verilator/include/verilated_vpi.h
2011-01-01 18:21:19 -05:00

836 lines
27 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// -*- C++ -*-
//*************************************************************************
//
// Copyright 2009-2011 by Wilson Snyder. This program is free software; you can
// redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License.
// Version 2.0.
//
// Verilator is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
//=========================================================================
///
/// \file
/// \brief Verilator: VPI implementation code
///
/// This file must be compiled and linked against all objects
/// created from Verilator or called by Verilator that use the VPI.
///
/// "//-" indicates features that are as yet unimplemented.
///
/// Code available from: http://www.veripool.org/verilator
///
//=========================================================================
#ifndef CHPI_VERILATED_VPI_H
#define CHPI_VERILATED_VPI_H 1
#include "verilated.h"
#include "verilated_syms.h"
//======================================================================
// From IEEE 1800-2009 annex K
#include "vltstd/vpi_user.h"
//======================================================================
// Internal macros
// Not supported yet
#define _VL_VPI_UNIMP() \
vl_fatal(__FILE__,__LINE__,"",Verilated::catName("Unsupported VPI function: ",VL_FUNC))
//======================================================================
// Implementation
#include <set>
#define VL_DEBUG_IF_PLI VL_DEBUG_IF
// Base VPI handled object
class VerilatedVpio {
// MEM MANGLEMENT
static vluint8_t* s_freeHead;
public:
// CONSTRUCTORS
VerilatedVpio() {}
virtual ~VerilatedVpio() {}
inline static void* operator new(size_t size) {
// We new and delete tons of vpi structures, so keep them around
// To simplify our free list, we use a size large enough for all derived types
// We reserve word zero for the next pointer, as that's safer in case a
// dangling reference to the original remains around.
static size_t chunk = 96;
if (VL_UNLIKELY(size>chunk)) vl_fatal(__FILE__,__LINE__,"", "increase chunk");
if (VL_LIKELY(s_freeHead)) {
vluint8_t* newp = s_freeHead;
s_freeHead = *((vluint8_t**)newp);
return newp+8;
} else {
// +8: 8 bytes for next
vluint8_t* newp = (vluint8_t*)(::operator new(chunk+8));
return newp+8;
}
}
inline static void operator delete(void* obj, size_t size) {
vluint8_t* oldp = ((vluint8_t*)obj)-8;
*((void**)oldp) = s_freeHead;
s_freeHead = oldp;
}
// MEMBERS
static inline VerilatedVpio* castp(vpiHandle h) { return dynamic_cast<VerilatedVpio*>((VerilatedVpio*)h); }
inline vpiHandle castVpiHandle() { return (vpiHandle)(this); }
// ACCESSORS
virtual const char* name() { return "<null>"; }
virtual const char* fullname() { return "<null>"; }
virtual const char* defname() { return "<null>"; }
virtual vpiHandle dovpi_scan() { return 0; }
};
typedef PLI_INT32 (*VerilatedPliCb)(struct t_cb_data *);
class VerilatedVpioCb : public VerilatedVpio {
t_cb_data m_cbData;
QData m_time;
public:
VerilatedVpioCb(const t_cb_data* cbDatap, QData time) : m_cbData(*cbDatap), m_time(time) {}
virtual ~VerilatedVpioCb() {}
static inline VerilatedVpioCb* castp(vpiHandle h) { return dynamic_cast<VerilatedVpioCb*>((VerilatedVpio*)h); }
vluint32_t reason() const { return m_cbData.reason; }
VerilatedPliCb cb_rtnp() const { return m_cbData.cb_rtn; }
t_cb_data* cb_datap() { return &(m_cbData); }
QData time() const { return m_time; }
};
class VerilatedVpioConst : public VerilatedVpio {
vlsint32_t m_num;
public:
VerilatedVpioConst(vlsint32_t num) : m_num(num) {}
virtual ~VerilatedVpioConst() {}
static inline VerilatedVpioConst* castp(vpiHandle h) { return dynamic_cast<VerilatedVpioConst*>((VerilatedVpio*)h); }
vlsint32_t num() const { return m_num; }
};
class VerilatedVpioRange : public VerilatedVpio {
vlsint32_t m_lhs; // Ranges can be signed
vlsint32_t m_rhs;
bool m_iteration;
public:
VerilatedVpioRange(vlsint32_t lhs, vlsint32_t rhs) : m_lhs(lhs), m_rhs(rhs), m_iteration(0) {}
virtual ~VerilatedVpioRange() {}
static inline VerilatedVpioRange* castp(vpiHandle h) { return dynamic_cast<VerilatedVpioRange*>((VerilatedVpio*)h); }
vlsint32_t lhs() const { return m_lhs; }
vlsint32_t rhs() const { return m_rhs; }
int iteration() const { return m_iteration; }
void iterationInc() { ++m_iteration; }
virtual vpiHandle dovpi_scan() {
if (!iteration()) {
VerilatedVpioRange* nextp = new VerilatedVpioRange(*this);
nextp->iterationInc();
return ((nextp)->castVpiHandle());
} else {
return 0; // End of list - only one deep
}
}
};
class VerilatedVpioScope : public VerilatedVpio {
const VerilatedScope* m_scopep;
public:
VerilatedVpioScope(const VerilatedScope* scopep)
: m_scopep(scopep) {}
virtual ~VerilatedVpioScope() {}
static inline VerilatedVpioScope* castp(vpiHandle h) { return dynamic_cast<VerilatedVpioScope*>((VerilatedVpio*)h); }
const VerilatedScope* scopep() const { return m_scopep; }
virtual const char* name() { return m_scopep->name(); }
virtual const char* fullname() { return m_scopep->name(); }
};
class VerilatedVpioVar : public VerilatedVpio {
const VerilatedVar* m_varp;
const VerilatedScope* m_scopep;
vluint8_t* m_prevDatap; // Previous value of data, for cbValueChange
vluint32_t m_mask; // memoized variable mask
vluint32_t m_entSize; // memoized variable size
protected:
void* m_varDatap; // varp()->datap() adjusted for array entries
vlsint32_t m_index;
public:
VerilatedVpioVar(const VerilatedVar* varp, const VerilatedScope* scopep)
: m_varp(varp), m_scopep(scopep), m_index(0) {
m_prevDatap = NULL;
m_mask = VL_MASK_I(varp->range().bits());
m_entSize = varp->entSize();
m_varDatap = varp->datap();
}
virtual ~VerilatedVpioVar() {
if (m_prevDatap) { delete [] m_prevDatap; m_prevDatap = NULL; }
}
static inline VerilatedVpioVar* castp(vpiHandle h) { return dynamic_cast<VerilatedVpioVar*>((VerilatedVpio*)h); }
const VerilatedVar* varp() const { return m_varp; }
const VerilatedScope* scopep() const { return m_scopep; }
vluint32_t mask() const { return m_mask; }
vluint32_t entSize() const { return m_entSize; }
virtual const char* name() { return m_varp->name(); }
virtual const char* fullname() {
static VL_THREAD string out;
out = string(m_scopep->name())+"."+name();
return out.c_str();
}
void* prevDatap() const { return m_prevDatap; }
void* varDatap() const { return m_varDatap; }
void createPrevDatap() {
if (VL_UNLIKELY(!m_prevDatap)) {
m_prevDatap = new vluint8_t [entSize()];
memcpy(prevDatap(), varp()->datap(), entSize());
}
}
};
class VerilatedVpioVarIndex : public VerilatedVpioVar {
public:
VerilatedVpioVarIndex(const VerilatedVar* varp, const VerilatedScope* scopep,
vlsint32_t index, int offset)
: VerilatedVpioVar(varp, scopep) {
m_index = index;
m_varDatap = ((vluint8_t*)varp->datap()) + entSize()*offset;
}
virtual ~VerilatedVpioVarIndex() {}
static inline VerilatedVpioVarIndex* castp(vpiHandle h) { return dynamic_cast<VerilatedVpioVarIndex*>((VerilatedVpio*)h); }
virtual const char* fullname() {
static VL_THREAD string out;
char num[20]; sprintf(num,"%d",m_index);
out = string(scopep()->name())+"."+name()+"["+num+"]";
return out.c_str();
}
};
class VerilatedVpioVarIter : public VerilatedVpio {
const VerilatedScope* m_scopep;
VerilatedVarNameMap::iterator m_it;
bool m_started;
public:
VerilatedVpioVarIter(const VerilatedScope* scopep)
: m_scopep(scopep), m_started(false) { }
virtual ~VerilatedVpioVarIter() {}
static inline VerilatedVpioVarIter* castp(vpiHandle h) { return dynamic_cast<VerilatedVpioVarIter*>((VerilatedVpio*)h); }
virtual vpiHandle dovpi_scan() {
if (VL_LIKELY(m_scopep->varsp())) {
if (VL_UNLIKELY(!m_started)) { m_it = m_scopep->varsp()->begin(); m_started=true; }
else if (VL_UNLIKELY(m_it == m_scopep->varsp()->end())) return 0;
else ++m_it;
if (m_it == m_scopep->varsp()->end()) return 0;
return ((new VerilatedVpioVar(&(m_it->second), m_scopep))
->castVpiHandle());
} else {
return 0; // End of list - only one deep
}
}
};
//======================================================================
struct VerilatedVpiTimedCbsCmp {
/// Ordering sets keyed by time, then callback descriptor
bool operator() (const pair<QData,VerilatedVpioCb*>& a,
const pair<QData,VerilatedVpioCb*>& b) const {
if (a.first < b.first) return 1;
if (a.first > b.first) return 0;
return a.second < b.second;
}
};
class VerilatedVpi {
enum { CB_ENUM_MAX_VALUE = cbAtEndOfSimTime+1 }; // Maxium callback reason
typedef set<VerilatedVpioCb*> VpioCbSet;
typedef set<pair<QData,VerilatedVpioCb*>,VerilatedVpiTimedCbsCmp > VpioTimedCbs;
VpioCbSet m_cbObjSets[CB_ENUM_MAX_VALUE]; // Callbacks for each supported reason
VpioTimedCbs m_timedCbs; // Time based callbacks
static VerilatedVpi s_s; // Singleton
public:
VerilatedVpi() {}
~VerilatedVpi() {}
static void cbReasonAdd(VerilatedVpioCb* vop) {
if (vop->reason() == cbValueChange) {
if (VerilatedVpioVar* varop = VerilatedVpioVar::castp(vop->cb_datap()->obj)) {
varop->createPrevDatap();
}
}
if (VL_UNLIKELY(vop->reason() >= CB_ENUM_MAX_VALUE)) vl_fatal(__FILE__,__LINE__,"", "vpi bb reason too large");
s_s.m_cbObjSets[vop->reason()].insert(vop);
}
static void cbTimedAdd(VerilatedVpioCb* vop) {
s_s.m_timedCbs.insert(make_pair(vop->time(), vop));
}
static void cbReasonRemove(VerilatedVpioCb* cbp) {
VpioCbSet& cbObjSet = s_s.m_cbObjSets[cbp->reason()];
VpioCbSet::iterator it=cbObjSet.find(cbp);
if (VL_LIKELY(it != cbObjSet.end())) {
cbObjSet.erase(it);
}
}
static void cbTimedRemove(VerilatedVpioCb* cbp) {
VpioTimedCbs::iterator it=s_s.m_timedCbs.find(make_pair(cbp->time(),cbp));
if (VL_LIKELY(it != s_s.m_timedCbs.end())) {
s_s.m_timedCbs.erase(it);
}
}
static void callTimedCbs() {
QData time = VL_TIME_Q();
for (VpioTimedCbs::iterator it=s_s.m_timedCbs.begin(); it!=s_s.m_timedCbs.end(); ) {
if (VL_UNLIKELY(it->first <= time)) {
VerilatedVpioCb* vop = it->second;
++it; // iterator may be deleted by callback
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: timed_callback %p\n",vop););
(vop->cb_rtnp()) (vop->cb_datap());
}
else { ++it; }
}
}
static QData cbNextDeadline() {
VpioTimedCbs::iterator it=s_s.m_timedCbs.begin();
if (VL_LIKELY(it!=s_s.m_timedCbs.end())) {
return it->first;
} else {
return ~VL_ULL(0); // maxquad
}
}
static void callCbs(vluint32_t reason) {
VpioCbSet& cbObjSet = s_s.m_cbObjSets[reason];
for (VpioCbSet::iterator it=cbObjSet.begin(); it!=cbObjSet.end();) {
VerilatedVpioCb* vop = *it;
++it; // iterator may be deleted by callback
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: reason_callback %d %p\n",reason,vop););
(vop->cb_rtnp()) (vop->cb_datap());
}
}
static void callValueCbs() {
VpioCbSet& cbObjSet = s_s.m_cbObjSets[cbValueChange];
for (VpioCbSet::iterator it=cbObjSet.begin(); it!=cbObjSet.end();) {
VerilatedVpioCb* vop = *it;
++it; // iterator may be deleted by callback
if (VerilatedVpioVar* varop = VerilatedVpioVar::castp(vop->cb_datap()->obj)) {
void* newDatap = varop->varDatap();
void* prevDatap = varop->prevDatap(); // Was malloced when we added the callback
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: value_test %s v[0]=%d/%d %p %p\n",
varop->fullname(), *((CData*)newDatap), *((CData*)prevDatap),
newDatap, prevDatap););
if (memcmp(prevDatap, newDatap, varop->entSize())) {
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: value_callback %p %s v[0]=%d\n",
vop,varop->fullname(), *((CData*)newDatap)););
memcpy(prevDatap, newDatap, varop->entSize());
(vop->cb_rtnp()) (vop->cb_datap());
}
}
}
}
};
// callback related
vpiHandle vpi_register_cb(p_cb_data cb_data_p) {
if (VL_UNLIKELY(!cb_data_p)) return NULL;
switch (cb_data_p->reason) {
case cbAfterDelay: {
QData time = 0;
if (cb_data_p->time) time = _VL_SET_QII(cb_data_p->time->high, cb_data_p->time->low);
VerilatedVpioCb* vop = new VerilatedVpioCb(cb_data_p, VL_TIME_Q()+time);
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_register_cb %d %p delay=%" VL_PRI64 "d\n",cb_data_p->reason,vop,time););
VerilatedVpi::cbTimedAdd(vop);
return vop->castVpiHandle();
}
case cbReadWriteSynch: // FALLTHRU // Supported via vlt_main.cpp
case cbReadOnlySynch: // FALLTHRU // Supported via vlt_main.cpp
case cbNextSimTime: // FALLTHRU // Supported via vlt_main.cpp
case cbStartOfSimulation: // FALLTHRU // Supported via vlt_main.cpp
case cbEndOfSimulation: // FALLTHRU // Supported via vlt_main.cpp
case cbValueChange: // FALLTHRU // Supported via vlt_main.cpp
case cbEnterInteractive: // FALLTHRU // NOP, but need to return handle, so make object
case cbExitInteractive: // FALLTHRU // NOP, but need to return handle, so make object
case cbInteractiveScopeChange: { // FALLTHRU // NOP, but need to return handle, so make object
VerilatedVpioCb* vop = new VerilatedVpioCb(cb_data_p, 0);
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_register_cb %d %p\n",cb_data_p->reason,vop););
VerilatedVpi::cbReasonAdd(vop);
return vop->castVpiHandle();
}
default:
_VL_VPI_UNIMP(); return NULL;
};
}
PLI_INT32 vpi_remove_cb(vpiHandle object) {
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_remove_cb %p\n",object););
VerilatedVpioCb* vop = VerilatedVpioCb::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
if (vop->cb_datap()->reason == cbAfterDelay) {
VerilatedVpi::cbTimedRemove(vop);
} else {
VerilatedVpi::cbReasonRemove(vop);
}
return 1;
}
//-void vpi_get_cb_info(vpiHandle object, p_cb_data cb_data_p) {
//- _VL_VPI_UNIMP(); return 0;
//-}
//-vpiHandle vpi_register_systf(p_vpi_systf_data systf_data_p) {
//- _VL_VPI_UNIMP(); return 0;
//-}
//-void vpi_get_systf_info(vpiHandle object, p_vpi_systf_data systf_data_p) {
//- _VL_VPI_UNIMP(); return 0;
//-}
// for obtaining handles
vpiHandle vpi_handle_by_name(PLI_BYTE8* namep, vpiHandle scope) {
if (VL_UNLIKELY(!namep)) return NULL;
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_handle_by_name %s %p\n",namep,scope););
VerilatedVpioScope* voScopep = VerilatedVpioScope::castp(scope);
const VerilatedVar* varp;
const VerilatedScope* scopep;
string scopeAndName = namep;
if (voScopep) {
scopeAndName = string(voScopep->fullname()) + "." + namep;
namep = (PLI_BYTE8*)scopeAndName.c_str();
}
{
// This doesn't yet follow the hierarchy in the proper way
scopep = Verilated::scopeFind(namep);
if (scopep) { // Whole thing found as a scope
return (new VerilatedVpioScope(scopep))->castVpiHandle();
}
const char* baseNamep = scopeAndName.c_str();
string scopename;
const char* dotp = strrchr(namep, '.');
if (VL_LIKELY(dotp)) {
baseNamep = dotp+1;
scopename = string(namep,dotp-namep);
}
scopep = Verilated::scopeFind(scopename.c_str());
if (!scopep) return NULL;
varp = scopep->varFind(baseNamep);
}
if (!varp) return NULL;
return (new VerilatedVpioVar(varp, scopep))->castVpiHandle();
}
vpiHandle vpi_handle_by_index(vpiHandle object, PLI_INT32 indx) {
// Used to get array entries
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_handle_by_index %p %d\n",object, indx););
VerilatedVpioVar* varop = VerilatedVpioVar::castp(object);
if (VL_LIKELY(varop)) {
if (varop->varp()->dims()<2) return 0;
if (VL_LIKELY(varop->varp()->array().lhs() >= varop->varp()->array().rhs())) {
if (VL_UNLIKELY(indx > varop->varp()->array().lhs() || indx < varop->varp()->array().rhs())) return 0;
return (new VerilatedVpioVarIndex(varop->varp(), varop->scopep(), indx,
indx - varop->varp()->array().rhs()))
->castVpiHandle();
} else {
if (VL_UNLIKELY(indx < varop->varp()->array().lhs() || indx > varop->varp()->array().rhs())) return 0;
return (new VerilatedVpioVarIndex(varop->varp(), varop->scopep(), indx,
indx - varop->varp()->array().lhs()))
->castVpiHandle();
}
} else {
_VL_VPI_UNIMP(); return 0;
}
}
// for traversing relationships
vpiHandle vpi_handle(PLI_INT32 type, vpiHandle object) {
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_handle %d %p\n",type,object););
switch (type) {
case vpiLeftRange: // FALLTHRU
case vpiRightRange: {
if (VerilatedVpioVar* vop = VerilatedVpioVar::castp(object)) {
vluint32_t num = ((type==vpiLeftRange)
? vop->varp()->range().lhs()
: vop->varp()->range().rhs());
return (new VerilatedVpioConst(num))->castVpiHandle();
} else if (VerilatedVpioRange* vop = VerilatedVpioRange::castp(object)) {
vluint32_t num = ((type==vpiLeftRange)
? vop->lhs()
: vop->rhs());
return (new VerilatedVpioConst(num))->castVpiHandle();
} else {
return 0;
}
}
default:
_VL_VPI_UNIMP();
return 0;
}
}
//-vpiHandle vpi_handle_multi(PLI_INT32 type, vpiHandle refHandle1, vpiHandle refHandle2, ... ) {
//- _VL_VPI_UNIMP(); return 0;
//-}
vpiHandle vpi_iterate(PLI_INT32 type, vpiHandle object) {
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_iterate %d %p\n",type,object););
switch (type) {
case vpiMemoryWord: {
VerilatedVpioVar* vop = VerilatedVpioVar::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
if (vop->varp()->dims() < 2) return 0;
// Unsupported is multidim list
return ((new VerilatedVpioRange(vop->varp()->array().lhs(),
vop->varp()->array().rhs()))
->castVpiHandle());
}
case vpiReg: {
VerilatedVpioScope* vop = VerilatedVpioScope::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
return ((new VerilatedVpioVarIter(vop->scopep()))
->castVpiHandle());
}
case vpiIODecl: // Skipping - we'll put under reg
case vpiNet: // Skipping - we'll put under reg
return 0;
default:
_VL_VPI_UNIMP(); return 0;
}
}
vpiHandle vpi_scan(vpiHandle object) {
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_scan %p\n",object););
VerilatedVpio* vop = VerilatedVpio::castp(object);
if (VL_UNLIKELY(!vop)) return NULL;
return vop->dovpi_scan();
}
// for processing properties
PLI_INT32 vpi_get(PLI_INT32 property, vpiHandle object) {
// Leave this in the header file - in many cases the compiler can constant propagate "object"
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_get %d %p\n",property,object););
switch (property) {
case vpiTimePrecision: {
return VL_TIME_PRECISION;
}
case vpiType: {
VerilatedVpioVar* vop = VerilatedVpioVar::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
return ((vop->varp()->dims()>1) ? vpiMemory : vpiReg);
}
case vpiDirection: {
// By forthought, the directions already are vpi enumerated
VerilatedVpioVar* vop = VerilatedVpioVar::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
return vop->varp()->vldir();
}
case vpiVector: {
VerilatedVpioVar* vop = VerilatedVpioVar::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
if (vop->varp()->dims()==0) return 0;
else return 1;
}
default:
_VL_VPI_UNIMP();
return 0;
}
}
//-PLI_INT64 vpi_get64(PLI_INT32 property, vpiHandle object) {
//- _VL_VPI_UNIMP(); return 0;
//-}
PLI_BYTE8 *vpi_get_str(PLI_INT32 property, vpiHandle object) {
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_get_str %d %p\n",property,object););
VerilatedVpio* vop = VerilatedVpio::castp(object);
if (VL_UNLIKELY(!vop)) return NULL;
switch (property) {
case vpiName: {
return (PLI_BYTE8*)vop->name();
}
case vpiFullName: {
return (PLI_BYTE8*)vop->fullname();
}
case vpiDefName: {
return (PLI_BYTE8*)vop->defname();
}
default:
_VL_VPI_UNIMP();
return 0;
}
}
// delay processing
//-void vpi_get_delays(vpiHandle object, p_vpi_delay delay_p) {
//- _VL_VPI_UNIMP(); return 0;
//-}
//-void vpi_put_delays(vpiHandle object, p_vpi_delay delay_p) {
//- _VL_VPI_UNIMP(); return 0;
//-}
// value processing
void vpi_get_value(vpiHandle object, p_vpi_value value_p) {
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_get_value %p\n",object););
if (VL_UNLIKELY(!value_p)) return;
if (VerilatedVpioVar* vop = VerilatedVpioVar::castp(object)) {
// We presume vpiValue.format = vpiIntVal or if single bit vpiScalarVal
if (value_p->format == vpiVectorVal) {
// Vector pointer must come from our memory pool
// It only needs to persist until the next vpi_get_value
static VL_THREAD t_vpi_vecval out[VL_MULS_MAX_WORDS*2];
value_p->value.vector = out;
switch (vop->varp()->vltype()) {
case VLVT_UINT8:
out[0].aval = *((CData*)(vop->varDatap()));
out[0].bval = 0;
return;
case VLVT_UINT16:
out[0].aval = *((SData*)(vop->varDatap()));
out[0].bval = 0;
return;
case VLVT_UINT32:
out[0].aval = *((IData*)(vop->varDatap()));
out[0].bval = 0;
return;
case VLVT_WDATA: {
int words = VL_WORDS_I(vop->varp()->range().bits());
if (VL_UNLIKELY(words >= VL_MULS_MAX_WORDS)) {
vl_fatal(__FILE__,__LINE__,"", "vpi_get_value with more than VL_MULS_MAX_WORDS; increase and recompile");
}
WDataInP datap = ((IData*)(vop->varDatap()));
for (int i=0; i<words; i++) {
out[i].aval = datap[i];
out[i].bval = 0;
}
return;
}
case VLVT_UINT64: {
QData data = *((QData*)(vop->varDatap()));
out[1].aval = (IData)(data>>VL_ULL(32));
out[1].bval = 0;
out[0].aval = (IData)(data);
out[0].bval = 0;
return;
}
default: {
_VL_VPI_UNIMP();
return;
}
}
} else {
switch (vop->varp()->vltype()) {
case VLVT_UINT8:
value_p->value.integer = *((CData*)(vop->varDatap()));
return;
case VLVT_UINT16:
value_p->value.integer = *((SData*)(vop->varDatap()));
return;
case VLVT_UINT32:
value_p->value.integer = *((IData*)(vop->varDatap()));
return;
case VLVT_WDATA:
case VLVT_UINT64:
// Not legal
value_p->value.integer = 0;
default:
_VL_VPI_UNIMP();
return;
}
}
}
else if (VerilatedVpioConst* vop = VerilatedVpioConst::castp(object)) {
value_p->value.integer = vop->num();
return;
}
_VL_VPI_UNIMP();
}
vpiHandle vpi_put_value(vpiHandle object, p_vpi_value value_p,
p_vpi_time time_p, PLI_INT32 flags) {
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_put_value %p %p\n",object, value_p););
if (VL_UNLIKELY(!value_p)) return 0;
if (VerilatedVpioVar* vop = VerilatedVpioVar::castp(object)) {
// We presume vpiValue.format = vpiIntVal or if single bit vpiScalarVal
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_put_value name=%s fmt=%d vali=%d\n",
vop->fullname(), value_p->format, value_p->value.integer);
VL_PRINTF("-vltVpi: varp=%p putatp=%p\n",
vop->varp()->datap(), vop->varDatap()););
if (VL_UNLIKELY(!vop->varp()->isPublicRW())) {
VL_PRINTF("%%Warning: Ignoring vpi_put_value to signal marked read-only, use public_flat_rw instead: %s\n",
vop->fullname());
return 0;
}
if (value_p->format == vpiVectorVal) {
if (VL_UNLIKELY(!value_p->value.vector)) return NULL;
switch (vop->varp()->vltype()) {
case VLVT_UINT8:
*((CData*)(vop->varDatap())) = value_p->value.vector[0].aval;
return object;
case VLVT_UINT16:
*((SData*)(vop->varDatap())) = value_p->value.vector[0].aval;
return object;
case VLVT_UINT32:
*((IData*)(vop->varDatap())) = value_p->value.vector[0].aval;
return object;
case VLVT_WDATA: {
int words = VL_WORDS_I(vop->varp()->range().bits());
WDataOutP datap = ((IData*)(vop->varDatap()));
for (int i=0; i<words; i++) {
datap[i] = value_p->value.vector[i].aval;
}
return object;
}
case VLVT_UINT64: {
*((QData*)(vop->varDatap())) = _VL_SET_QII(
value_p->value.vector[1].aval,
value_p->value.vector[0].aval);
return object;
}
default: {
_VL_VPI_UNIMP();
return NULL;
}
}
} else {
switch (vop->varp()->vltype()) {
case VLVT_UINT8:
*((CData*)(vop->varDatap())) = vop->mask() & value_p->value.integer;
return object;
case VLVT_UINT16:
*((SData*)(vop->varDatap())) = vop->mask() & value_p->value.integer;
return object;
case VLVT_UINT32:
*((IData*)(vop->varDatap())) = vop->mask() & value_p->value.integer;
return object;
case VLVT_WDATA: // FALLTHRU
case VLVT_UINT64: // FALLTHRU
default:
_VL_VPI_UNIMP();
return 0;
}
}
}
_VL_VPI_UNIMP(); return NULL;
}
//-void vpi_get_value_array(vpiHandle object, p_vpi_arrayvalue arrayvalue_p,
//- PLI_INT32 *index_p, PLI_UINT32 num) {
//- _VL_VPI_UNIMP(); return 0;
//-}
//-void vpi_put_value_array(vpiHandle object, p_vpi_arrayvalue arrayvalue_p,
//- PLI_INT32 *index_p, PLI_UINT32 num) {
//- _VL_VPI_UNIMP(); return 0;
//-}
// time processing
//-void vpi_get_time(vpiHandle object, p_vpi_time time_p) {
//- _VL_VPI_UNIMP();
//-}
// I/O routines
//-PLI_UINT32 vpi_mcd_open(PLI_BYTE8 *fileName) {
//- _VL_VPI_UNIMP(); return 0;
//-}
//-PLI_UINT32 vpi_mcd_close(PLI_UINT32 mcd) {
//- _VL_VPI_UNIMP(); return 0;
//-}
//-PLI_BYTE8 *vpi_mcd_name(PLI_UINT32 cd) {
//- _VL_VPI_UNIMP(); return 0;
//-}
//-PLI_INT32 vpi_mcd_printf(PLI_UINT32 mcd, PLI_BYTE8 *format, ...) {
//- _VL_VPI_UNIMP(); return 0;
//-}
PLI_INT32 vpi_printf(PLI_BYTE8 *formatp, ...) {
va_list ap;
va_start(ap,formatp);
int chars = vpi_vprintf(formatp, ap);
va_end(ap);
return chars;
}
PLI_INT32 vpi_vprintf(PLI_BYTE8* formatp, va_list ap) {
return VL_VPRINTF(formatp, ap);
}
//-PLI_INT32 vpi_mcd_vprintf(PLI_UINT32 mcd, PLI_BYTE8 *format, va_list ap) {
//- _VL_VPI_UNIMP(); return 0;
//-}
//-PLI_INT32 vpi_flush(void) {
//- _VL_VPI_UNIMP(); return 0;
//-}
//-PLI_INT32 vpi_mcd_flush(PLI_UINT32 mcd) {
//- _VL_VPI_UNIMP(); return 0;
//-}
// utility routines
//-PLI_INT32 vpi_compare_objects(vpiHandle object1, vpiHandle object2) {
//- _VL_VPI_UNIMP(); return 0;
//-}
//-PLI_INT32 vpi_chk_error(p_vpi_error_info error_info_p) {
//- _VL_VPI_UNIMP(); return 0;
//-}
PLI_INT32 vpi_free_object(vpiHandle object) {
return vpi_release_handle(object); // Deprecated
}
PLI_INT32 vpi_release_handle (vpiHandle object) {
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_release_handle %p\n",object););
VerilatedVpio* vop = VerilatedVpio::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
vpi_remove_cb(object); // May not be a callback, but that's ok
delete vop;
return 1;
}
//-PLI_INT32 vpi_get_vlog_info(p_vpi_vlog_info vlog_info_p) {
//- _VL_VPI_UNIMP(); return 0;
//-}
// routines added with 1364-2001
//-PLI_INT32 vpi_get_data(PLI_INT32 id, PLI_BYTE8 *dataLoc, PLI_INT32 numOfBytes) {
//- _VL_VPI_UNIMP(); return 0;
//-}
//-PLI_INT32 vpi_put_data(PLI_INT32 id, PLI_BYTE8 *dataLoc, PLI_INT32 numOfBytes) {
//- _VL_VPI_UNIMP(); return 0;
//-}
//-void *vpi_get_userdata(vpiHandle obj) {
//- _VL_VPI_UNIMP(); return 0;
//-}
//-PLI_INT32 vpi_put_userdata(vpiHandle obj, void *userdata) {
//- _VL_VPI_UNIMP(); return 0;
//-}
PLI_INT32 vpi_control(PLI_INT32 operation, ...) {
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_control %d\n",operation););
switch (operation) {
case vpiFinish: {
vl_finish(__FILE__,__LINE__,"*VPI*");
return 1;
}
case vpiStop: {
vl_stop(__FILE__,__LINE__,"*VPI*");
return 1;
}
}
_VL_VPI_UNIMP(); return 0;
}
//-vpiHandle vpi_handle_by_multi_index(vpiHandle obj, PLI_INT32 num_index, PLI_INT32 *index_array) {
//- _VL_VPI_UNIMP(); return 0;
//-}
//======================================================================
#endif // Guard