verilator/src/V3FuncOpt.cpp
2025-01-01 08:30:25 -05:00

338 lines
14 KiB
C++

// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
// DESCRIPTION: Verilator: Generic optimizations on a per function basis
//
// Code available from: https://verilator.org
//
//*************************************************************************
//
// Copyright 2003-2025 by Wilson Snyder. This program is free software; you
// can redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//*************************************************************************
//
// - Split assignments to wide locations with Concat on the RHS
// at word boundaries:
// foo = {l, r};
// becomes (recursively):
// foo[_:_] = r;
// foo[_:_] = l;
//
// - Balance concatenation trees, e.g.:
// {a, {b, {c, d}}
// becomes:
// {{a, b}, {c, d}}
// Reality is more complex here, see the code.
//
//*************************************************************************
#include "V3PchAstMT.h"
#include "V3FuncOpt.h"
#include "V3Global.h"
#include "V3Stats.h"
#include "V3ThreadPool.h"
VL_DEFINE_DEBUG_FUNCTIONS;
class BalanceConcatTree final {
// STATELESS
// We keep the expressions, together with their offsets within a concatenation tree
struct Term final {
AstNodeExpr* exprp = nullptr;
size_t offset = 0;
Term() = default;
Term(AstNodeExpr* exprp, size_t offset)
: exprp{exprp}
, offset{offset} {}
};
// Recursive implementation of 'gatherTerms' below.
static void gatherTermsRecursive(AstNodeExpr* exprp, std::vector<AstNodeExpr*>& terms) {
if (AstConcat* const catp = VN_CAST(exprp, Concat)) {
// Recursive case: gather sub terms, right to left
gatherTermsRecursive(catp->rhsp(), terms);
gatherTermsRecursive(catp->lhsp(), terms);
return;
}
// Base case: different operation
terms.emplace_back(exprp);
}
// Gather terms in the tree rooted at the given node.
// Results are right to left, that is, index 0 in the returned vector
// is the rightmost term, index size()-1 is the leftmost term.
static std::vector<AstNodeExpr*> gatherTerms(AstConcat* rootp) {
std::vector<AstNodeExpr*> terms;
gatherTermsRecursive(rootp->rhsp(), terms);
gatherTermsRecursive(rootp->lhsp(), terms);
return terms;
}
// Construct a balanced concatenation from the given terms,
// between indices begin (inclusive), and end (exclusive).
// Note term[end].offset must be valid. term[end].vtxp is
// never referenced.
static AstNodeExpr* construct(const std::vector<Term>& terms, const size_t begin,
const size_t end) {
UASSERT(end < terms.size(), "Invalid end");
UASSERT(begin < end, "Invalid range");
// Base case: just return the term
if (end == begin + 1) return terms[begin].exprp;
// Recursive case:
// Compute the mid-point, trying to create roughly equal width intermediates
const size_t width = terms[end].offset - terms[begin].offset;
const size_t midOffset = width / 2 + terms[begin].offset;
const auto beginIt = terms.begin() + begin;
const auto endIt = terms.begin() + end;
const auto midIt = std::lower_bound(beginIt + 1, endIt - 1, midOffset, //
[&](const Term& term, size_t value) { //
return term.offset < value;
});
const size_t mid = begin + std::distance(beginIt, midIt);
UASSERT(begin < mid && mid < end, "Must make some progress");
// Construct the subtrees
AstNodeExpr* const rhsp = construct(terms, begin, mid);
AstNodeExpr* const lhsp = construct(terms, mid, end);
// Construct new node
AstNodeExpr* newp = new AstConcat{lhsp->fileline(), lhsp, rhsp};
newp->user1(true); // Must not attempt to balance again.
return newp;
}
// Returns replacement node, or nullptr if no change
static AstConcat* balance(AstConcat* const rootp) {
UINFO(9, "balanceConcat " << rootp << "\n");
// Gather all input vertices of the tree
const std::vector<AstNodeExpr*> exprps = gatherTerms(rootp);
// Don't bother with trivial trees
if (exprps.size() <= 3) return nullptr;
// Don't do it if any of the terms are impure
for (AstNodeExpr* const exprp : exprps) {
if (!exprp->isPure()) return nullptr;
}
// Construct the terms Vector that we are going to do processing on
std::vector<Term> terms(exprps.size() + 1);
// These are redundant (constructor does the same), but here they are for clarity
terms[0].offset = 0;
terms[exprps.size()].exprp = nullptr;
for (size_t i = 0; i < exprps.size(); ++i) {
terms[i].exprp = exprps[i]->unlinkFrBack();
terms[i + 1].offset = terms[i].offset + exprps[i]->width();
}
// Round 1: try to create terms ending on VL_EDATASIZE boundaries.
// This ensures we pack bits within a VL_EDATASIZE first is possible,
// and then hopefully we can just assemble VL_EDATASIZE words afterward.
std::vector<Term> terms2;
{
terms2.reserve(terms.size());
size_t begin = 0; // Start of current range considered
size_t end = 0; // End of current range considered
size_t offset = 0; // Offset of current range considered
// Create a term from the current range
const auto makeTerm = [&]() {
AstNodeExpr* const exprp = construct(terms, begin, end);
terms2.emplace_back(exprp, offset);
offset += exprp->width();
begin = end;
};
// Create all terms ending on a boundary.
while (++end < terms.size() - 1) {
if (terms[end].offset % VL_EDATASIZE == 0) makeTerm();
}
// Final term. Loop condition above ensures this always exists,
// and might or might not be on a boundary.
makeTerm();
// Sentinel term
terms2.emplace_back(nullptr, offset);
// should have ended up with the same number of bits at least...
UASSERT(terms2.back().offset == terms.back().offset, "Inconsitent terms");
}
// Round 2: Combine the partial terms
return VN_AS(construct(terms2, 0, terms2.size() - 1), Concat);
}
public:
static AstConcat* apply(AstConcat* rootp) { return balance(rootp); }
};
class FuncOptVisitor final : public VNVisitor {
// NODE STATE
// AstNodeAssign::user() -> bool. Already checked, safe to split. Omit expensive check.
// AstConcat::user() -> bool. Already balanced.
// STATE - Statistic tracking
VDouble0 m_balancedConcats; // Number of concatenations balanced
VDouble0 m_concatSplits; // Number of splits in assignments with Concat on RHS
// True for e.g.: foo = foo >> 1; or foo[foo[0]] = ...;
static bool readsLhs(AstNodeAssign* nodep) {
// It is expected that the number of vars written on the LHS is very small (should be 1).
std::unordered_set<const AstVar*> lhsWrVarps;
std::unordered_set<const AstVar*> lhsRdVarps;
nodep->lhsp()->foreach([&](const AstVarRef* refp) {
if (refp->access().isWriteOrRW()) lhsWrVarps.emplace(refp->varp());
if (refp->access().isReadOrRW()) lhsRdVarps.emplace(refp->varp());
});
// Common case of 1 variable on the LHS - special handling for speed
if (lhsWrVarps.size() == 1) {
const AstVar* const lhsWrVarp = *lhsWrVarps.begin();
// Check Rhs doesn't read the written var
const bool rhsReadsWritten = nodep->rhsp()->exists([=](const AstVarRef* refp) { //
return refp->varp() == lhsWrVarp;
});
if (rhsReadsWritten) return true;
// Check Lhs doesn't read the written var
return lhsRdVarps.count(lhsWrVarp);
}
// Generic case of multiple vars written on LHS
// TODO: this might be impossible due to earlier transforms, not sure
// Check Rhs doesn't read the written vars
const bool rhsReadsWritten = nodep->rhsp()->exists([&](const AstVarRef* refp) { //
return lhsWrVarps.count(refp->varp());
});
if (rhsReadsWritten) return true;
// Check Lhs doesn't read the written vars
for (const AstVar* const lhsWrVarp : lhsWrVarps) {
if (lhsRdVarps.count(lhsWrVarp)) return true;
}
return false;
}
// METHODS
// Split wide assignments with a wide concatenation on the RHS.
// Returns true if 'nodep' was deleted
bool splitConcat(AstNodeAssign* nodep) {
UINFO(9, "splitConcat " << nodep << "\n");
// Only care about concatenations on the right
AstConcat* const rhsp = VN_CAST(nodep->rhsp(), Concat);
if (!rhsp) return false;
// Will need the LHS
AstNodeExpr* lhsp = nodep->lhsp();
UASSERT_OBJ(lhsp->width() == rhsp->width(), nodep, "Inconsistent assignment");
// Only consider pure assignments. Nodes inserted below are safe.
if (!nodep->user1() && (!lhsp->isPure() || !rhsp->isPure())) return false;
// Check for a Sel on the LHS if present, and skip over it
uint32_t lsb = 0;
if (AstSel* const selp = VN_CAST(lhsp, Sel)) {
if (AstConst* const lsbp = VN_CAST(selp->lsbp(), Const)) {
lhsp = selp->fromp();
lsb = lsbp->toUInt();
} else {
// Don't optimize if it's a variable select
return false;
}
}
// No need to split assignments targeting storage smaller than a machine register
if (lhsp->width() <= VL_QUADSIZE) return false;
// If it's a concat straddling a word boundary, try to split it.
// The next visit on the new nodes will split it recursively.
// Otherwise, keep the original assignment.
const int lsbWord = lsb / VL_EDATASIZE;
const int msbWord = (lsb + rhsp->width() - 1) / VL_EDATASIZE;
if (lsbWord == msbWord) return false;
// If the RHS reads the LHS, we can't actually do this. Nodes inserted below are safe.
if (!nodep->user1() && readsLhs(nodep)) return false;
// Ok, actually split it now
UINFO(5, "splitConcat optimizing " << nodep << "\n");
++m_concatSplits;
// The 2 parts and their offsets
AstNodeExpr* const rrp = rhsp->rhsp()->unlinkFrBack();
AstNodeExpr* const rlp = rhsp->lhsp()->unlinkFrBack();
const int rLsb = lsb;
const int lLsb = lsb + rrp->width();
// Insert the 2 assignment right after the original. They will be visited next.
AstAssign* const arp = new AstAssign{
nodep->fileline(),
new AstSel{lhsp->fileline(), lhsp->cloneTreePure(false), rLsb, rrp->width()}, rrp};
AstAssign* const alp = new AstAssign{
nodep->fileline(),
new AstSel{lhsp->fileline(), lhsp->unlinkFrBack(), lLsb, rlp->width()}, rlp};
nodep->addNextHere(arp);
arp->addNextHere(alp);
// Safe to split these.
arp->user1(true);
alp->user1(true);
// Nuke what is left
VL_DO_DANGLING(pushDeletep(nodep->unlinkFrBack()), nodep);
return true;
}
// VISIT
void visit(AstNodeAssign* nodep) override {
// TODO: Only thing remaining inside functions should be AstAssign (that is, an actual
// assignment statemant), but we stil use AstAssignW, AstAssignDly, and all, fix.
iterateChildren(nodep);
if (v3Global.opt.fFuncSplitCat()) {
if (splitConcat(nodep)) return; // Must return here, in case more code is added below
}
}
void visit(AstConcat* nodep) override {
if (v3Global.opt.fFuncBalanceCat() && !nodep->user1() && !VN_IS(nodep->backp(), Concat)) {
if (AstConcat* const newp = BalanceConcatTree::apply(nodep)) {
UINFO(5, "balanceConcat optimizing " << nodep << "\n");
++m_balancedConcats;
nodep->replaceWith(newp);
VL_DO_DANGLING(pushDeletep(nodep), nodep);
newp->user1(true); // Must not attempt again.
// Return here. The new node will be iterated next.
return;
}
}
iterateChildren(nodep);
}
void visit(AstNode* nodep) override { iterateChildren(nodep); }
// CONSTRUCTORS
explicit FuncOptVisitor(AstCFunc* funcp) { iterateChildren(funcp); }
~FuncOptVisitor() override {
V3Stats::addStatSum("Optimizations, FuncOpt concat trees balanced", m_balancedConcats);
V3Stats::addStatSum("Optimizations, FuncOpt concat splits", m_concatSplits);
}
public:
static void apply(AstCFunc* funcp) { FuncOptVisitor{funcp}; }
};
//######################################################################
void V3FuncOpt::funcOptAll(AstNetlist* nodep) {
UINFO(2, __FUNCTION__ << ": " << endl);
{
const VNUser1InUse user1InUse;
V3ThreadScope threadScope;
for (AstNodeModule *modp = nodep->modulesp(), *nextModp; modp; modp = nextModp) {
nextModp = VN_AS(modp->nextp(), NodeModule);
for (AstNode *nodep = modp->stmtsp(), *nextNodep; nodep; nodep = nextNodep) {
nextNodep = nodep->nextp();
if (AstCFunc* const cfuncp = VN_CAST(nodep, CFunc)) {
threadScope.enqueue([cfuncp]() { FuncOptVisitor::apply(cfuncp); });
}
}
}
}
V3Global::dumpCheckGlobalTree("funcopt", 0, dumpTreeEitherLevel() >= 3);
}