verilator/src/V3Ast.cpp
2023-11-02 17:53:52 -04:00

1571 lines
63 KiB
C++

// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
// DESCRIPTION: Verilator: Ast node structures
//
// Code available from: https://verilator.org
//
//*************************************************************************
//
// Copyright 2003-2023 by Wilson Snyder. This program is free software; you
// can redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//*************************************************************************
#include "V3PchAstMT.h"
#include "V3Broken.h"
#include "V3EmitV.h"
#include "V3File.h"
#include <iomanip>
#include <memory>
VL_DEFINE_DEBUG_FUNCTIONS;
//======================================================================
// Statics
uint64_t VIsCached::s_cachedCntGbl = 1;
uint64_t AstNode::s_editCntLast = 0;
uint64_t AstNode::s_editCntGbl = 0; // Hot cache line
// To allow for fast clearing of all user pointers, we keep a "timestamp"
// along with each userp, and thus by bumping this count we can make it look
// as if we iterated across the entire tree to set all the userp's to null.
int AstNode::s_cloneCntGbl = 0;
uint32_t VNUser1InUse::s_userCntGbl = 0; // Hot cache line, leave adjacent
uint32_t VNUser2InUse::s_userCntGbl = 0; // Hot cache line, leave adjacent
uint32_t VNUser3InUse::s_userCntGbl = 0; // Hot cache line, leave adjacent
uint32_t VNUser4InUse::s_userCntGbl = 0; // Hot cache line, leave adjacent
bool VNUser1InUse::s_userBusy = false;
bool VNUser2InUse::s_userBusy = false;
bool VNUser3InUse::s_userBusy = false;
bool VNUser4InUse::s_userBusy = false;
int AstNodeDType::s_uniqueNum = 0;
//######################################################################
// VNType
const VNTypeInfo VNType::typeInfoTable[] = {
#include "V3Ast__gen_type_info.h" // From ./astgen
};
std::ostream& operator<<(std::ostream& os, VNType rhs);
//######################################################################
// VSelfPointerText
const std::shared_ptr<const string> VSelfPointerText::s_emptyp = std::make_shared<string>("");
const std::shared_ptr<const string> VSelfPointerText::s_thisp = std::make_shared<string>("this");
string VSelfPointerText::protect(bool useSelfForThis, bool protect) const {
const string& sp
= useSelfForThis ? VString::replaceWord(asString(), "this", "vlSelf") : asString();
return VIdProtect::protectWordsIf(sp, protect);
}
//######################################################################
// AstNode
AstNode::AstNode(VNType t, FileLine* fl)
: m_type{t}
, m_fileline{fl} {
m_headtailp = this; // When made, we're a list of only a single element
// Attributes
m_flags.didWidth = false;
m_flags.doingWidth = false;
m_flags.protect = true;
m_flags.unused = 0; // Initializing this avoids a read-modify-write on construction
editCountInc();
}
AstNode* AstNode::abovep() const {
// m_headtailp only valid at beginning or end of list
// Avoid supporting at other locations as would require walking
// list which is likely to cause performance issues.
UASSERT_OBJ(!m_nextp || firstAbovep(), this, "abovep() not allowed when in midlist");
const AstNode* const firstp = firstAbovep() ? this : m_headtailp;
return firstp->backp();
}
string AstNode::encodeName(const string& namein) {
// Encode signal name raw from parser, then not called again on same signal
string out;
out.reserve(namein.size());
for (auto pos = namein.begin(); pos != namein.end(); ++pos) {
if ((pos == namein.begin()) ? std::isalpha(pos[0]) // digits can't lead identifiers
: std::isalnum(pos[0])) {
out += pos[0];
} else if (pos[0] == '_') {
out += pos[0];
if (pos + 1 == namein.end()) break;
if (pos[1] == '_') {
++pos;
out += "__05F"; // hex(_) = 0x5F
}
} else {
// Need the leading 0 so this will never collide with
// a user identifier nor a temp we create in Verilator.
// We also do *NOT* use __DOT__ etc, as we search for those
// in some replacements, and don't want to mangle the user's names.
const unsigned val = pos[0] & 0xff; // Mask to avoid sign extension
std::stringstream hex;
hex << std::setfill('0') << std::setw(2) << std::hex << val;
out += "__0" + hex.str();
}
}
// Shorten names
// TODO long term use VName in place of "string name"
// Then we also won't need to save the table of hashed values
VName vname{out};
return vname.hashedName();
}
string AstNode::encodeNumber(int64_t num) {
if (num < 0) {
return "__02D" + cvtToStr(-num); // 2D=-
} else {
return cvtToStr(num);
}
}
string AstNode::nameProtect() const { return VIdProtect::protectIf(name(), protect()); }
string AstNode::origNameProtect() const { return VIdProtect::protectIf(origName(), protect()); }
string AstNode::shortName() const {
string pretty = name();
string::size_type pos;
while ((pos = pretty.find("__PVT__")) != string::npos) pretty.replace(pos, 7, "");
return pretty;
}
string AstNode::dedotName(const string& namein) {
string pretty = namein;
string::size_type pos;
while ((pos = pretty.find("__DOT__")) != string::npos) pretty.replace(pos, 7, ".");
if (pretty.substr(0, 4) == "TOP.") pretty.replace(0, 4, "");
return pretty;
}
string AstNode::vcdName(const string& namein) {
// VCD tracing expects space to separate hierarchy
// Dots are reserved for dots the user put in the name
// We earlier hashed all symbols, dehash them so user sees real name
string pretty{VName::dehash(namein)};
string::size_type pos;
while ((pos = pretty.find("__DOT__")) != string::npos) pretty.replace(pos, 7, " ");
while ((pos = pretty.find('.')) != string::npos) pretty.replace(pos, 1, " ");
// Now convert escaped special characters, etc
return prettyName(pretty);
}
string AstNode::prettyName(const string& namein) VL_PURE {
// This function is somewhat hot, so we short-circuit some compares
string pretty;
pretty.reserve(namein.length());
for (const char* pos = namein.c_str(); *pos;) {
if (pos[0] == '-' && pos[1] == '>') { // ->
pretty += ".";
pos += 2;
continue;
}
if (pos[0] == '_' && pos[1] == '_') { // Short-circuit
if (0 == std::strncmp(pos, "__BRA__", 7)) {
pretty += "[";
pos += 7;
continue;
}
if (0 == std::strncmp(pos, "__KET__", 7)) {
pretty += "]";
pos += 7;
continue;
}
if (0 == std::strncmp(pos, "__DOT__", 7)) {
pretty += ".";
pos += 7;
continue;
}
if (0 == std::strncmp(pos, "__PVT__", 7)) {
pretty += "";
pos += 7;
continue;
}
if (pos[0] == '_' && pos[1] == '_' && pos[2] == '0' && std::isxdigit(pos[3])
&& std::isxdigit(pos[4])) {
char value = 0;
value += 16
* (std::isdigit(pos[3]) ? (pos[3] - '0')
: (std::tolower(pos[3]) - 'a' + 10));
value
+= (std::isdigit(pos[4]) ? (pos[4] - '0') : (std::tolower(pos[4]) - 'a' + 10));
pretty += value;
pos += 5;
continue;
}
}
// Default
pretty += pos[0];
++pos;
}
if (pretty[0] == 'T' && pretty.substr(0, 4) == "TOP.") pretty.replace(0, 4, "");
if (pretty[0] == 'T' && pretty.substr(0, 5) == "TOP->") pretty.replace(0, 5, "");
return pretty;
}
string AstNode::vpiName(const string& namein) {
// This is slightly different from prettyName, in that when we encounter escaped characters,
// we change that identifier to an escaped identifier, wrapping it with '\' and ' '
// as specified in LRM 23.6
string pretty;
pretty.reserve(namein.length());
bool inEscapedIdent = false;
int lastIdent = 0;
for (const char* pos = namein.c_str(); *pos;) {
char specialChar = 0;
if (pos[0] == '-' && pos[1] == '>') { // ->
specialChar = '.';
pos += 2;
} else if (pos[0] == '_' && pos[1] == '_') { // __
if (0 == std::strncmp(pos, "__BRA__", 7)) {
specialChar = '[';
pos += 7;
} else if (0 == std::strncmp(pos, "__KET__", 7)) {
specialChar = ']';
pos += 7;
} else if (0 == std::strncmp(pos, "__DOT__", 7)) {
specialChar = '.';
pos += 7;
} else if (0 == std::strncmp(pos, "__PVT__", 7)) {
pos += 7;
continue;
} else if (pos[0] == '_' && pos[1] == '_' && pos[2] == '0' && std::isxdigit(pos[3])
&& std::isxdigit(pos[4])) {
char value = 0;
value += 16
* (std::isdigit(pos[3]) ? (pos[3] - '0')
: (std::tolower(pos[3]) - 'a' + 10));
value
+= (std::isdigit(pos[4]) ? (pos[4] - '0') : (std::tolower(pos[4]) - 'a' + 10));
// __ doesn't always imply escaped ident
if (value != '_') inEscapedIdent = true;
pretty += value;
pos += 5;
continue;
}
} else if (pos[0] == '.') {
specialChar = '.';
++pos;
}
if (specialChar) {
if (inEscapedIdent && (specialChar == '[' || specialChar == '.')) {
pretty += " ";
pretty.insert(lastIdent, "\\");
inEscapedIdent = false;
}
pretty += specialChar;
if (specialChar == ']' || specialChar == '.') {
lastIdent = pretty.length();
inEscapedIdent = false;
}
} else {
pretty += pos[0];
++pos;
}
}
if (inEscapedIdent) {
pretty += " ";
pretty.insert(lastIdent, "\\");
}
if (pretty[0] == 'T' && pretty.substr(0, 4) == "TOP.") pretty.replace(0, 4, "");
if (pretty[0] == 'T' && pretty.substr(0, 5) == "TOP->") pretty.replace(0, 5, "");
return pretty;
}
string AstNode::prettyTypeName() const {
if (name() == "") return typeName();
return std::string{typeName()} + " '" + prettyName() + "'";
}
//######################################################################
// Insertion
void AstNode::debugTreeChange(const AstNode* nodep, const char* prefix, int lineno, bool next) {
#ifdef VL_DEBUG
// Called on all major tree changers.
// Only for use for those really nasty bugs relating to internals
// Note this may be null.
// if (debug() && nodep) cout << "-treeChange: V3Ast.cpp:" << lineno
// << " Tree Change for " << prefix << ": "
// << cvtToHex(nodep) << " <e" << AstNode::s_editCntGbl << ">"
// << "m_iterpp=" << (void*)nodep->m_iterpp << endl;
// if (debug()) {
// cout<<"-treeChange: V3Ast.cpp:"<<lineno<<" Tree Change for "<<prefix<<endl;
// // Commenting out the section below may crash, as the tree state
// // between edits is not always consistent for printing
// cout<<"-treeChange: V3Ast.cpp:"<<lineno<<" Tree Change for "<<prefix<<endl;
// v3Global.rootp()->dumpTree("- treeChange: ");
// if (next||1) nodep->dumpTreeAndNext(cout, prefix);
// else nodep->dumpTree(prefix);
// nodep->checkTree();
// v3Global.rootp()->checkTree();
//}
#endif
}
template <>
AstNode* AstNode::addNext<AstNode, AstNode>(AstNode* nodep, AstNode* newp) {
// Add to m_nextp, returns this
UDEBUGONLY(UASSERT_OBJ(newp, nodep, "Null item passed to addNext"););
debugTreeChange(nodep, "-addNextThs: ", __LINE__, false);
debugTreeChange(newp, "-addNextNew: ", __LINE__, true);
if (!nodep) { // verilog.y and lots of other places assume this
return newp;
} else {
// Find end of old list
AstNode* oldtailp = nodep;
if (oldtailp->m_nextp) {
if (oldtailp->m_headtailp) {
oldtailp = oldtailp->m_headtailp; // This=beginning of list, jump to end
UDEBUGONLY(UASSERT_OBJ(!oldtailp->m_nextp, nodep,
"Node had next, but headtail says it shouldn't"););
} else {
// Though inefficient, we are occasionally passed an
// addNext in the middle of a list.
while (oldtailp->m_nextp) oldtailp = oldtailp->m_nextp;
}
}
// Link it in
oldtailp->m_nextp = newp;
newp->m_backp = oldtailp;
// New tail needs the head
AstNode* const newtailp = newp->m_headtailp;
AstNode* const headp = oldtailp->m_headtailp;
oldtailp->m_headtailp = nullptr; // May be written again as new head
newp->m_headtailp = nullptr; // May be written again as new tail
newtailp->m_headtailp = headp;
headp->m_headtailp = newtailp;
newp->editCountInc();
// No change of m_iterpp, as only changing m_nextp of current node;
// the current node is still the one at the iteration point
}
debugTreeChange(nodep, "-addNextOut:", __LINE__, true);
return nodep;
}
void AstNode::addNextHere(AstNode* newp) {
// Add to m_nextp on exact node passed, not at the end.
// 'this' could be at head, tail, or both (single)
// 'newp' could be head of single node, or list
UASSERT(newp, "Null item passed to addNext");
UASSERT_OBJ(!newp->backp(), newp, "New node (back) already assigned?");
debugTreeChange(this, "-addHereThs: ", __LINE__, false);
debugTreeChange(newp, "-addHereNew: ", __LINE__, true);
newp->editCountInc();
AstNode* const addlastp = newp->m_headtailp; // Last node in list to be added
UASSERT_OBJ(!addlastp->m_nextp, addlastp, "Headtailp tail isn't at the tail");
// Forward links
AstNode* const oldnextp = this->m_nextp;
this->m_nextp = newp;
addlastp->m_nextp = oldnextp; // Perhaps null if 'this' is not list
// Backward links
if (oldnextp) oldnextp->m_backp = addlastp;
newp->m_backp = this;
// Head/tail
AstNode* const oldheadtailp = this->m_headtailp;
// (!oldheadtailp) // this was&is middle of list
// (oldheadtailp==this && !oldnext)// this was head AND tail (one node long list)
// (oldheadtailp && oldnextp) // this was&is head of list of not just one node, not
// tail (oldheadtailp && !oldnextp) // this was tail of list, might also
// be head of one-node list
//
newp->m_headtailp = nullptr; // Not at head any longer
addlastp->m_headtailp = nullptr; // Presume middle of list
// newp might happen to be head/tail after all, if so will be set again below
if (oldheadtailp) { // else in middle of list, no change
if (oldheadtailp == this) { // this was one node
this->m_headtailp = addlastp; // Was head/tail, now a tail
addlastp->m_headtailp = oldheadtailp; // Tail needs to remember head (or nullptr)
} else if (!oldnextp) { // this was tail
this->m_headtailp = nullptr; // No longer a tail
oldheadtailp->m_headtailp = addlastp; // Head gets new tail
addlastp->m_headtailp = oldheadtailp; // Tail needs to remember head (or nullptr)
} // else is head, and we're inserting into the middle, so no other change
}
// No change of m_iterpp, as adding after current node;
// the current node is still the one at the iteration point
debugTreeChange(this, "-addHereOut: ", __LINE__, true);
}
void AstNode::setOp1p(AstNode* newp) {
UASSERT(newp, "Null item passed to setOp1p");
UDEBUGONLY(UASSERT_OBJ(!m_op1p, this, "Adding to non-empty, non-list op1"););
UDEBUGONLY(UASSERT_OBJ(!newp->m_backp, newp, "Adding already linked node"););
UDEBUGONLY(UASSERT_OBJ(!newp->m_nextp, newp, "Adding list to non-list op1"););
debugTreeChange(this, "-setOp1pThs: ", __LINE__, false);
debugTreeChange(newp, "-setOp1pNew: ", __LINE__, true);
m_op1p = newp;
newp->editCountInc();
newp->m_backp = this;
debugTreeChange(this, "-setOp1pOut: ", __LINE__, false);
}
void AstNode::setOp2p(AstNode* newp) {
UASSERT(newp, "Null item passed to setOp2p");
UDEBUGONLY(UASSERT_OBJ(!m_op2p, this, "Adding to non-empty, non-list op2"););
UDEBUGONLY(UASSERT_OBJ(!newp->m_backp, newp, "Adding already linked node"););
UDEBUGONLY(UASSERT_OBJ(!newp->m_nextp, newp, "Adding list to non-list op2"););
debugTreeChange(this, "-setOp2pThs: ", __LINE__, false);
debugTreeChange(newp, "-setOp2pNew: ", __LINE__, true);
m_op2p = newp;
newp->editCountInc();
newp->m_backp = this;
debugTreeChange(this, "-setOp2pOut: ", __LINE__, false);
}
void AstNode::setOp3p(AstNode* newp) {
UASSERT(newp, "Null item passed to setOp3p");
UDEBUGONLY(UASSERT_OBJ(!m_op3p, this, "Adding to non-empty, non-list op3"););
UDEBUGONLY(UASSERT_OBJ(!newp->m_backp, newp, "Adding already linked node"););
UDEBUGONLY(UASSERT_OBJ(!newp->m_nextp, newp, "Adding list to non-list op3"););
debugTreeChange(this, "-setOp3pThs: ", __LINE__, false);
debugTreeChange(newp, "-setOp3pNew: ", __LINE__, true);
m_op3p = newp;
newp->editCountInc();
newp->m_backp = this;
debugTreeChange(this, "-setOp3pOut: ", __LINE__, false);
}
void AstNode::setOp4p(AstNode* newp) {
UASSERT(newp, "Null item passed to setOp4p");
UDEBUGONLY(UASSERT_OBJ(!m_op4p, this, "Adding to non-empty, non-list op4"););
UDEBUGONLY(UASSERT_OBJ(!newp->m_backp, newp, "Adding already linked node"););
UDEBUGONLY(UASSERT_OBJ(!newp->m_nextp, newp, "Adding list to non-list op4"););
debugTreeChange(this, "-setOp4pThs: ", __LINE__, false);
debugTreeChange(newp, "-setOp4pNew: ", __LINE__, true);
m_op4p = newp;
newp->editCountInc();
newp->m_backp = this;
debugTreeChange(this, "-setOp4pOut: ", __LINE__, false);
}
void AstNode::addOp1p(AstNode* newp) {
UASSERT(newp, "Null item passed to addOp1p");
UDEBUGONLY(UASSERT_OBJ(!newp->m_backp, newp, "Adding already linked node"););
if (!m_op1p) {
op1p(newp);
} else {
m_op1p->addNext(newp);
}
}
void AstNode::addOp2p(AstNode* newp) {
UASSERT(newp, "Null item passed to addOp2p");
UDEBUGONLY(UASSERT_OBJ(!newp->m_backp, newp, "Adding already linked node"););
if (!m_op2p) {
op2p(newp);
} else {
m_op2p->addNext(newp);
}
}
void AstNode::addOp3p(AstNode* newp) {
UASSERT(newp, "Null item passed to addOp3p");
UDEBUGONLY(UASSERT_OBJ(!newp->m_backp, newp, "Adding already linked node"););
if (!m_op3p) {
op3p(newp);
} else {
m_op3p->addNext(newp);
}
}
void AstNode::addOp4p(AstNode* newp) {
UASSERT(newp, "Null item passed to addOp4p");
UDEBUGONLY(UASSERT_OBJ(!newp->m_backp, newp, "Adding already linked node"););
if (!m_op4p) {
op4p(newp);
} else {
m_op4p->addNext(newp);
}
}
void AstNode::replaceWith(AstNode* newp) {
// Replace oldp with this
// Unlike a unlink/relink, children are changed to point to the new node.
VNRelinker repHandle;
this->unlinkFrBack(&repHandle);
repHandle.relink(newp);
}
void VNRelinker::dump(std::ostream& str) const {
str << " BK=" << reinterpret_cast<uint32_t*>(m_backp);
str << " ITER=" << reinterpret_cast<uint32_t*>(m_iterpp);
str << " CHG=" << (m_chg == RELINK_NEXT ? "[NEXT] " : "");
str << (m_chg == RELINK_OP1 ? "[OP1] " : "");
str << (m_chg == RELINK_OP2 ? "[OP2] " : "");
str << (m_chg == RELINK_OP3 ? "[OP3] " : "");
str << (m_chg == RELINK_OP4 ? "[OP4] " : "");
}
AstNode* AstNode::unlinkFrBackWithNext(VNRelinker* linkerp) {
debugTreeChange(this, "-unlinkWNextThs: ", __LINE__, true);
AstNode* const oldp = this;
UASSERT_OBJ(oldp->m_backp, oldp, "Node has no back, already unlinked?");
oldp->editCountInc();
AstNode* const backp = oldp->m_backp;
if (linkerp) {
linkerp->m_oldp = oldp;
linkerp->m_backp = backp;
linkerp->m_iterpp = oldp->m_iterpp;
if (backp->m_nextp == oldp) {
linkerp->m_chg = VNRelinker::RELINK_NEXT;
} else if (backp->m_op1p == oldp) {
linkerp->m_chg = VNRelinker::RELINK_OP1;
} else if (backp->m_op2p == oldp) {
linkerp->m_chg = VNRelinker::RELINK_OP2;
} else if (backp->m_op3p == oldp) {
linkerp->m_chg = VNRelinker::RELINK_OP3;
} else if (backp->m_op4p == oldp) {
linkerp->m_chg = VNRelinker::RELINK_OP4;
} else {
oldp->v3fatalSrc("Unlink of node with back not pointing to it.");
}
}
if (backp->m_nextp == oldp) {
backp->m_nextp = nullptr;
// Old list gets truncated
// New list becomes a list upon itself
// Most common case is unlinking a entire operand tree
// (else we'd probably call unlinkFrBack without next)
// We may be in the middle of a list; we have no way to find head or tail!
AstNode* oldtailp = oldp;
while (oldtailp->m_nextp) oldtailp = oldtailp->m_nextp;
// Create new head/tail of old list
AstNode* const oldheadp = oldtailp->m_headtailp;
oldheadp->m_headtailp = oldp->m_backp;
oldheadp->m_headtailp->m_headtailp = oldheadp;
// Create new head/tail of extracted list
oldp->m_headtailp = oldtailp;
oldp->m_headtailp->m_headtailp = oldp;
} else if (backp->m_op1p == oldp) {
backp->m_op1p = nullptr;
} else if (backp->m_op2p == oldp) {
backp->m_op2p = nullptr;
} else if (backp->m_op3p == oldp) {
backp->m_op3p = nullptr;
} else if (backp->m_op4p == oldp) {
backp->m_op4p = nullptr;
} else {
this->v3fatalSrc("Unlink of node with back not pointing to it.");
}
// Relink
oldp->m_backp = nullptr;
// Iterator fixup
if (oldp->m_iterpp) {
*(oldp->m_iterpp) = nullptr;
oldp->m_iterpp = nullptr;
}
debugTreeChange(oldp, "-unlinkWNextOut: ", __LINE__, true);
return oldp;
}
AstNode* AstNode::unlinkFrBack(VNRelinker* linkerp) {
debugTreeChange(this, "-unlinkFrBkThs: ", __LINE__, true);
AstNode* const oldp = this;
UASSERT_OBJ(oldp->m_backp, oldp, "Node has no back, already unlinked?");
oldp->editCountInc();
AstNode* const backp = oldp->m_backp;
if (linkerp) {
linkerp->m_oldp = oldp;
linkerp->m_backp = backp;
if (oldp->m_iterpp) { // Assumes we will always relink() if want to keep iterating
linkerp->m_iterpp = oldp->m_iterpp;
*(oldp->m_iterpp) = nullptr;
oldp->m_iterpp = nullptr;
}
if (backp->m_nextp == oldp) {
linkerp->m_chg = VNRelinker::RELINK_NEXT;
} else if (backp->m_op1p == oldp) {
linkerp->m_chg = VNRelinker::RELINK_OP1;
} else if (backp->m_op2p == oldp) {
linkerp->m_chg = VNRelinker::RELINK_OP2;
} else if (backp->m_op3p == oldp) {
linkerp->m_chg = VNRelinker::RELINK_OP3;
} else if (backp->m_op4p == oldp) {
linkerp->m_chg = VNRelinker::RELINK_OP4;
} else {
this->v3fatalSrc("Unlink of node with back not pointing to it.");
}
}
if (backp->m_nextp == oldp) {
// This node gets removed from middle (or tail) of list
// Not head, since then oldp wouldn't be a next of backp...
backp->m_nextp = oldp->m_nextp;
if (backp->m_nextp) backp->m_nextp->m_backp = backp;
// If it was a tail, back becomes new tail
if (oldp->m_headtailp) {
backp->m_headtailp = oldp->m_headtailp;
backp->m_headtailp->m_headtailp = backp;
}
} else {
if (backp->m_op1p == oldp) {
backp->m_op1p = oldp->m_nextp;
} else if (backp->m_op2p == oldp) {
backp->m_op2p = oldp->m_nextp;
} else if (backp->m_op3p == oldp) {
backp->m_op3p = oldp->m_nextp;
} else if (backp->m_op4p == oldp) {
backp->m_op4p = oldp->m_nextp;
} else {
this->v3fatalSrc("Unlink of node with back not pointing to it.");
}
if (oldp->m_nextp) {
AstNode* const newheadp = oldp->m_nextp;
newheadp->m_backp = backp;
newheadp->m_headtailp = oldp->m_headtailp;
newheadp->m_headtailp->m_headtailp = newheadp;
}
}
// Iterator fixup
if (oldp->m_iterpp) { // Only if no linker, point to next in list
if (oldp->m_nextp) oldp->m_nextp->m_iterpp = oldp->m_iterpp;
*(oldp->m_iterpp) = oldp->m_nextp;
oldp->m_iterpp = nullptr;
}
// Relink
oldp->m_nextp = nullptr;
oldp->m_backp = nullptr;
oldp->m_headtailp = oldp;
debugTreeChange(oldp, "-unlinkFrBkOut: ", __LINE__, true);
return oldp;
}
void AstNode::relink(VNRelinker* linkerp) {
if (debug() > 8) {
UINFO(0, " EDIT: relink: ");
dumpPtrs();
}
AstNode* const newp = this;
UASSERT(linkerp && linkerp->m_backp, "Need non-empty linker");
UASSERT_OBJ(!newp->m_backp, newp, "New node already linked?");
newp->editCountInc();
if (debug() > 8) {
linkerp->dump(cout);
cout << endl;
}
AstNode* const backp = linkerp->m_backp;
debugTreeChange(this, "-relinkNew: ", __LINE__, true);
debugTreeChange(backp, "-relinkTre: ", __LINE__, true);
switch (linkerp->m_chg) {
case VNRelinker::RELINK_NEXT: backp->addNextHere(newp); break;
case VNRelinker::RELINK_OP1: relinkOneLink(backp->m_op1p /*ref*/, newp); break;
case VNRelinker::RELINK_OP2: relinkOneLink(backp->m_op2p /*ref*/, newp); break;
case VNRelinker::RELINK_OP3: relinkOneLink(backp->m_op3p /*ref*/, newp); break;
case VNRelinker::RELINK_OP4: relinkOneLink(backp->m_op4p /*ref*/, newp); break;
default: this->v3fatalSrc("Relink of node without any link to change."); break;
}
// Relink
newp->m_backp = backp;
linkerp->m_backp = nullptr;
// Iterator fixup
if (linkerp->m_iterpp) {
// If we're iterating over a next() link, we need to follow links off the
// NEW node, which is always assumed to be what we are relinking to.
// This adds a unfortunate hot 8 bytes to every AstNode, but is faster than passing
// across every function.
// If anyone has a cleaner way, I'd be grateful.
newp->m_iterpp = linkerp->m_iterpp;
*(newp->m_iterpp) = newp;
}
// Empty the linker so not used twice accidentally
linkerp->m_backp = nullptr;
debugTreeChange(this, "-relinkOut: ", __LINE__, true);
}
void AstNode::relinkOneLink(AstNode*& pointpr, // Ref to pointer that gets set to newp
AstNode* newp) {
if (pointpr) {
// We know there will be at least two elements when we are done,
// (newp & the old list).
// We *ALLOW* the new node to have its own next list.
// Likewise there may be a old list.
// Insert the whole old list following the new node's list.
// Thus a unlink without next, followed by relink, gives the same list.
AstNode* const newlistlastp = newp->m_headtailp;
UASSERT_OBJ(!(newlistlastp->m_nextp && newlistlastp != newp), newp,
"Headtailp tail isn't at the tail");
AstNode* const oldlistlastp = pointpr->m_headtailp;
UASSERT_OBJ(!(oldlistlastp->m_nextp && oldlistlastp != pointpr), newp,
"Old headtailp tail isn't at the tail");
// Next links
newlistlastp->m_nextp = pointpr;
pointpr->m_backp = newlistlastp;
// Head/tail
pointpr->m_headtailp = nullptr; // Old head
newlistlastp->m_headtailp = nullptr; // Old tail
newp->m_headtailp = oldlistlastp; // Head points to tail
oldlistlastp->m_headtailp = newp; // Tail points to head
}
pointpr = newp;
}
void AstNode::addHereThisAsNext(AstNode* newp) {
// {back}->this->{next} becomes {back}->new->this->{next}
UASSERT_OBJ(!newp->backp(), newp, "New node already linked?");
UASSERT_OBJ(this->m_backp, this, "'this' node has no back, already unlinked?");
UASSERT_OBJ(newp->m_headtailp, newp, "m_headtailp not set on new node");
//
AstNode* const backp = this->m_backp;
AstNode* const newLastp = newp->m_headtailp;
//
this->editCountInc();
// Common linkage
newLastp->m_nextp = this;
this->m_backp = newLastp;
newp->m_backp = backp;
// newLastp will not be the last node in the list as 'this' will follow it.
// If newLastp == newp, then below handles newp becoming head
newLastp->m_headtailp = nullptr;
// Linkage dependent on position
if (backp && backp->m_nextp == this) {
// If 'this' is not at the head of a list, then the new node will also not be at the head
// of a list, so we can just link in the new node in the middle.
backp->m_nextp = newp;
newp->m_headtailp = nullptr;
} else {
// If 'this' is at the head of a list, then the new node becomes the head of that list.
if (backp) {
if (backp->m_op1p == this) {
backp->m_op1p = newp;
} else if (backp->m_op2p == this) {
backp->m_op2p = newp;
} else if (backp->m_op3p == this) {
backp->m_op3p = newp;
} else {
UASSERT_OBJ(backp->m_op4p == this, this, "Don't know where newp should go");
backp->m_op4p = newp;
}
}
// We also need to update m_headtailp.
AstNode* const tailp = this->m_headtailp;
this->m_headtailp = nullptr;
newp->m_headtailp = tailp;
tailp->m_headtailp = newp;
}
// Iterator fixup
if (newLastp->m_iterpp) *(newLastp->m_iterpp) = this;
if (this->m_iterpp) {
*(this->m_iterpp) = newp;
this->m_iterpp = nullptr;
}
//
debugTreeChange(this, "-addHereThisAsNext: ", __LINE__, true);
}
void AstNode::swapWith(AstNode* bp) {
VNRelinker aHandle;
VNRelinker bHandle;
this->unlinkFrBack(&aHandle);
bp->unlinkFrBack(&bHandle);
aHandle.relink(bp);
bHandle.relink(this);
}
//======================================================================
// Clone
AstNode* AstNode::cloneTreeIter(bool needPure) {
// private: Clone single node and children
if (VL_UNLIKELY(needPure && !isPure())) {
this->v3warn(SIDEEFFECT,
"Expression side effect may be mishandled\n"
<< this->warnMore()
<< "... Suggest use a temporary variable in place of this expression");
// this->v3fatalSrc("cloneTreePure debug backtrace"); // Comment in to debug where caused
// it
}
AstNode* const newp = this->clone();
if (this->m_op1p) newp->op1p(this->m_op1p->cloneTreeIterList(needPure));
if (this->m_op2p) newp->op2p(this->m_op2p->cloneTreeIterList(needPure));
if (this->m_op3p) newp->op3p(this->m_op3p->cloneTreeIterList(needPure));
if (this->m_op4p) newp->op4p(this->m_op4p->cloneTreeIterList(needPure));
newp->m_iterpp = nullptr;
newp->clonep(this); // Save pointers to/from both to simplify relinking.
this->clonep(newp); // Save pointers to/from both to simplify relinking.
return newp;
}
AstNode* AstNode::cloneTreeIterList(bool needPure) {
// private: Clone list of nodes, set m_headtailp
AstNode* newheadp = nullptr;
AstNode* newtailp = nullptr;
// Audited to make sure this is never nullptr
for (AstNode* oldp = this; oldp; oldp = oldp->m_nextp) {
AstNode* const newp = oldp->cloneTreeIter(needPure);
newp->m_headtailp = nullptr;
newp->m_backp = newtailp;
if (newtailp) newtailp->m_nextp = newp;
if (!newheadp) newheadp = newp;
newtailp = newp;
}
newheadp->m_headtailp = newtailp;
newtailp->m_headtailp = newheadp;
return newheadp;
}
AstNode* AstNode::cloneTree(bool cloneNextLink, bool needPure) {
debugTreeChange(this, "-cloneThs: ", __LINE__, cloneNextLink);
cloneClearTree();
AstNode* newp;
if (cloneNextLink && this->m_nextp) {
newp = cloneTreeIterList(needPure);
} else {
newp = cloneTreeIter(needPure);
newp->m_nextp = nullptr;
newp->m_headtailp = newp;
}
newp->m_backp = nullptr;
newp->cloneRelinkTree();
debugTreeChange(newp, "-cloneOut: ", __LINE__, true);
return newp;
}
//======================================================================
// Delete
void AstNode::deleteNode() {
// private: Delete single node. Publicly call deleteTree() instead.
UASSERT(!m_backp, "Delete called on node with backlink still set");
editCountInc();
// Change links of old node so we coredump if used
this->m_nextp = reinterpret_cast<AstNode*>(0x1);
this->m_backp = reinterpret_cast<AstNode*>(0x1);
this->m_headtailp = reinterpret_cast<AstNode*>(0x1);
this->m_op1p = reinterpret_cast<AstNode*>(0x1);
this->m_op2p = reinterpret_cast<AstNode*>(0x1);
this->m_op3p = reinterpret_cast<AstNode*>(0x1);
this->m_op4p = reinterpret_cast<AstNode*>(0x1);
this->m_iterpp = reinterpret_cast<AstNode**>(0x1);
if (
#if !defined(VL_DEBUG) || defined(VL_LEAK_CHECKS)
true
#else
!v3Global.opt.debugLeak()
#endif
) {
delete this;
}
// Else leak massively, so each pointer is unique
// and we can debug easier.
}
void AstNode::deleteTreeIter() {
// private: Delete list of nodes. Publicly call deleteTree() instead.
// Audited to make sure this is never nullptr
for (AstNode *nodep = this, *nnextp; nodep; nodep = nnextp) {
nnextp = nodep->m_nextp;
// MUST be depth first!
if (nodep->m_op1p) nodep->m_op1p->deleteTreeIter();
if (nodep->m_op2p) nodep->m_op2p->deleteTreeIter();
if (nodep->m_op3p) nodep->m_op3p->deleteTreeIter();
if (nodep->m_op4p) nodep->m_op4p->deleteTreeIter();
nodep->m_nextp = nullptr;
nodep->m_backp = nullptr;
nodep->deleteNode();
}
}
void AstNode::deleteTree() {
// deleteTree always deletes the next link, because you must have called
// unlinkFromBack or unlinkFromBackWithNext as appropriate before calling this.
UASSERT(!m_backp, "Delete called on node with backlink still set");
debugTreeChange(this, "-delTree: ", __LINE__, true);
this->editCountInc();
// MUST be depth first!
deleteTreeIter();
}
//======================================================================
// Memory checks
#ifdef VL_LEAK_CHECKS
void* AstNode::operator new(size_t size) {
// Optimization note: Aligning to cache line is a loss, due to lost packing
AstNode* const objp = static_cast<AstNode*>(::operator new(size));
V3Broken::addNewed(objp);
return objp;
}
void AstNode::operator delete(void* objp, size_t size) {
if (!objp) return;
const AstNode* const nodep = static_cast<AstNode*>(objp);
V3Broken::deleted(nodep);
::operator delete(objp);
}
#endif
//======================================================================
// Iterators
void AstNode::iterateChildren(VNVisitor& v) {
// This is a very hot function
// Optimization note: Grabbing m_op#p->m_nextp is a net loss
ASTNODE_PREFETCH(m_op1p);
ASTNODE_PREFETCH(m_op2p);
ASTNODE_PREFETCH(m_op3p);
ASTNODE_PREFETCH(m_op4p);
if (m_op1p) m_op1p->iterateAndNext(v);
if (m_op2p) m_op2p->iterateAndNext(v);
if (m_op3p) m_op3p->iterateAndNext(v);
if (m_op4p) m_op4p->iterateAndNext(v);
}
void AstNode::iterateChildrenConst(VNVisitorConst& v) {
// This is a very hot function
ASTNODE_PREFETCH(m_op1p);
ASTNODE_PREFETCH(m_op2p);
ASTNODE_PREFETCH(m_op3p);
ASTNODE_PREFETCH(m_op4p);
if (m_op1p) m_op1p->iterateAndNextConst(v);
if (m_op2p) m_op2p->iterateAndNextConst(v);
if (m_op3p) m_op3p->iterateAndNextConst(v);
if (m_op4p) m_op4p->iterateAndNextConst(v);
}
void AstNode::iterateAndNext(VNVisitor& v) {
// This is a very hot function
// IMPORTANT: If you replace a node that's the target of this iterator,
// then the NEW node will be iterated on next, it isn't skipped!
// Future versions of this function may require the node to have a back to be iterated;
// there's no lower level reason yet though the back must exist.
AstNode* nodep = this;
#ifdef VL_DEBUG // Otherwise too hot of a function for debug
UASSERT_OBJ(!(nodep && !nodep->m_backp), nodep, "iterateAndNext node has no back");
#endif
// cppcheck-suppress knownConditionTrueFalse
if (nodep) ASTNODE_PREFETCH(nodep->m_nextp);
while (nodep) { // effectively: if (!this) return; // Callers rely on this
if (nodep->m_nextp) ASTNODE_PREFETCH(nodep->m_nextp->m_nextp);
AstNode* niterp = nodep; // Pointer may get stomped via m_iterpp if the node is edited
// Desirable check, but many places where multiple iterations are OK
// UASSERT_OBJ(!niterp->m_iterpp, niterp, "IterateAndNext under iterateAndNext may miss
// edits"); Optimization note: Doing PREFETCH_RW on m_iterpp is a net even
// cppcheck-suppress nullPointer
niterp->m_iterpp = &niterp;
niterp->accept(v);
// accept may do a replaceNode and change niterp on us...
// niterp maybe nullptr, so need cast if printing
// if (niterp != nodep) UINFO(1,"iterateAndNext edited "<<cvtToHex(nodep)
// <<" now into "<<cvtToHex(niterp)<<endl);
if (!niterp) return; // Perhaps node deleted inside accept
niterp->m_iterpp = nullptr;
if (VL_UNLIKELY(niterp != nodep)) { // Edited node inside accept
nodep = niterp;
} else { // Unchanged node (though maybe updated m_next), just continue loop
nodep = niterp->m_nextp;
}
}
}
void AstNode::iterateListBackwardsConst(VNVisitorConst& v) {
AstNode* nodep = this;
while (nodep->m_nextp) nodep = nodep->m_nextp;
while (nodep) {
// Edits not supported: nodep->m_iterpp = &nodep;
nodep->accept(v);
if (nodep->backp()->m_nextp == nodep) {
nodep = nodep->backp();
} else {
nodep = nullptr;
} // else: backp points up the tree.
}
}
void AstNode::iterateChildrenBackwardsConst(VNVisitorConst& v) {
if (m_op1p) m_op1p->iterateListBackwardsConst(v);
if (m_op2p) m_op2p->iterateListBackwardsConst(v);
if (m_op3p) m_op3p->iterateListBackwardsConst(v);
if (m_op4p) m_op4p->iterateListBackwardsConst(v);
}
void AstNode::iterateAndNextConst(VNVisitorConst& v) {
// Keep following the current list even if edits change it
AstNode* nodep = this;
do {
AstNode* const nnextp = nodep->m_nextp;
ASTNODE_PREFETCH(nnextp);
nodep->accept(v);
nodep = nnextp;
} while (nodep);
}
AstNode* AstNode::iterateSubtreeReturnEdits(VNVisitor& v) {
// Some visitors perform tree edits (such as V3Const), and may even
// replace/delete the exact nodep that the visitor is called with. If
// this happens, the parent will lose the handle to the node that was
// processed.
// To solve this, this function returns the pointer to the replacement node,
// which in many cases is just the same node that was passed in.
AstNode* nodep = this; // Note "this" may point to bogus point later in this function
if (VN_IS(nodep, Netlist)) {
// Calling on top level; we know the netlist won't get replaced
nodep->accept(v);
} else if (!nodep->backp()) {
// Calling on standalone tree; insert a shim node so we can keep
// track, then delete it on completion
AstBegin* const tempp = new AstBegin{nodep->fileline(), "[EditWrapper]", nodep};
{
VL_DO_DANGLING(tempp->stmtsp()->accept(v),
nodep); // nodep to null as may be replaced
}
nodep = tempp->stmtsp()->unlinkFrBackWithNext();
VL_DO_DANGLING(tempp->deleteTree(), tempp);
} else {
// Use back to determine who's pointing at us (IE assume new node
// grafts into same place as old one)
AstNode** nextnodepp = nullptr;
if (this->m_backp->m_op1p == this) {
nextnodepp = &(this->m_backp->m_op1p);
} else if (this->m_backp->m_op2p == this) {
nextnodepp = &(this->m_backp->m_op2p);
} else if (this->m_backp->m_op3p == this) {
nextnodepp = &(this->m_backp->m_op3p);
} else if (this->m_backp->m_op4p == this) {
nextnodepp = &(this->m_backp->m_op4p);
} else if (this->m_backp->m_nextp == this) {
nextnodepp = &(this->m_backp->m_nextp);
}
UASSERT_OBJ(nextnodepp, this, "Node's back doesn't point to forward to node itself");
{
VL_DO_DANGLING(nodep->accept(v), nodep); // nodep to null as may be replaced
}
nodep = *nextnodepp; // Grab new node from point where old was connected
}
return nodep;
}
//======================================================================
void AstNode::cloneRelinkTree() {
// private: Cleanup clone() operation on whole tree. Publicly call cloneTree() instead.
for (AstNode* nodep = this; nodep; nodep = nodep->m_nextp) {
if (nodep->m_dtypep && nodep->m_dtypep->clonep()) {
nodep->m_dtypep = nodep->m_dtypep->clonep();
}
nodep->cloneRelink();
if (nodep->m_op1p) nodep->m_op1p->cloneRelinkTree();
if (nodep->m_op2p) nodep->m_op2p->cloneRelinkTree();
if (nodep->m_op3p) nodep->m_op3p->cloneRelinkTree();
if (nodep->m_op4p) nodep->m_op4p->cloneRelinkTree();
}
}
//======================================================================
// Comparison
bool AstNode::gateTreeIter() const {
// private: Return true if the two trees are identical
if (!isGateOptimizable()) return false;
if (m_op1p && !m_op1p->gateTreeIter()) return false;
if (m_op2p && !m_op2p->gateTreeIter()) return false;
if (m_op3p && !m_op3p->gateTreeIter()) return false;
if (m_op4p && !m_op4p->gateTreeIter()) return false;
return true;
}
bool AstNode::sameTreeIter(const AstNode* node1p, const AstNode* node2p, bool ignNext,
bool gateOnly) {
// private: Return true if the two trees are identical
if (!node1p && !node2p) return true;
if (!node1p || !node2p) return false;
if (node1p->type() != node2p->type()) return false;
UASSERT_OBJ(
(!node1p->dtypep() && !node2p->dtypep()) || (node1p->dtypep() && node2p->dtypep()), node1p,
"Comparison of a node with dtypep() with a node without dtypep()\n-node2=" << node2p);
if (node1p->dtypep() && !node1p->dtypep()->similarDType(node2p->dtypep())) return false;
if (!node1p->same(node2p) || (gateOnly && !node1p->isGateOptimizable())) return false;
return (sameTreeIter(node1p->m_op1p, node2p->m_op1p, false, gateOnly)
&& sameTreeIter(node1p->m_op2p, node2p->m_op2p, false, gateOnly)
&& sameTreeIter(node1p->m_op3p, node2p->m_op3p, false, gateOnly)
&& sameTreeIter(node1p->m_op4p, node2p->m_op4p, false, gateOnly)
&& (ignNext || sameTreeIter(node1p->m_nextp, node2p->m_nextp, false, gateOnly)));
}
//======================================================================
// Debugging
void AstNode::checkTreeIter(const AstNode* prevBackp) const VL_MT_STABLE {
// private: Check a tree and children
UASSERT_OBJ(prevBackp == this->backp(), this, "Back node inconsistent");
const VNTypeInfo& typeInfo = *type().typeInfo();
for (int i = 1; i <= 4; i++) {
AstNode* nodep = nullptr;
switch (i) {
case 1: nodep = op1p(); break;
case 2: nodep = op2p(); break;
case 3: nodep = op3p(); break;
case 4: nodep = op4p(); break;
default: this->v3fatalSrc("Bad case"); break;
}
const char* opName = typeInfo.m_opNamep[i - 1];
switch (typeInfo.m_opType[i - 1]) {
case VNTypeInfo::OP_UNUSED:
UASSERT_OBJ(!nodep, this, typeInfo.m_namep << " must not use " << opName << "()");
break;
case VNTypeInfo::OP_USED:
UASSERT_OBJ(nodep, this,
typeInfo.m_namep << " must have non nullptr " << opName << "()");
UASSERT_OBJ(!nodep->nextp(), this,
typeInfo.m_namep << "::" << opName
<< "() cannot have a non nullptr nextp()");
nodep->checkTreeIter(this);
break;
case VNTypeInfo::OP_LIST:
if (const AstNode* const headp = nodep) {
const AstNode* backp = this;
const AstNode* tailp = headp;
const AstNode* opp = headp;
do {
opp->checkTreeIter(backp);
UASSERT_OBJ(opp == headp || !opp->nextp() || !opp->m_headtailp, opp,
"Headtailp should be null in middle of lists");
backp = tailp = opp;
opp = opp->nextp();
} while (opp);
UASSERT_OBJ(headp->m_headtailp == tailp, headp,
"Tail in headtailp is inconsistent");
UASSERT_OBJ(tailp->m_headtailp == headp, tailp,
"Head in headtailp is inconsistent");
}
break;
case VNTypeInfo::OP_OPTIONAL:
if (nodep) {
UASSERT_OBJ(!nodep->nextp(), this,
typeInfo.m_namep << "::" << opName
<< "() cannot have a non-nullptr nextp()");
nodep->checkTreeIter(this);
}
break;
default: this->v3fatalSrc("Bad case"); break;
}
}
}
// cppcheck-suppress unusedFunction // Debug only
void AstNode::dumpGdb(const AstNode* nodep) { // For GDB only // LCOV_EXCL_LINE
if (!nodep) {
cout << "<nullptr>" << endl;
return;
}
nodep->dumpGdbHeader();
cout << " ";
nodep->dump(cout);
cout << endl;
} // LCOV_EXCL_STOP
// cppcheck-suppress unusedFunction // Debug only
void AstNode::dumpGdbHeader() const { // For GDB only // LCOV_EXCL_START
dumpPtrs(cout);
cout << " Fileline = " << fileline() << endl;
} // LCOV_EXCL_STOP
// cppcheck-suppress unusedFunction // Debug only
void AstNode::dumpTreeGdb(const AstNode* nodep) { // For GDB only // LCOV_EXCL_START
if (!nodep) {
cout << "<nullptr>" << endl;
return;
}
nodep->dumpGdbHeader();
nodep->dumpTree(cout);
} // LCOV_EXCL_STOP
// cppcheck-suppress unusedFunction // Debug only
void AstNode::dumpTreeFileGdb(const AstNode* nodep, // LCOV_EXCL_START
const char* filenamep) { // For GDB only
if (!nodep) {
cout << "<nullptr>" << endl;
return;
}
const string filename = filenamep ? filenamep : v3Global.debugFilename("debug.tree", 98);
v3Global.rootp()->dumpTreeFile(filename);
} // LCOV_EXCL_STOP
// cppcheck-suppress unusedFunction // Debug only
void AstNode::checkIter() const {
if (m_iterpp) {
dumpPtrs(cout);
// Perhaps something forgot to clear m_iterpp?
this->v3fatalSrc("Iteration link m_iterpp should be nullptr");
}
}
void AstNode::dumpPtrs(std::ostream& os) const {
os << "This=" << typeName() << " " << cvtToHex(this);
os << " back=" << cvtToHex(backp());
if (nextp()) os << " next=" << cvtToHex(nextp());
if (m_headtailp == this) {
os << " headtail=this";
} else {
os << " headtail=" << cvtToHex(m_headtailp);
}
if (op1p()) os << " op1p=" << cvtToHex(op1p());
if (op2p()) os << " op2p=" << cvtToHex(op2p());
if (op3p()) os << " op3p=" << cvtToHex(op3p());
if (op4p()) os << " op4p=" << cvtToHex(op4p());
if (user1p()) os << " user1p=" << cvtToHex(user1p());
if (user2p()) os << " user2p=" << cvtToHex(user2p());
if (user3p()) os << " user3p=" << cvtToHex(user3p());
if (user4p()) os << " user4p=" << cvtToHex(user4p());
if (m_iterpp) {
os << " iterpp=" << cvtToHex(m_iterpp);
// This may cause address sanitizer failures as iterpp can be stale
// os << "*=" << cvtToHex(*m_iterpp);
}
os << std::endl;
}
void AstNode::dumpTree(std::ostream& os, const string& indent, int maxDepth) const {
static int s_debugFileline = v3Global.opt.debugSrcLevel("fileline"); // --debugi-fileline 9
os << indent << " " << this << '\n';
if (debug() > 8) {
os << indent << " ";
dumpPtrs(os);
}
if (s_debugFileline >= 9) os << fileline()->warnContextSecondary();
if (maxDepth == 1) {
if (op1p() || op2p() || op3p() || op4p()) os << indent << "1: ...(maxDepth)\n";
} else {
for (const AstNode* nodep = op1p(); nodep; nodep = nodep->nextp()) {
nodep->dumpTree(os, indent + "1:", maxDepth - 1);
}
for (const AstNode* nodep = op2p(); nodep; nodep = nodep->nextp()) {
nodep->dumpTree(os, indent + "2:", maxDepth - 1);
}
for (const AstNode* nodep = op3p(); nodep; nodep = nodep->nextp()) {
nodep->dumpTree(os, indent + "3:", maxDepth - 1);
}
for (const AstNode* nodep = op4p(); nodep; nodep = nodep->nextp()) {
nodep->dumpTree(os, indent + "4:", maxDepth - 1);
}
}
}
void AstNode::dumpTreeAndNext(std::ostream& os, const string& indent, int maxDepth) const {
// Audited to make sure this is never nullptr
for (const AstNode* nodep = this; nodep; nodep = nodep->nextp()) {
nodep->dumpTree(os, indent, maxDepth);
}
}
void AstNode::dumpTreeFile(const string& filename, bool append, bool doDump, bool doCheck) {
// Not const function as calls checkTree
if (doDump) {
{ // Write log & close
UINFO(2, "Dumping " << filename << endl);
const std::unique_ptr<std::ofstream> logsp{V3File::new_ofstream(filename, append)};
if (logsp->fail()) v3fatal("Can't write " << filename);
*logsp << "Verilator Tree Dump (format 0x3900) from <e" << std::dec << editCountLast();
*logsp << "> to <e" << std::dec << editCountGbl() << ">\n";
if (editCountGbl() == editCountLast() && ::dumpTreeLevel() < 9) {
*logsp << '\n';
*logsp << "No changes since last dump!\n";
} else {
dumpTree(*logsp);
editCountSetLast(); // Next dump can indicate start from here
}
}
}
if (doDump && v3Global.opt.debugEmitV()) V3EmitV::debugEmitV(filename + ".v");
if (doCheck && (v3Global.opt.debugCheck() || ::dumpTreeLevel())) {
// Error check
checkTree();
// Broken isn't part of check tree because it can munge iterp's
// set by other steps if it is called in the middle of other operations
if (AstNetlist* const netp = VN_CAST(this, Netlist)) V3Broken::brokenAll(netp);
}
}
static void drawChildren(std::ostream& os, const AstNode* thisp, const AstNode* childp,
const std::string& childName) {
if (childp) {
os << "\tn" << cvtToHex(thisp) << " -> n" << cvtToHex(childp) << " ["
<< "label=\"" << childName << "\" color=red];\n";
for (const AstNode* nodep = childp; nodep; nodep = nodep->nextp()) {
nodep->dumpTreeDot(os);
if (nodep->nextp()) {
os << "\tn" << cvtToHex(nodep) << " -> n" << cvtToHex(nodep->nextp()) << " ["
<< "label=\"next\" color=red];\n";
os << "\t{rank=same; n" << cvtToHex(nodep) << ", n" << cvtToHex(nodep->nextp())
<< "}\n";
}
}
}
}
void AstNode::dumpTreeDot(std::ostream& os) const {
os << "\tn" << cvtToHex(this) << "\t["
<< "label=\"" << typeName() << "\\n"
<< name() << "\"];\n";
drawChildren(os, this, m_op1p, "op1");
drawChildren(os, this, m_op2p, "op2");
drawChildren(os, this, m_op3p, "op3");
drawChildren(os, this, m_op4p, "op4");
}
void AstNode::dumpTreeDotFile(const string& filename, bool append, bool doDump) {
if (doDump) {
UINFO(2, "Dumping " << filename << endl);
const std::unique_ptr<std::ofstream> treedotp{V3File::new_ofstream(filename, append)};
if (treedotp->fail()) v3fatal("Can't write " << filename);
*treedotp << "digraph vTree{\n";
*treedotp << "\tgraph\t[label=\"" << filename + ".dot"
<< "\",\n";
*treedotp << "\t\t labelloc=t, labeljust=l,\n";
*treedotp << "\t\t //size=\"7.5,10\",\n"
<< "];\n";
dumpTreeDot(*treedotp);
*treedotp << "}\n";
}
}
string AstNode::instanceStr() const {
// Max iterations before giving up on location search,
// in case we have some circular reference bug.
constexpr unsigned maxIterations = 10000;
unsigned iterCount = 0;
for (const AstNode* backp = this; backp; backp = backp->backp(), ++iterCount) {
if (VL_UNCOVERABLE(iterCount >= maxIterations)) return ""; // LCOV_EXCL_LINE
// Prefer the enclosing scope, if there is one. This is always under the enclosing module,
// so just pick it up when encountered
if (const AstScope* const scopep = VN_CAST(backp, Scope)) {
return scopep->isTop() ? "" : "... note: In instance " + scopep->prettyNameQ();
}
// If scopes don't exist, report an example instance of the enclosing module
if (const AstModule* const modp = VN_CAST(backp, Module)) {
const string instanceName = modp->someInstanceName();
return instanceName.empty() ? "" : "... note: In instance '" + instanceName + "'";
}
}
return "";
}
void AstNode::v3errorEnd(std::ostringstream& str) const VL_RELEASE(V3Error::s().m_mutex) {
if (!m_fileline) {
V3Error::v3errorEnd(str, instanceStr());
} else {
std::ostringstream nsstr;
nsstr << str.str();
if (debug()) {
nsstr << '\n';
nsstr << "-node: ";
const_cast<AstNode*>(this)->dump(nsstr);
nsstr << endl;
}
// Don't look for instance name when warning is disabled.
// In case of large number of warnings, this can
// take significant amount of time
m_fileline->v3errorEnd(
nsstr, m_fileline->warnIsOff(V3Error::s().errorCode()) ? "" : instanceStr());
}
}
void AstNode::v3errorEndFatal(std::ostringstream& str) const VL_RELEASE(V3Error::s().m_mutex) {
v3errorEnd(str);
assert(0); // LCOV_EXCL_LINE
VL_UNREACHABLE;
}
//======================================================================
// Data type conversion
void AstNode::dtypeChgSigned(bool flag) {
UASSERT_OBJ(dtypep(), this, "No dtype when changing to (un)signed");
dtypeChgWidthSigned(dtypep()->width(), dtypep()->widthMin(), VSigning::fromBool(flag));
}
void AstNode::dtypeChgWidth(int width, int widthMin) {
UASSERT_OBJ(dtypep(), this,
"No dtype when changing width"); // Use ChgWidthSigned(...UNSIGNED) otherwise
dtypeChgWidthSigned(width, widthMin, dtypep()->numeric());
}
void AstNode::dtypeChgWidthSigned(int width, int widthMin, VSigning numeric) {
if (!dtypep()) {
// We allow dtypep() to be null, as before/during widthing dtypes are not resolved
dtypeSetLogicUnsized(width, widthMin, numeric);
} else {
if (width == dtypep()->width() && widthMin == dtypep()->widthMin()
&& numeric == dtypep()->numeric()
// Enums need to become direct sizes to avoid later ENUMVALUE errors
&& !VN_IS(dtypep()->skipRefToEnump(), EnumDType))
return; // Correct already
// FUTURE: We may be pointing at a two state data type, and this may
// convert it to logic. Since the AstVar remains correct, we
// work OK but this assumption may break in the future.
// Note we can't just clone and do a widthForce, as if it's a BasicDType
// the msb() indications etc will be incorrect.
dtypeSetLogicUnsized(width, widthMin, numeric);
}
}
AstNodeDType* AstNode::findBasicDType(VBasicDTypeKwd kwd) const {
// For 'simple' types we use the global directory. These are all unsized.
// More advanced types land under the module/task/etc
return v3Global.rootp()->typeTablep()->findBasicDType(fileline(), kwd);
}
AstNodeDType* AstNode::findBitDType(int width, int widthMin, VSigning numeric) const {
return v3Global.rootp()->typeTablep()->findLogicBitDType(fileline(), VBasicDTypeKwd::BIT,
width, widthMin, numeric);
}
AstNodeDType* AstNode::findLogicDType(int width, int widthMin, VSigning numeric) const {
return v3Global.rootp()->typeTablep()->findLogicBitDType(fileline(), VBasicDTypeKwd::LOGIC,
width, widthMin, numeric);
}
AstNodeDType* AstNode::findLogicRangeDType(const VNumRange& range, int widthMin,
VSigning numeric) const {
return v3Global.rootp()->typeTablep()->findLogicBitDType(fileline(), VBasicDTypeKwd::LOGIC,
range, widthMin, numeric);
}
AstNodeDType* AstNode::findBitRangeDType(const VNumRange& range, int widthMin,
VSigning numeric) const {
return v3Global.rootp()->typeTablep()->findLogicBitDType(fileline(), VBasicDTypeKwd::BIT,
range, widthMin, numeric);
}
AstBasicDType* AstNode::findInsertSameDType(AstBasicDType* nodep) {
return v3Global.rootp()->typeTablep()->findInsertSameDType(nodep);
}
AstNodeDType* AstNode::findEmptyQueueDType() const {
return v3Global.rootp()->typeTablep()->findEmptyQueueDType(fileline());
}
AstNodeDType* AstNode::findQueueIndexDType() const {
return v3Global.rootp()->typeTablep()->findQueueIndexDType(fileline());
}
AstNodeDType* AstNode::findVoidDType() const {
return v3Global.rootp()->typeTablep()->findVoidDType(fileline());
}
AstNodeDType* AstNode::findStreamDType() const {
return v3Global.rootp()->typeTablep()->findStreamDType(fileline());
}
static const AstNodeDType* computeCastableBase(const AstNodeDType* nodep) {
while (true) {
if (const AstPackArrayDType* const packp = VN_CAST(nodep, PackArrayDType)) {
nodep = packp->subDTypep();
continue;
} else if (const AstNodeDType* const refp = nodep->skipRefToEnump()) {
if (refp != nodep) {
nodep = refp;
continue;
}
}
return nodep;
}
}
static VCastable computeCastableImp(const AstNodeDType* toDtp, const AstNodeDType* fromDtp,
const AstNode* fromConstp) {
const VCastable castable = VCastable::UNSUPPORTED;
toDtp = toDtp->skipRefToEnump();
fromDtp = fromDtp->skipRefToEnump();
if (toDtp == fromDtp) return VCastable::SAMEISH;
if (toDtp->similarDType(fromDtp)) return VCastable::SAMEISH;
// UNSUP unpacked struct/unions (treated like BasicDType)
const AstNodeDType* fromBaseDtp = computeCastableBase(fromDtp);
const bool fromNumericable = VN_IS(fromBaseDtp, BasicDType) || VN_IS(fromBaseDtp, EnumDType)
|| VN_IS(fromBaseDtp, StreamDType)
|| VN_IS(fromBaseDtp, NodeUOrStructDType);
const AstNodeDType* toBaseDtp = computeCastableBase(toDtp);
const bool toNumericable
= VN_IS(toBaseDtp, BasicDType) || VN_IS(toBaseDtp, NodeUOrStructDType);
if (toBaseDtp == fromBaseDtp) {
return VCastable::COMPATIBLE;
} else if (toNumericable) {
if (fromNumericable) return VCastable::COMPATIBLE;
} else if (VN_IS(toDtp, EnumDType)) {
if (VN_IS(fromBaseDtp, EnumDType) && toDtp->sameTree(fromDtp))
return VCastable::ENUM_IMPLICIT;
if (fromNumericable) return VCastable::ENUM_EXPLICIT;
} else if (VN_IS(toDtp, ClassRefDType) && VN_IS(fromConstp, Const)) {
if (VN_IS(fromConstp, Const) && VN_AS(fromConstp, Const)->num().isNull())
return VCastable::COMPATIBLE;
} else if (VN_IS(toDtp, ClassRefDType) && VN_IS(fromDtp, ClassRefDType)) {
const auto toClassp = VN_AS(toDtp, ClassRefDType)->classp();
const auto fromClassp = VN_AS(fromDtp, ClassRefDType)->classp();
const bool downcast = AstClass::isClassExtendedFrom(toClassp, fromClassp);
const bool upcast = AstClass::isClassExtendedFrom(fromClassp, toClassp);
if (upcast) {
return VCastable::COMPATIBLE;
} else if (downcast) {
return VCastable::DYNAMIC_CLASS;
} else {
return VCastable::INCOMPATIBLE;
}
}
return castable;
}
VCastable AstNode::computeCastable(const AstNodeDType* toDtp, const AstNodeDType* fromDtp,
const AstNode* fromConstp) {
const auto castable = computeCastableImp(toDtp, fromDtp, fromConstp);
UINFO(9, " castable=" << castable << " for " << toDtp << endl);
UINFO(9, " =?= " << fromDtp << endl);
UINFO(9, " const= " << fromConstp << endl);
return castable;
}
AstNodeDType* AstNode::getCommonClassTypep(AstNode* nodep1, AstNode* nodep2) {
// Return the class type that both nodep1 and nodep2 are castable to.
// If both are null, return the type of null constant.
// If one is a class and one is null, return AstClassRefDType that points to that class.
// If no common class type exists, return nullptr.
// First handle cases with null values and when one class is a super class of the other.
if (VN_IS(nodep1, Const)) std::swap(nodep1, nodep2);
{
const VCastable castable = computeCastable(nodep1->dtypep(), nodep2->dtypep(), nodep2);
if (castable == VCastable::SAMEISH || castable == VCastable::COMPATIBLE) {
return nodep1->dtypep();
} else if (castable == VCastable::DYNAMIC_CLASS) {
return nodep2->dtypep();
}
}
AstClassRefDType* classDtypep1 = VN_CAST(nodep1->dtypep(), ClassRefDType);
while (classDtypep1) {
const VCastable castable = computeCastable(classDtypep1, nodep2->dtypep(), nodep2);
if (castable == VCastable::COMPATIBLE) return classDtypep1;
AstClassExtends* const extendsp = classDtypep1->classp()->extendsp();
classDtypep1 = extendsp ? VN_AS(extendsp->dtypep(), ClassRefDType) : nullptr;
}
return nullptr;
}
//######################################################################
// VNDeleter
void VNDeleter::doDeletes() {
for (AstNode* const nodep : m_deleteps) nodep->deleteTree();
m_deleteps.clear();
}
//######################################################################
// VNVisitor
#include "V3Ast__gen_visitor_defns.h" // From ./astgen