixed("findEulerTour");
|
|
vl_unordered_set<unsigned /*edgeID*/> markedEdges;
|
|
// Pick a start node
|
|
Vertex* start_vertexp = castVertexp(verticesBeginp());
|
|
findEulerTourRecurse(&markedEdges, start_vertexp, sortedOutp);
|
|
}
|
|
|
|
std::vector<T_Key> getOddDegreeKeys() const {
|
|
std::vector<T_Key> result;
|
|
for (V3GraphVertex* vxp = verticesBeginp(); vxp; vxp = vxp->verticesNextp()) {
|
|
Vertex* tspvp = castVertexp(vxp);
|
|
vluint32_t degree = 0;
|
|
for (V3GraphEdge* edgep = vxp->outBeginp(); edgep; edgep = edgep->outNextp()) {
|
|
degree++;
|
|
}
|
|
if (degree & 1) {
|
|
result.push_back(tspvp->key());
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
private:
|
|
Vertex* findVertex(const T_Key& key) const {
|
|
typename VMap::const_iterator it = m_vertices.find(key);
|
|
UASSERT(it != m_vertices.end(), "Vertex not found");
|
|
return it->second;
|
|
}
|
|
VL_UNCOPYABLE(TspGraphTmpl);
|
|
};
|
|
|
|
//######################################################################
|
|
// Main algorithm
|
|
|
|
void V3TSP::tspSort(const V3TSP::StateVec& states, V3TSP::StateVec* resultp) {
|
|
UASSERT(resultp->empty(), "Output graph must start empty");
|
|
|
|
// Make this TSP implementation work for graphs of size 0 or 1
|
|
// which, unfortunately, is a special case as the following
|
|
// code assumes >= 2 nodes.
|
|
if (states.size() == 0) {
|
|
return;
|
|
}
|
|
if (states.size() == 1) {
|
|
resultp->push_back(*(states.begin()));
|
|
return;
|
|
}
|
|
|
|
// Build the initial graph from the starting state set.
|
|
typedef TspGraphTmpl<const TspStateBase*> Graph;
|
|
Graph graph;
|
|
for (V3TSP::StateVec::const_iterator it = states.begin(); it != states.end(); ++it) {
|
|
graph.addVertex(*it);
|
|
}
|
|
for (V3TSP::StateVec::const_iterator it = states.begin(); it != states.end(); ++it) {
|
|
for (V3TSP::StateVec::const_iterator jt = it; jt != states.end(); ++jt) {
|
|
if (it == jt) continue;
|
|
graph.addEdge(*it, *jt, (*it)->cost(*jt));
|
|
}
|
|
}
|
|
|
|
// Create the minimum spanning tree
|
|
Graph minGraph;
|
|
graph.makeMinSpanningTree(&minGraph);
|
|
if (debug() >= 6) minGraph.dumpGraphFilePrefixed("minGraph");
|
|
|
|
std::vector<const TspStateBase*> oddDegree = minGraph.getOddDegreeKeys();
|
|
Graph matching;
|
|
graph.perfectMatching(oddDegree, &matching);
|
|
if (debug() >= 6) matching.dumpGraphFilePrefixed("matching");
|
|
|
|
// Adds edges to minGraph, the resulting graph will have even number of
|
|
// edge counts at every vertex:
|
|
minGraph.combineGraph(matching);
|
|
|
|
V3TSP::StateVec prelim_result;
|
|
minGraph.findEulerTour(&prelim_result);
|
|
|
|
UASSERT(prelim_result.size() >= states.size(), "Algorithm size error");
|
|
|
|
// Discard duplicate nodes that the Euler tour might contain.
|
|
{
|
|
vl_unordered_set<const TspStateBase*> seen;
|
|
for (V3TSP::StateVec::iterator it = prelim_result.begin();
|
|
it != prelim_result.end(); ++it) {
|
|
const TspStateBase* elemp = *it;
|
|
if (seen.find(elemp) == seen.end()) {
|
|
seen.insert(elemp);
|
|
resultp->push_back(elemp);
|
|
}
|
|
}
|
|
}
|
|
|
|
UASSERT(resultp->size() == states.size(), "Algorithm size error");
|
|
|
|
// Find the most expensive arc and rotate the list so that the most
|
|
// expensive arc connects the last and first elements. (Since we're not
|
|
// modeling something that actually cycles back, we don't need to pay
|
|
// that cost at all.)
|
|
{
|
|
unsigned max_cost = 0;
|
|
unsigned max_cost_idx = 0;
|
|
for (unsigned i = 0; i < resultp->size(); ++i) {
|
|
const TspStateBase* ap = (*resultp)[i];
|
|
const TspStateBase* bp
|
|
= (i+1 == resultp->size()) ? (*resultp)[0] : (*resultp)[i+1];
|
|
unsigned cost = ap->cost(bp);
|
|
if (cost > max_cost) {
|
|
max_cost = cost;
|
|
max_cost_idx = i;
|
|
}
|
|
}
|
|
|
|
if (max_cost_idx == resultp->size() - 1) {
|
|
// List is already rotated for minimum cost. stop.
|
|
UASSERT(resultp->size() == resultp->size(), "sizes should match");
|
|
return;
|
|
}
|
|
|
|
V3TSP::StateVec new_result;
|
|
unsigned i = max_cost_idx + 1;
|
|
UASSERT(i < resultp->size(), "Algorithm size error");
|
|
while(i != max_cost_idx) {
|
|
new_result.push_back((*resultp)[i]);
|
|
i++;
|
|
if (i >= resultp->size()) {
|
|
i = 0;
|
|
}
|
|
}
|
|
new_result.push_back((*resultp)[i]);
|
|
|
|
UASSERT(resultp->size() == new_result.size(), "Algorithm size error");
|
|
*resultp = new_result;
|
|
}
|
|
}
|
|
|
|
//######################################################################
|
|
// Self Tests
|
|
|
|
class TspTestState : public V3TSP::TspStateBase {
|
|
public:
|
|
TspTestState(unsigned xpos, unsigned ypos) :
|
|
m_xpos(xpos),
|
|
m_ypos(ypos),
|
|
m_serial(++m_serialNext) {}
|
|
~TspTestState() {}
|
|
virtual int cost(const TspStateBase* otherp) const {
|
|
return cost(dynamic_cast<const TspTestState*>(otherp));
|
|
}
|
|
static unsigned diff(unsigned a, unsigned b) {
|
|
if (a>b) return a-b;
|
|
return b-a;
|
|
}
|
|
virtual int cost(const TspTestState* otherp) const {
|
|
// For test purposes, each TspTestState is merely a point
|
|
// on the cartesian plane; cost is the linear distance
|
|
// between two points.
|
|
unsigned xabs, yabs;
|
|
xabs = diff(otherp->m_xpos, m_xpos);
|
|
yabs = diff(otherp->m_ypos, m_ypos);
|
|
return (int)(0.5 + sqrt(xabs*xabs + yabs*yabs));
|
|
}
|
|
unsigned xpos() const {
|
|
return m_xpos;
|
|
}
|
|
unsigned ypos() const {
|
|
return m_ypos;
|
|
}
|
|
|
|
bool operator< (const TspStateBase& other) const {
|
|
return operator< (dynamic_cast<const TspTestState&>(other));
|
|
}
|
|
bool operator< (const TspTestState& other) const {
|
|
return m_serial < other.m_serial;
|
|
}
|
|
private:
|
|
unsigned m_xpos;
|
|
unsigned m_ypos;
|
|
unsigned m_serial;
|
|
static unsigned m_serialNext;
|
|
};
|
|
|
|
unsigned TspTestState::m_serialNext = 0;
|
|
|
|
void V3TSP::selfTestStates() {
|
|
// Linear test -- coords all along the x-axis
|
|
{
|
|
V3TSP::StateVec states;
|
|
TspTestState s10(10,0);
|
|
TspTestState s60(60,0);
|
|
TspTestState s20(20,0);
|
|
TspTestState s100(100,0);
|
|
TspTestState s5(5,0);
|
|
states.push_back(&s10);
|
|
states.push_back(&s60);
|
|
states.push_back(&s20);
|
|
states.push_back(&s100);
|
|
states.push_back(&s5);
|
|
|
|
V3TSP::StateVec result;
|
|
tspSort(states, &result);
|
|
|
|
V3TSP::StateVec expect;
|
|
expect.push_back(&s100);
|
|
expect.push_back(&s60);
|
|
expect.push_back(&s20);
|
|
expect.push_back(&s10);
|
|
expect.push_back(&s5);
|
|
if (expect != result) {
|
|
for (V3TSP::StateVec::iterator it = result.begin();
|
|
it != result.end(); ++it) {
|
|
const TspTestState* statep = dynamic_cast<const TspTestState*>(*it);
|
|
cout<<statep->xpos()<<" ";
|
|
}
|
|
cout<<endl;
|
|
v3fatalSrc("TSP linear self-test fail. Result (above) did not match expectation.");
|
|
}
|
|
}
|
|
|
|
// Second test. Coords are distributed in 2D space.
|
|
// Test that tspSort() will rotate the list for minimum cost.
|
|
{
|
|
V3TSP::StateVec states;
|
|
TspTestState a(0,0);
|
|
TspTestState b(100,0);
|
|
TspTestState c(200,0);
|
|
TspTestState d(200,100);
|
|
TspTestState e(150,150);
|
|
TspTestState f(0,150);
|
|
TspTestState g(0,100);
|
|
|
|
states.push_back(&a);
|
|
states.push_back(&b);
|
|
states.push_back(&c);
|
|
states.push_back(&d);
|
|
states.push_back(&e);
|
|
states.push_back(&f);
|
|
states.push_back(&g);
|
|
|
|
V3TSP::StateVec result;
|
|
tspSort(states, &result);
|
|
|
|
V3TSP::StateVec expect;
|
|
expect.push_back(&f);
|
|
expect.push_back(&g);
|
|
expect.push_back(&a);
|
|
expect.push_back(&b);
|
|
expect.push_back(&c);
|
|
expect.push_back(&d);
|
|
expect.push_back(&e);
|
|
|
|
if (expect != result) {
|
|
for (V3TSP::StateVec::iterator it = result.begin();
|
|
it != result.end(); ++it) {
|
|
const TspTestState* statep = dynamic_cast<const TspTestState*>(*it);
|
|
cout<<statep->xpos()<<","<<statep->ypos()<<" ";
|
|
}
|
|
cout<<endl;
|
|
v3fatalSrc("TSP 2d cycle=false self-test fail. Result (above) did not match expectation.");
|
|
}
|
|
}
|
|
}
|
|
|
|
void V3TSP::selfTestString() {
|
|
typedef TspGraphTmpl<string> Graph;
|
|
Graph graph;
|
|
graph.addVertex("0");
|
|
graph.addVertex("1");
|
|
graph.addVertex("2");
|
|
graph.addVertex("3");
|
|
|
|
graph.addEdge("0", "1", 3943);
|
|
graph.addEdge("0", "2", 3456);
|
|
graph.addEdge("0", "3", 4920);
|
|
graph.addEdge("1", "2", 2730);
|
|
graph.addEdge("1", "3", 8199);
|
|
graph.addEdge("2", "3", 4130);
|
|
|
|
Graph minGraph;
|
|
graph.makeMinSpanningTree(&minGraph);
|
|
if (debug() >= 6) minGraph.dumpGraphFilePrefixed("minGraph");
|
|
|
|
std::vector<string> oddDegree = minGraph.getOddDegreeKeys();
|
|
Graph matching;
|
|
graph.perfectMatching(oddDegree, &matching);
|
|
if (debug() >= 6) matching.dumpGraphFilePrefixed("matching");
|
|
|
|
minGraph.combineGraph(matching);
|
|
|
|
std::vector<string> result;
|
|
minGraph.findEulerTour(&result);
|
|
|
|
std::vector<string> expect;
|
|
expect.push_back("0");
|
|
expect.push_back("2");
|
|
expect.push_back("1");
|
|
expect.push_back("2");
|
|
expect.push_back("3");
|
|
|
|
if (expect != result) {
|
|
for (std::vector<string>::iterator it = result.begin(); it != result.end(); ++it) {
|
|
cout<<*it<<" ";
|
|
}
|
|
cout<<endl;
|
|
v3fatalSrc("TSP string self-test fail. Result (above) did not match expectation.");
|
|
}
|
|
}
|
|
|
|
void V3TSP::selfTest() {
|
|
selfTestString();
|
|
selfTestStates();
|
|
}
|