verilator/include/verilated_cov.cpp
2024-12-11 08:52:41 -05:00

530 lines
21 KiB
C++

// -*- mode: C++; c-file-style: "cc-mode" -*-
//=============================================================================
//
// Code available from: https://verilator.org
//
// Copyright 2001-2024 by Wilson Snyder. This program is free software; you
// can redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//=============================================================================
///
/// \file
/// \brief Verilated coverage analysis implementation code
///
/// This file must be compiled and linked against all Verilated objects
/// that use coverage.
///
/// Use "verilator --coverage" to add this to the Makefile for the linker.
///
//=============================================================================
#include "verilatedos.h"
#include "verilated_cov.h"
#include "verilated.h"
#include "verilated_cov_key.h"
#include <deque>
#include <fstream>
#include <map>
#include <utility>
//=============================================================================
// VerilatedCovConst
// Implementation constants
struct VerilatedCovConst VL_NOT_FINAL {
// TYPES
enum { MAX_KEYS = 33 }; // Maximum user arguments + filename+lineno
enum { KEY_UNDEF = 0 }; // Magic key # for unspecified values
};
//=============================================================================
// VerilatedCovImpItem
// Implementation class for a VerilatedCov item
class VerilatedCovImpItem VL_NOT_FINAL {
public: // But only local to this file
// MEMBERS
int m_keys[VerilatedCovConst::MAX_KEYS]; // Key
int m_vals[VerilatedCovConst::MAX_KEYS]; // Value for specified key
// CONSTRUCTORS
// Derived classes should call zero() in their constructor
VerilatedCovImpItem() {
for (int i = 0; i < VerilatedCovConst::MAX_KEYS; ++i) {
m_keys[i] = VerilatedCovConst::KEY_UNDEF;
m_vals[i] = 0;
}
}
virtual ~VerilatedCovImpItem() = default;
virtual uint64_t count() const = 0;
virtual void zero() const = 0;
};
//=============================================================================
// VerilatedCoverItem templated for a specific class
// Creates a new coverage item for the specified type.
// This isn't in the header file for auto-magic conversion because it
// inlines to too much code and makes compilation too slow.
template <typename T>
class VerilatedCoverItemSpec final : public VerilatedCovImpItem {
private:
// MEMBERS
T* m_countp; // Count value
public:
// METHODS
// cppcheck-suppress truncLongCastReturn
uint64_t count() const override { return *m_countp; }
void zero() const override { *m_countp = 0; }
// CONSTRUCTORS
// cppcheck-suppress noExplicitConstructor
explicit VerilatedCoverItemSpec(T* countp)
: m_countp{countp} {
*m_countp = 0;
}
~VerilatedCoverItemSpec() override = default;
};
//=============================================================================
// VerilatedCovImp
//
// Implementation class for VerilatedCovContext. See that class for
// public method information. All value and keys are indexed into a
// unique number. Thus we can greatly reduce the storage requirements for
// otherwise identical keys.
class VerilatedCovImp final : public VerilatedCovContext {
private:
// TYPES
using ValueIndexMap = std::map<const std::string, int>;
using IndexValueMap = std::map<int, std::string>;
using ItemList = std::deque<VerilatedCovImpItem*>;
// MEMBERS
VerilatedContext* const m_contextp; // Context VerilatedCovImp is pointed-to by
mutable VerilatedMutex m_mutex; // Protects all members
ValueIndexMap m_valueIndexes VL_GUARDED_BY(m_mutex); // Unique arbitrary value for values
IndexValueMap m_indexValues VL_GUARDED_BY(m_mutex); // Unique arbitrary value for keys
ItemList m_items VL_GUARDED_BY(m_mutex); // List of all items
int m_nextIndex VL_GUARDED_BY(m_mutex)
= (VerilatedCovConst::KEY_UNDEF + 1); // Next insert value
VerilatedCovImpItem* m_insertp VL_GUARDED_BY(m_mutex) = nullptr; // Item about to insert
const char* m_insertFilenamep VL_GUARDED_BY(m_mutex) = nullptr; // Filename about to insert
int m_insertLineno VL_GUARDED_BY(m_mutex) = 0; // Line number about to insert
bool m_forcePerInstance VL_GUARDED_BY(m_mutex) = false; // Force per_instance
public:
// CONSTRUCTORS
explicit VerilatedCovImp(VerilatedContext* contextp)
: m_contextp{contextp} {}
VL_UNCOPYABLE(VerilatedCovImp);
protected:
friend class VerilatedCovContext;
~VerilatedCovImp() override { clearGuts(); }
private:
// PRIVATE METHODS
int valueIndex(const std::string& value) VL_REQUIRES(m_mutex) {
const auto iter = m_valueIndexes.find(value);
if (iter != m_valueIndexes.end()) return iter->second;
++m_nextIndex;
assert(m_nextIndex > 0); // Didn't rollover
m_valueIndexes.emplace(value, m_nextIndex);
m_indexValues.emplace(m_nextIndex, value);
return m_nextIndex;
}
static std::string dequote(const std::string& text) VL_PURE {
// Quote any special characters
std::string rtn;
for (const char* pos = text.c_str(); *pos; ++pos) {
if (!std::isprint(*pos) || *pos == '%' || *pos == '"') {
constexpr size_t LEN_MAX_HEX = 20;
char hex[LEN_MAX_HEX];
VL_SNPRINTF(hex, LEN_MAX_HEX, "%%%02X", pos[0]);
rtn += hex;
} else {
rtn += *pos;
}
}
return rtn;
}
static bool legalKey(const std::string& key) VL_PURE {
// Because we compress long keys to a single letter, and
// don't want applications to either get confused if they use
// a letter differently, nor want them to rely on our compression...
// (Considered using numeric keys, but will remain back compatible.)
if (key.length() < 2) return false;
if (key.length() == 2 && std::isdigit(key[1])) return false;
return true;
}
static std::string keyValueFormatter(const std::string& key,
const std::string& value) VL_PURE {
std::string name;
if (key.length() == 1 && std::isalpha(key[0])) {
name += "\001"s + key;
} else {
name += "\001"s + dequote(key);
}
name += "\002"s + dequote(value);
return name;
}
static std::string combineHier(const std::string& old, const std::string& add) VL_PURE {
// (foo.a.x, foo.b.x) => foo.*.x
// (foo.a.x, foo.b.y) => foo.*
// (foo.a.x, foo.b) => foo.*
if (old == add) return add;
if (old.empty()) return add;
if (add.empty()) return old;
const char* const a = old.c_str();
const char* const b = add.c_str();
// Scan forward to first mismatch
const char* apre = a;
const char* bpre = b;
while (*apre == *bpre) {
++apre;
++bpre;
}
// We used to backup and split on only .'s but it seems better to be verbose
// and not assume . is the separator
const size_t prefix_len = apre - a;
const std::string prefix = std::string{a, prefix_len};
// Scan backward to last mismatch
const char* apost = a + std::strlen(a) - 1;
const char* bpost = b + std::strlen(b) - 1;
while (*apost == *bpost && apost > apre && bpost > bpre) {
--apost;
--bpost;
}
// Forward to . so we have a whole word
const std::string suffix = *bpost ? std::string{bpost + 1} : "";
std::string result = prefix + "*" + suffix;
// std::cout << "\nch pre=" << prefix << " s=" << suffix << "\nch a="
// << old << "\nch b=" << add << "\ncho=" << result << "\n";
return result;
}
bool itemMatchesString(VerilatedCovImpItem* itemp, const std::string& match)
VL_REQUIRES(m_mutex) {
for (int i = 0; i < VerilatedCovConst::MAX_KEYS; ++i) {
if (itemp->m_keys[i] != VerilatedCovConst::KEY_UNDEF) {
// We don't compare keys, only values
const std::string val = m_indexValues[itemp->m_vals[i]];
if (std::string::npos != val.find(match)) { // Found
return true;
}
}
}
return false;
}
static void selftest() VL_MT_SAFE {
// Little selftest
#define SELF_CHECK(got, exp) \
do { \
if ((got) != (exp)) VL_FATAL_MT(__FILE__, __LINE__, "", "selftest"); \
} while (0)
SELF_CHECK(combineHier("a.b.c", "a.b.c"), "a.b.c");
SELF_CHECK(combineHier("a.b.c", "a.b"), "a.b*");
SELF_CHECK(combineHier("a.x.c", "a.y.c"), "a.*.c");
SELF_CHECK(combineHier("a.z.z.z.c", "a.b.c"), "a.*.c");
SELF_CHECK(combineHier("z", "a"), "*");
SELF_CHECK(combineHier("q.a", "q.b"), "q.*");
SELF_CHECK(combineHier("q.za", "q.zb"), "q.z*");
SELF_CHECK(combineHier("1.2.3.a", "9.8.7.a"), "*.a");
#undef SELF_CHECK
}
void clearGuts() VL_REQUIRES(m_mutex) {
for (const auto& itemp : m_items) VL_DO_DANGLING(delete itemp, itemp);
m_items.clear();
m_indexValues.clear();
m_valueIndexes.clear();
m_nextIndex = VerilatedCovConst::KEY_UNDEF + 1;
}
public:
// PUBLIC METHODS
std::string defaultFilename() VL_MT_SAFE { return m_contextp->coverageFilename(); }
void forcePerInstance(const bool flag) VL_MT_SAFE_EXCLUDES(m_mutex) {
Verilated::quiesce();
const VerilatedLockGuard lock{m_mutex};
m_forcePerInstance = flag;
}
void clear() VL_MT_SAFE_EXCLUDES(m_mutex) {
Verilated::quiesce();
const VerilatedLockGuard lock{m_mutex};
clearGuts();
}
void clearNonMatch(const char* const matchp) VL_MT_SAFE_EXCLUDES(m_mutex) {
Verilated::quiesce();
const VerilatedLockGuard lock{m_mutex};
if (matchp && matchp[0]) {
ItemList newlist;
for (const auto& itemp : m_items) {
if (!itemMatchesString(itemp, matchp)) {
VL_DO_DANGLING(delete itemp, itemp);
} else {
newlist.push_back(itemp);
}
}
m_items = newlist;
}
}
void zero() VL_MT_SAFE_EXCLUDES(m_mutex) {
Verilated::quiesce();
const VerilatedLockGuard lock{m_mutex};
for (const auto& itemp : m_items) itemp->zero();
}
// We assume there's always call to i/f/p in that order
void inserti(VerilatedCovImpItem* itemp) VL_MT_SAFE_EXCLUDES(m_mutex) {
const VerilatedLockGuard lock{m_mutex};
assert(!m_insertp);
m_insertp = itemp;
}
void insertf(const char* const filenamep, const int lineno) VL_MT_SAFE_EXCLUDES(m_mutex) {
const VerilatedLockGuard lock{m_mutex};
m_insertFilenamep = filenamep;
m_insertLineno = lineno;
}
void insertp(const char* ckeyps[VerilatedCovConst::MAX_KEYS],
const char* valps[VerilatedCovConst::MAX_KEYS]) VL_MT_SAFE_EXCLUDES(m_mutex) {
const VerilatedLockGuard lock{m_mutex};
assert(m_insertp);
// First two key/vals are filename
ckeyps[0] = "filename";
valps[0] = m_insertFilenamep;
const std::string linestr = std::to_string(m_insertLineno);
ckeyps[1] = "lineno";
valps[1] = linestr.c_str();
// Default page if not specified
const char* fnstartp = m_insertFilenamep;
while (const char* foundp = std::strchr(fnstartp, '/')) fnstartp = foundp + 1;
const char* fnendp = fnstartp;
for (; *fnendp && *fnendp != '.'; fnendp++) {}
const size_t page_len = fnendp - fnstartp;
const std::string page_default = "sp_user/" + std::string{fnstartp, page_len};
ckeyps[2] = "page";
valps[2] = page_default.c_str();
// Keys -> strings
std::array<std::string, VerilatedCovConst::MAX_KEYS> keys;
for (int i = 0; i < VerilatedCovConst::MAX_KEYS; ++i) {
if (ckeyps[i] && ckeyps[i][0]) keys[i] = ckeyps[i];
}
// Ignore empty keys
for (int i = 0; i < VerilatedCovConst::MAX_KEYS; ++i) {
if (!keys[i].empty()) {
for (int j = i + 1; j < VerilatedCovConst::MAX_KEYS; ++j) {
if (keys[i] == keys[j]) { // Duplicate key. Keep the last one
keys[i] = "";
break;
}
}
}
}
// Insert the values
int addKeynum = 0;
for (int i = 0; i < VerilatedCovConst::MAX_KEYS; ++i) {
const std::string key = keys[i];
if (!keys[i].empty()) {
const std::string val = valps[i];
// std::cout << " " << __FUNCTION__ << " " << key << " = " << val << "\n";
m_insertp->m_keys[addKeynum] = valueIndex(key);
m_insertp->m_vals[addKeynum] = valueIndex(val);
++addKeynum;
if (VL_UNCOVERABLE(!legalKey(key))) {
const std::string msg
= ("%Error: Coverage keys of one character, or letter+digit are illegal: "
+ key); // LCOV_EXCL_LINE
VL_FATAL_MT("", 0, "", msg.c_str());
}
}
}
m_items.push_back(m_insertp);
// Prepare for next
m_insertp = nullptr;
}
void write(const std::string& filename) VL_MT_SAFE_EXCLUDES(m_mutex) {
Verilated::quiesce();
const VerilatedLockGuard lock{m_mutex};
selftest();
std::ofstream os{filename};
if (os.fail()) {
const std::string msg = "%Error: Can't write '"s + filename + "'";
VL_FATAL_MT("", 0, "", msg.c_str());
return;
}
os << "# SystemC::Coverage-3\n";
// Build list of events; totalize if collapsing hierarchy
std::map<const std::string, std::pair<std::string, uint64_t>> eventCounts;
for (const auto& itemp : m_items) {
std::string name;
std::string hier;
bool per_instance = false;
if (m_forcePerInstance) per_instance = true;
for (int i = 0; i < VerilatedCovConst::MAX_KEYS; ++i) {
if (itemp->m_keys[i] != VerilatedCovConst::KEY_UNDEF) {
const std::string key
= VerilatedCovKey::shortKey(m_indexValues[itemp->m_keys[i]]);
const std::string val = m_indexValues[itemp->m_vals[i]];
if (key == VL_CIK_PER_INSTANCE) {
if (val != "0") per_instance = true;
}
if (key == VL_CIK_HIER) {
hier = val;
} else {
// Print it
name += keyValueFormatter(key, val);
}
}
}
if (per_instance) { // Not collapsing hierarchies
name += keyValueFormatter(VL_CIK_HIER, hier);
hier = "";
}
// Group versus point labels don't matter here, downstream
// deals with it. Seems bad for sizing though and doesn't
// allow easy addition of new group codes (would be
// inefficient)
// Find or insert the named event
const auto cit = eventCounts.find(name);
if (cit != eventCounts.end()) {
const std::string& oldhier = cit->second.first;
cit->second.second += itemp->count();
cit->second.first = combineHier(oldhier, hier);
} else {
eventCounts.emplace(name, std::make_pair(hier, itemp->count()));
}
}
// Output body
for (const auto& i : eventCounts) {
os << "C '" << std::dec;
os << i.first;
if (!i.second.first.empty()) os << keyValueFormatter(VL_CIK_HIER, i.second.first);
os << "' " << i.second.second;
os << '\n';
}
}
};
//=============================================================================
// VerilatedCovContext
std::string VerilatedCovContext::defaultFilename() VL_MT_SAFE { return impp()->defaultFilename(); }
void VerilatedCovContext::forcePerInstance(bool flag) VL_MT_SAFE {
impp()->forcePerInstance(flag);
}
void VerilatedCovContext::clear() VL_MT_SAFE { impp()->clear(); }
void VerilatedCovContext::clearNonMatch(const char* matchp) VL_MT_SAFE {
impp()->clearNonMatch(matchp);
}
void VerilatedCovContext::zero() VL_MT_SAFE { impp()->zero(); }
void VerilatedCovContext::write(const std::string& filename) VL_MT_SAFE {
impp()->write(filename);
}
void VerilatedCovContext::_inserti(uint32_t* itemp) VL_MT_SAFE {
impp()->inserti(new VerilatedCoverItemSpec<uint32_t>{itemp});
}
void VerilatedCovContext::_inserti(uint64_t* itemp) VL_MT_SAFE {
impp()->inserti(new VerilatedCoverItemSpec<uint64_t>{itemp});
}
void VerilatedCovContext::_insertf(const char* filename, int lineno) VL_MT_SAFE {
impp()->insertf(filename, lineno);
}
#ifndef DOXYGEN
#define K(n) const char* key##n
#define A(n) const char *key##n, const char *valp##n // Argument list
#define C(n) key##n, valp##n // Calling argument list
#define N(n) "", "" // Null argument list
void VerilatedCovContext::_insertp(A(0), A(1), A(2), A(3), A(4), A(5), A(6), A(7), A(8), A(9),
A(10), A(11), A(12), A(13), A(14), A(15), A(16), A(17), A(18),
A(19), A(20), A(21), A(22), A(23), A(24), A(25), A(26), A(27),
A(28), A(29)) VL_MT_SAFE {
const char* keyps[VerilatedCovConst::MAX_KEYS]
= {nullptr, nullptr, nullptr, // filename,lineno,page
key0, key1, key2, key3, key4, key5, key6, key7, key8, key9,
key10, key11, key12, key13, key14, key15, key16, key17, key18, key19,
key20, key21, key22, key23, key24, key25, key26, key27, key28, key29};
const char* valps[VerilatedCovConst::MAX_KEYS]
= {nullptr, nullptr, nullptr, // filename,lineno,page
valp0, valp1, valp2, valp3, valp4, valp5, valp6, valp7, valp8, valp9,
valp10, valp11, valp12, valp13, valp14, valp15, valp16, valp17, valp18, valp19,
valp20, valp21, valp22, valp23, valp24, valp25, valp26, valp27, valp28, valp29};
impp()->insertp(keyps, valps);
}
// And versions with fewer arguments (oh for a language with named parameters!)
void VerilatedCovContext::_insertp(A(0), A(1), A(2), A(3), A(4), A(5), A(6), A(7), A(8),
A(9)) VL_MT_SAFE {
_insertp(C(0), C(1), C(2), C(3), C(4), C(5), C(6), C(7), C(8), C(9), N(10), N(11), N(12),
N(13), N(14), N(15), N(16), N(17), N(18), N(19), N(20), N(21), N(22), N(23), N(24),
N(25), N(26), N(27), N(28), N(29));
}
void VerilatedCovContext::_insertp(A(0), A(1), A(2), A(3), A(4), A(5), A(6), A(7), A(8), A(9),
A(10), A(11), A(12), A(13), A(14), A(15), A(16), A(17), A(18),
A(19)) VL_MT_SAFE {
_insertp(C(0), C(1), C(2), C(3), C(4), C(5), C(6), C(7), C(8), C(9), C(10), C(11), C(12),
C(13), C(14), C(15), C(16), C(17), C(18), C(19), N(20), N(21), N(22), N(23), N(24),
N(25), N(26), N(27), N(28), N(29));
}
// Backward compatibility for Verilator
void VerilatedCovContext::_insertp(A(0), A(1), K(2), int val2, K(3), int val3, K(4),
const std::string& val4, A(5), A(6), A(7)) VL_MT_SAFE {
const std::string val2str = std::to_string(val2);
const std::string val3str = std::to_string(val3);
_insertp(C(0), C(1), key2, val2str.c_str(), key3, val3str.c_str(), key4, val4.c_str(), C(5),
C(6), C(7), N(8), N(9), N(10), N(11), N(12), N(13), N(14), N(15), N(16), N(17), N(18),
N(19), N(20), N(21), N(22), N(23), N(24), N(25), N(26), N(27), N(28), N(29));
}
#undef A
#undef C
#undef N
#undef K
#endif // DOXYGEN
//=============================================================================
// VerilatedCov
#ifndef VL_NO_LEGACY
VerilatedCovContext* VerilatedCov::threadCovp() VL_MT_SAFE {
return Verilated::threadContextp()->coveragep();
}
#endif
//=============================================================================
// VerilatedContext
VerilatedCovContext* VerilatedContext::coveragep() VL_MT_SAFE {
static VerilatedMutex s_mutex;
// cppcheck-suppress identicalInnerCondition
if (VL_UNLIKELY(!m_coveragep)) {
const VerilatedLockGuard lock{s_mutex};
// cppcheck-suppress identicalInnerCondition
if (VL_LIKELY(!m_coveragep)) { // LCOV_EXCL_LINE // Not redundant, prevents race
m_coveragep.reset(new VerilatedCovImp{this});
}
}
return reinterpret_cast<VerilatedCovContext*>(m_coveragep.get());
}