verilator/src/V3Ast.h
2020-11-29 11:31:38 -05:00

3026 lines
130 KiB
C++

// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
// DESCRIPTION: Verilator: Ast node structure
//
// Code available from: https://verilator.org
//
//*************************************************************************
//
// Copyright 2003-2020 by Wilson Snyder. This program is free software; you
// can redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//*************************************************************************
#ifndef _V3AST_H_
#define _V3AST_H_ 1
#include "config_build.h"
#include "verilatedos.h"
#include "V3Error.h"
#include "V3FileLine.h"
#include "V3Number.h"
#include "V3Global.h"
#include <cmath>
#include <unordered_set>
#include "V3Ast__gen_classes.h" // From ./astgen
// Things like:
// class V3AstNode;
// Forward declarations
class V3Graph;
class ExecMTask;
// Hint class so we can choose constructors
class VFlagLogicPacked {};
class VFlagBitPacked {};
class VFlagChildDType {}; // Used by parser.y to select constructor that sets childDType
// Used as key for another map, needs operator<, hence not an unordered_set
typedef std::set<int> MTaskIdSet; // Set of mtaskIds for Var sorting
//######################################################################
// For broken() function, return error string if have a match
#define BROKEN_RTN(test) \
do { \
if (VL_UNCOVERABLE(test)) return #test; \
} while (false)
// For broken() function, return error string if a base of this class has a match
#define BROKEN_BASE_RTN(test) \
do { \
const char* reasonp = (test); \
if (VL_UNCOVERABLE(reasonp)) return reasonp; \
} while (false)
// (V)erilator (N)ode is: True if AstNode is of a a given AstType
#define VN_IS(nodep, nodetypename) (AstNode::privateIs<Ast##nodetypename>(nodep))
// (V)erilator (N)ode cast: Cast to given type if can; effectively
// dynamic_cast<nodetypename>(nodep)
#define VN_CAST(nodep, nodetypename) (AstNode::privateCast<Ast##nodetypename>(nodep))
#define VN_CAST_CONST(nodep, nodetypename) (AstNode::privateConstCast<Ast##nodetypename>(nodep))
// (V)erilator (N)ode deleted: Reference to deleted child (for assertions only)
#define VN_DELETED(nodep) VL_UNLIKELY((vluint64_t)(nodep) == 0x1)
//######################################################################
class AstType final {
public:
#include "V3Ast__gen_types.h" // From ./astgen
// Above include has:
// enum en {...};
// const char* ascii() const {...};
enum en m_e;
// cppcheck-suppress uninitVar // responsibility of each subclass
inline AstType() {}
// cppcheck-suppress noExplicitConstructor
inline AstType(en _e)
: m_e{_e} {}
explicit inline AstType(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
operator en() const { return m_e; }
};
inline bool operator==(const AstType& lhs, const AstType& rhs) { return lhs.m_e == rhs.m_e; }
inline bool operator==(const AstType& lhs, AstType::en rhs) { return lhs.m_e == rhs; }
inline bool operator==(AstType::en lhs, const AstType& rhs) { return lhs == rhs.m_e; }
inline std::ostream& operator<<(std::ostream& os, const AstType& rhs) { return os << rhs.ascii(); }
//######################################################################
class VLifetime final {
public:
enum en : uint8_t { NONE, AUTOMATIC, STATIC };
enum en m_e;
const char* ascii() const {
static const char* const names[] = {"NONE", "VAUTOM", "VSTATIC"};
return names[m_e];
}
inline VLifetime()
: m_e{NONE} {}
// cppcheck-suppress noExplicitConstructor
inline VLifetime(en _e)
: m_e{_e} {}
explicit inline VLifetime(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
operator en() const { return m_e; }
bool isNone() const { return m_e == NONE; }
bool isAutomatic() const { return m_e == AUTOMATIC; }
bool isStatic() const { return m_e == STATIC; }
};
inline bool operator==(const VLifetime& lhs, const VLifetime& rhs) { return lhs.m_e == rhs.m_e; }
inline bool operator==(const VLifetime& lhs, VLifetime::en rhs) { return lhs.m_e == rhs; }
inline bool operator==(VLifetime::en lhs, const VLifetime& rhs) { return lhs == rhs.m_e; }
inline std::ostream& operator<<(std::ostream& os, const VLifetime& rhs) {
return os << rhs.ascii();
}
//######################################################################
class VAccess final {
public:
enum en : uint8_t {
READ, // Read/Consumed, variable not changed
WRITE, // Written/Updated, variable might be updated, but not consumed
// // so variable might be removable if not consumed elsewhere
READWRITE, // Read/Consumed and written/updated, variable both set and
// // also consumed, cannot remove usage of variable.
// // For non-simple data types only e.g. no tristates/delayed vars.
NOCHANGE // No change to previous state, used only in V3LinkLValue
};
enum en m_e;
const char* ascii() const {
static const char* const names[] = {"RD", "WR", "RW", "--"};
return names[m_e];
}
const char* arrow() const {
static const char* const names[] = {"[RV] <-", "[LV] =>", "[LV] <=>", "--"};
return names[m_e];
}
inline VAccess()
: m_e{READ} {}
// cppcheck-suppress noExplicitConstructor
inline VAccess(en _e)
: m_e{_e} {}
explicit inline VAccess(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
operator en() const { return m_e; }
VAccess invert() const {
return (m_e == READWRITE) ? VAccess(m_e) : (m_e == WRITE ? VAccess(READ) : VAccess(WRITE));
}
bool isReadOnly() const { return m_e == READ; } // False with READWRITE
bool isReadOrRW() const { return m_e == READ || m_e == READWRITE; }
bool isWriteOrRW() const { return m_e == WRITE || m_e == READWRITE; }
bool isRW() const { return m_e == READWRITE; } // False with READWRITE
};
inline bool operator==(const VAccess& lhs, const VAccess& rhs) { return lhs.m_e == rhs.m_e; }
inline bool operator==(const VAccess& lhs, VAccess::en rhs) { return lhs.m_e == rhs; }
inline bool operator==(VAccess::en lhs, const VAccess& rhs) { return lhs == rhs.m_e; }
inline std::ostream& operator<<(std::ostream& os, const VAccess& rhs) { return os << rhs.ascii(); }
//######################################################################
class VSigning final {
public:
enum en : uint8_t {
UNSIGNED,
SIGNED,
NOSIGN,
_ENUM_MAX // Leave last
};
enum en m_e;
const char* ascii() const {
static const char* const names[] = {"UNSIGNED", "SIGNED", "NOSIGN"};
return names[m_e];
}
inline VSigning()
: m_e{UNSIGNED} {}
// cppcheck-suppress noExplicitConstructor
inline VSigning(en _e)
: m_e{_e} {}
static inline VSigning fromBool(bool isSigned) { // Factory method
return isSigned ? VSigning(SIGNED) : VSigning(UNSIGNED);
}
explicit inline VSigning(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
operator en() const { return m_e; }
inline bool isSigned() const { return m_e == SIGNED; }
inline bool isNosign() const { return m_e == NOSIGN; }
// No isUnsigned() as it's ambiguous if NOSIGN should be included or not.
};
inline bool operator==(const VSigning& lhs, const VSigning& rhs) { return lhs.m_e == rhs.m_e; }
inline bool operator==(const VSigning& lhs, VSigning::en rhs) { return lhs.m_e == rhs; }
inline bool operator==(VSigning::en lhs, const VSigning& rhs) { return lhs == rhs.m_e; }
inline std::ostream& operator<<(std::ostream& os, const VSigning& rhs) {
return os << rhs.ascii();
}
//######################################################################
class AstPragmaType final {
public:
enum en : uint8_t {
ILLEGAL,
COVERAGE_BLOCK_OFF,
HIER_BLOCK,
INLINE_MODULE,
NO_INLINE_MODULE,
NO_INLINE_TASK,
PUBLIC_MODULE,
PUBLIC_TASK,
FULL_CASE,
PARALLEL_CASE,
ENUM_SIZE
};
enum en m_e;
inline AstPragmaType()
: m_e{ILLEGAL} {}
// cppcheck-suppress noExplicitConstructor
inline AstPragmaType(en _e)
: m_e{_e} {}
explicit inline AstPragmaType(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
operator en() const { return m_e; }
};
inline bool operator==(const AstPragmaType& lhs, const AstPragmaType& rhs) {
return lhs.m_e == rhs.m_e;
}
inline bool operator==(const AstPragmaType& lhs, AstPragmaType::en rhs) { return lhs.m_e == rhs; }
inline bool operator==(AstPragmaType::en lhs, const AstPragmaType& rhs) { return lhs == rhs.m_e; }
//######################################################################
class AstCFuncType final {
public:
enum en : uint8_t {
FT_NORMAL,
TRACE_REGISTER,
TRACE_INIT,
TRACE_INIT_SUB,
TRACE_FULL,
TRACE_FULL_SUB,
TRACE_CHANGE,
TRACE_CHANGE_SUB,
TRACE_CLEANUP
};
enum en m_e;
inline AstCFuncType()
: m_e{FT_NORMAL} {}
// cppcheck-suppress noExplicitConstructor
inline AstCFuncType(en _e)
: m_e{_e} {}
explicit inline AstCFuncType(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
operator en() const { return m_e; }
// METHODS
bool isTrace() const { return m_e != FT_NORMAL; }
};
inline bool operator==(const AstCFuncType& lhs, const AstCFuncType& rhs) {
return lhs.m_e == rhs.m_e;
}
inline bool operator==(const AstCFuncType& lhs, AstCFuncType::en rhs) { return lhs.m_e == rhs; }
inline bool operator==(AstCFuncType::en lhs, const AstCFuncType& rhs) { return lhs == rhs.m_e; }
//######################################################################
class VEdgeType final {
public:
// REMEMBER to edit the strings below too
enum en : uint8_t {
// These must be in general -> most specific order, as we sort by it
// in V3Const::visit AstSenTree
ET_ILLEGAL,
// Involving a variable
ET_ANYEDGE, // Default for sensitivities; rip them out
ET_BOTHEDGE, // POSEDGE | NEGEDGE
ET_POSEDGE,
ET_NEGEDGE,
ET_HIGHEDGE, // Is high now (latches)
ET_LOWEDGE, // Is low now (latches)
// Not involving anything
ET_COMBO, // Sensitive to all combo inputs to this block
ET_INITIAL, // User initial statements
ET_SETTLE, // Like combo but for initial wire resolutions after initial statement
ET_NEVER // Never occurs (optimized away)
};
enum en m_e;
bool clockedStmt() const {
static const bool clocked[]
= {false, false, true, true, true, true, true, false, false, false};
return clocked[m_e];
}
VEdgeType invert() const {
switch (m_e) {
case ET_ANYEDGE: return ET_ANYEDGE;
case ET_BOTHEDGE: return ET_BOTHEDGE;
case ET_POSEDGE: return ET_NEGEDGE;
case ET_NEGEDGE: return ET_POSEDGE;
case ET_HIGHEDGE: return ET_LOWEDGE;
case ET_LOWEDGE: return ET_HIGHEDGE;
default: UASSERT_STATIC(0, "Inverting bad edgeType()");
}
return VEdgeType::ET_ILLEGAL;
}
const char* ascii() const {
static const char* const names[]
= {"%E-edge", "ANY", "BOTH", "POS", "NEG", "HIGH",
"LOW", "COMBO", "INITIAL", "SETTLE", "NEVER"};
return names[m_e];
}
const char* verilogKwd() const {
static const char* const names[]
= {"%E-edge", "[any]", "edge", "posedge", "negedge", "[high]",
"[low]", "*", "[initial]", "[settle]", "[never]"};
return names[m_e];
}
// Return true iff this and the other have mutually exclusive transitions
bool exclusiveEdge(const VEdgeType& other) const {
switch (m_e) {
case VEdgeType::ET_POSEDGE:
switch (other.m_e) {
case VEdgeType::ET_NEGEDGE: // FALLTHRU
case VEdgeType::ET_LOWEDGE: return true;
default:;
}
break;
case VEdgeType::ET_NEGEDGE:
switch (other.m_e) {
case VEdgeType::ET_POSEDGE: // FALLTHRU
case VEdgeType::ET_HIGHEDGE: return true;
default:;
}
break;
default:;
}
return false;
}
inline VEdgeType()
: m_e{ET_ILLEGAL} {}
// cppcheck-suppress noExplicitConstructor
inline VEdgeType(en _e)
: m_e{_e} {}
explicit inline VEdgeType(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
operator en() const { return m_e; }
};
inline bool operator==(const VEdgeType& lhs, const VEdgeType& rhs) { return lhs.m_e == rhs.m_e; }
inline bool operator==(const VEdgeType& lhs, VEdgeType::en rhs) { return lhs.m_e == rhs; }
inline bool operator==(VEdgeType::en lhs, const VEdgeType& rhs) { return lhs == rhs.m_e; }
//######################################################################
class AstAttrType final {
public:
// clang-format off
enum en: uint8_t {
ILLEGAL,
//
DIM_BITS, // V3Const converts to constant
DIM_DIMENSIONS, // V3Width converts to constant
DIM_HIGH, // V3Width processes
DIM_INCREMENT, // V3Width processes
DIM_LEFT, // V3Width processes
DIM_LOW, // V3Width processes
DIM_RIGHT, // V3Width processes
DIM_SIZE, // V3Width processes
DIM_UNPK_DIMENSIONS, // V3Width converts to constant
//
DT_PUBLIC, // V3LinkParse moves to AstTypedef::attrPublic
//
ENUM_BASE, // V3LinkResolve creates for AstPreSel, V3LinkParam removes
ENUM_FIRST, // V3Width processes
ENUM_LAST, // V3Width processes
ENUM_NUM, // V3Width processes
ENUM_NEXT, // V3Width processes
ENUM_PREV, // V3Width processes
ENUM_NAME, // V3Width processes
//
MEMBER_BASE, // V3LinkResolve creates for AstPreSel, V3LinkParam removes
//
TYPENAME, // V3Width processes
//
VAR_BASE, // V3LinkResolve creates for AstPreSel, V3LinkParam removes
VAR_CLOCK_ENABLE, // V3LinkParse moves to AstVar::attrClockEn
VAR_PUBLIC, // V3LinkParse moves to AstVar::sigPublic
VAR_PUBLIC_FLAT, // V3LinkParse moves to AstVar::sigPublic
VAR_PUBLIC_FLAT_RD, // V3LinkParse moves to AstVar::sigPublic
VAR_PUBLIC_FLAT_RW, // V3LinkParse moves to AstVar::sigPublic
VAR_ISOLATE_ASSIGNMENTS, // V3LinkParse moves to AstVar::attrIsolateAssign
VAR_SC_BV, // V3LinkParse moves to AstVar::attrScBv
VAR_SFORMAT, // V3LinkParse moves to AstVar::attrSFormat
VAR_CLOCKER, // V3LinkParse moves to AstVar::attrClocker
VAR_NO_CLOCKER, // V3LinkParse moves to AstVar::attrClocker
VAR_SPLIT_VAR // V3LinkParse moves to AstVar::attrSplitVar
};
// clang-format on
enum en m_e;
const char* ascii() const {
// clang-format off
static const char* const names[] = {
"%E-AT",
"DIM_BITS", "DIM_DIMENSIONS", "DIM_HIGH", "DIM_INCREMENT", "DIM_LEFT",
"DIM_LOW", "DIM_RIGHT", "DIM_SIZE", "DIM_UNPK_DIMENSIONS",
"DT_PUBLIC",
"ENUM_BASE", "ENUM_FIRST", "ENUM_LAST", "ENUM_NUM",
"ENUM_NEXT", "ENUM_PREV", "ENUM_NAME",
"MEMBER_BASE",
"TYPENAME",
"VAR_BASE", "VAR_CLOCK_ENABLE", "VAR_PUBLIC",
"VAR_PUBLIC_FLAT", "VAR_PUBLIC_FLAT_RD", "VAR_PUBLIC_FLAT_RW",
"VAR_ISOLATE_ASSIGNMENTS", "VAR_SC_BV", "VAR_SFORMAT", "VAR_CLOCKER",
"VAR_NO_CLOCKER", "VAR_SPLIT_VAR"
};
// clang-format on
return names[m_e];
}
inline AstAttrType()
: m_e{ILLEGAL} {}
// cppcheck-suppress noExplicitConstructor
inline AstAttrType(en _e)
: m_e{_e} {}
explicit inline AstAttrType(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
operator en() const { return m_e; }
};
inline bool operator==(const AstAttrType& lhs, const AstAttrType& rhs) {
return lhs.m_e == rhs.m_e;
}
inline bool operator==(const AstAttrType& lhs, AstAttrType::en rhs) { return lhs.m_e == rhs; }
inline bool operator==(AstAttrType::en lhs, const AstAttrType& rhs) { return lhs == rhs.m_e; }
//######################################################################
class AstBasicDTypeKwd final {
public:
enum en : uint8_t {
UNKNOWN,
BIT,
BYTE,
CHANDLE,
EVENTVALUE, // See comments in t_event_copy as to why this is EVENTVALUE
INT,
INTEGER,
LOGIC,
LONGINT,
DOUBLE,
SHORTINT,
TIME,
// Closer to a class type, but limited usage
STRING,
// Internal types for mid-steps
SCOPEPTR,
CHARPTR,
// Unsigned and two state; fundamental types
UINT32,
UINT64,
// Internal types, eliminated after parsing
LOGIC_IMPLICIT,
// Leave last
_ENUM_MAX
};
enum en m_e;
const char* ascii() const {
static const char* const names[] = {
"%E-unk", "bit", "byte", "chandle", "event", "int", "integer",
"logic", "longint", "real", "shortint", "time", "string", "VerilatedScope*",
"char*", "IData", "QData", "LOGIC_IMPLICIT", " MAX"};
return names[m_e];
}
const char* dpiType() const {
static const char* const names[]
= {"%E-unk", "svBit", "char", "void*", "char", "int",
"%E-integer", "svLogic", "long long", "double", "short", "%E-time",
"const char*", "dpiScope", "const char*", "IData", "QData", "%E-logic-implicit",
" MAX"};
return names[m_e];
}
static void selfTest() {
UASSERT(0 == strcmp(AstBasicDTypeKwd(_ENUM_MAX).ascii(), " MAX"),
"SelfTest: Enum mismatch");
UASSERT(0 == strcmp(AstBasicDTypeKwd(_ENUM_MAX).dpiType(), " MAX"),
"SelfTest: Enum mismatch");
}
inline AstBasicDTypeKwd()
: m_e{UNKNOWN} {}
// cppcheck-suppress noExplicitConstructor
inline AstBasicDTypeKwd(en _e)
: m_e{_e} {}
explicit inline AstBasicDTypeKwd(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
operator en() const { return m_e; }
int width() const {
switch (m_e) {
case BIT: return 1; // scalar, can't bit extract unless ranged
case BYTE: return 8;
case CHANDLE: return 64;
case EVENTVALUE: return 1;
case INT: return 32;
case INTEGER: return 32;
case LOGIC: return 1; // scalar, can't bit extract unless ranged
case LONGINT: return 64;
case DOUBLE: return 64; // opaque
case SHORTINT: return 16;
case TIME: return 64;
case STRING: return 64; // opaque // Just the pointer, for today
case SCOPEPTR: return 0; // opaque
case CHARPTR: return 0; // opaque
case UINT32: return 32;
case UINT64: return 64;
default: return 0;
}
}
bool isSigned() const {
return m_e == BYTE || m_e == SHORTINT || m_e == INT || m_e == LONGINT || m_e == INTEGER
|| m_e == DOUBLE;
}
bool isUnsigned() const {
return m_e == CHANDLE || m_e == EVENTVALUE || m_e == STRING || m_e == SCOPEPTR
|| m_e == CHARPTR || m_e == UINT32 || m_e == UINT64;
}
bool isFourstate() const {
return m_e == INTEGER || m_e == LOGIC || m_e == LOGIC_IMPLICIT || m_e == TIME;
}
bool isZeroInit() const { // Otherwise initializes to X
return (m_e == BIT || m_e == BYTE || m_e == CHANDLE || m_e == EVENTVALUE || m_e == INT
|| m_e == LONGINT || m_e == SHORTINT || m_e == STRING || m_e == DOUBLE);
}
bool isIntNumeric() const { // Enum increment supported
return (m_e == BIT || m_e == BYTE || m_e == INT || m_e == INTEGER || m_e == LOGIC
|| m_e == LONGINT || m_e == SHORTINT || m_e == UINT32 || m_e == UINT64);
}
bool isSloppy() const { // Don't be as anal about width warnings
return !(m_e == LOGIC || m_e == BIT);
}
bool isBitLogic() const { // Bit/logic vector types; can form a packed array
return (m_e == LOGIC || m_e == BIT);
}
bool isDpiUnsignable() const { // Can add "unsigned" to DPI
return (m_e == BYTE || m_e == SHORTINT || m_e == INT || m_e == LONGINT || m_e == INTEGER);
}
bool isDpiCLayout() const { // Uses standard C layout, for DPI runtime access
return (m_e == BIT || m_e == BYTE || m_e == CHANDLE || m_e == INT || m_e == LONGINT
|| m_e == DOUBLE || m_e == SHORTINT || m_e == UINT32 || m_e == UINT64);
}
bool isOpaque() const { // IE not a simple number we can bit optimize
return (m_e == STRING || m_e == SCOPEPTR || m_e == CHARPTR || m_e == DOUBLE);
}
bool isDouble() const { return m_e == DOUBLE; }
bool isEventValue() const { return m_e == EVENTVALUE; }
bool isString() const { return m_e == STRING; }
};
inline bool operator==(const AstBasicDTypeKwd& lhs, const AstBasicDTypeKwd& rhs) {
return lhs.m_e == rhs.m_e;
}
inline bool operator==(const AstBasicDTypeKwd& lhs, AstBasicDTypeKwd::en rhs) {
return lhs.m_e == rhs;
}
inline bool operator==(AstBasicDTypeKwd::en lhs, const AstBasicDTypeKwd& rhs) {
return lhs == rhs.m_e;
}
//######################################################################
class VDirection final {
public:
enum en : uint8_t { NONE, INPUT, OUTPUT, INOUT, REF, CONSTREF };
enum en m_e;
inline VDirection()
: m_e{NONE} {}
// cppcheck-suppress noExplicitConstructor
inline VDirection(en _e)
: m_e{_e} {}
explicit inline VDirection(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
operator en() const { return m_e; }
const char* ascii() const {
static const char* const names[] = {"NONE", "INPUT", "OUTPUT", "INOUT", "REF", "CONSTREF"};
return names[m_e];
}
string verilogKwd() const {
static const char* const names[] = {"", "input", "output", "inout", "ref", "const ref"};
return names[m_e];
}
string xmlKwd() const { // For historical reasons no "put" suffix
static const char* const names[] = {"", "in", "out", "inout", "ref", "const ref"};
return names[m_e];
}
string prettyName() const { return verilogKwd(); }
bool isAny() const { return m_e != NONE; }
// Looks like inout - "ish" because not identical to being an INOUT
bool isInoutish() const { return m_e == INOUT; }
bool isNonOutput() const {
return m_e == INPUT || m_e == INOUT || m_e == REF || m_e == CONSTREF;
}
bool isReadOnly() const { return m_e == INPUT || m_e == CONSTREF; }
bool isWritable() const { return m_e == OUTPUT || m_e == INOUT || m_e == REF; }
bool isRefOrConstRef() const { return m_e == REF || m_e == CONSTREF; }
};
inline bool operator==(const VDirection& lhs, const VDirection& rhs) { return lhs.m_e == rhs.m_e; }
inline bool operator==(const VDirection& lhs, VDirection::en rhs) { return lhs.m_e == rhs; }
inline bool operator==(VDirection::en lhs, const VDirection& rhs) { return lhs == rhs.m_e; }
inline std::ostream& operator<<(std::ostream& os, const VDirection& rhs) {
return os << rhs.ascii();
}
//######################################################################
/// Boolean or unknown
class VBoolOrUnknown final {
public:
enum en : uint8_t { BU_FALSE = 0, BU_TRUE = 1, BU_UNKNOWN = 2, _ENUM_END };
enum en m_e;
// CONSTRUCTOR - note defaults to *UNKNOWN*
inline VBoolOrUnknown()
: m_e{BU_UNKNOWN} {}
// cppcheck-suppress noExplicitConstructor
inline VBoolOrUnknown(en _e)
: m_e{_e} {}
explicit inline VBoolOrUnknown(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
const char* ascii() const {
static const char* const names[] = {"FALSE", "TRUE", "UNK"};
return names[m_e];
}
bool trueKnown() const { return m_e == BU_TRUE; }
bool trueUnknown() const { return m_e == BU_TRUE || m_e == BU_UNKNOWN; }
bool falseKnown() const { return m_e == BU_FALSE; }
bool falseUnknown() const { return m_e == BU_FALSE || m_e == BU_UNKNOWN; }
bool unknown() const { return m_e == BU_UNKNOWN; }
void setTrueOrFalse(bool flag) { m_e = flag ? BU_TRUE : BU_FALSE; }
};
inline bool operator==(const VBoolOrUnknown& lhs, const VBoolOrUnknown& rhs) {
return lhs.m_e == rhs.m_e;
}
inline bool operator==(const VBoolOrUnknown& lhs, VBoolOrUnknown::en rhs) {
return lhs.m_e == rhs;
}
inline bool operator==(VBoolOrUnknown::en lhs, const VBoolOrUnknown& rhs) {
return lhs == rhs.m_e;
}
inline std::ostream& operator<<(std::ostream& os, const VBoolOrUnknown& rhs) {
return os << rhs.ascii();
}
//######################################################################
/// Join type
class VJoinType final {
public:
enum en : uint8_t { JOIN = 0, JOIN_ANY = 1, JOIN_NONE = 2 };
enum en m_e;
// CONSTRUCTOR - note defaults to *UNKNOWN*
inline VJoinType()
: m_e{JOIN} {}
// cppcheck-suppress noExplicitConstructor
inline VJoinType(en _e)
: m_e{_e} {}
explicit inline VJoinType(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
const char* ascii() const {
static const char* const names[] = {"JOIN", "JOIN_ANY", "JOIN_NONE"};
return names[m_e];
}
const char* verilogKwd() const {
static const char* const names[] = {"join", "join_any", "join_none"};
return names[m_e];
}
bool join() const { return m_e == JOIN; }
bool joinAny() const { return m_e == JOIN_ANY; }
bool joinNone() const { return m_e == JOIN_NONE; }
};
inline bool operator==(const VJoinType& lhs, const VJoinType& rhs) { return lhs.m_e == rhs.m_e; }
inline bool operator==(const VJoinType& lhs, VJoinType::en rhs) { return lhs.m_e == rhs; }
inline bool operator==(VJoinType::en lhs, const VJoinType& rhs) { return lhs == rhs.m_e; }
inline std::ostream& operator<<(std::ostream& os, const VJoinType& rhs) {
return os << rhs.ascii();
}
//######################################################################
class AstVarType final {
public:
enum en : uint8_t {
UNKNOWN,
GPARAM,
LPARAM,
GENVAR,
VAR, // Reg, integer, logic, etc
SUPPLY0,
SUPPLY1,
WIRE,
WREAL,
IMPLICITWIRE,
TRIWIRE,
TRI0,
TRI1,
PORT, // Temp type used in parser only
BLOCKTEMP,
MODULETEMP,
STMTTEMP,
XTEMP,
IFACEREF, // Used to link Interfaces between modules
MEMBER
};
enum en m_e;
inline AstVarType()
: m_e{UNKNOWN} {}
// cppcheck-suppress noExplicitConstructor
inline AstVarType(en _e)
: m_e{_e} {}
explicit inline AstVarType(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
operator en() const { return m_e; }
const char* ascii() const {
static const char* const names[] = {
"?", "GPARAM", "LPARAM", "GENVAR", "VAR", "SUPPLY0", "SUPPLY1",
"WIRE", "WREAL", "IMPLICITWIRE", "TRIWIRE", "TRI0", "TRI1", "PORT",
"BLOCKTEMP", "MODULETEMP", "STMTTEMP", "XTEMP", "IFACEREF", "MEMBER"};
return names[m_e];
}
bool isSignal() const {
return (m_e == WIRE || m_e == WREAL || m_e == IMPLICITWIRE || m_e == TRIWIRE || m_e == TRI0
|| m_e == TRI1 || m_e == PORT || m_e == SUPPLY0 || m_e == SUPPLY1 || m_e == VAR);
}
bool isContAssignable() const { // In Verilog, always ok in SystemVerilog
return (m_e == SUPPLY0 || m_e == SUPPLY1 || m_e == WIRE || m_e == WREAL
|| m_e == IMPLICITWIRE || m_e == TRIWIRE || m_e == TRI0 || m_e == TRI1
|| m_e == PORT || m_e == BLOCKTEMP || m_e == MODULETEMP || m_e == STMTTEMP
|| m_e == XTEMP || m_e == IFACEREF);
}
bool isProcAssignable() const {
return (m_e == GPARAM || m_e == LPARAM || m_e == GENVAR || m_e == VAR || m_e == BLOCKTEMP
|| m_e == MODULETEMP || m_e == STMTTEMP || m_e == XTEMP || m_e == IFACEREF
|| m_e == MEMBER);
}
bool isTemp() const {
return (m_e == BLOCKTEMP || m_e == MODULETEMP || m_e == STMTTEMP || m_e == XTEMP);
}
};
inline bool operator==(const AstVarType& lhs, const AstVarType& rhs) { return lhs.m_e == rhs.m_e; }
inline bool operator==(const AstVarType& lhs, AstVarType::en rhs) { return lhs.m_e == rhs; }
inline bool operator==(AstVarType::en lhs, const AstVarType& rhs) { return lhs == rhs.m_e; }
inline std::ostream& operator<<(std::ostream& os, const AstVarType& rhs) {
return os << rhs.ascii();
}
//######################################################################
class VBranchPred final {
public:
enum en : uint8_t { BP_UNKNOWN = 0, BP_LIKELY, BP_UNLIKELY, _ENUM_END };
enum en m_e;
// CONSTRUCTOR - note defaults to *UNKNOWN*
inline VBranchPred()
: m_e{BP_UNKNOWN} {}
// cppcheck-suppress noExplicitConstructor
inline VBranchPred(en _e)
: m_e{_e} {}
explicit inline VBranchPred(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
operator en() const { return m_e; }
bool unknown() const { return m_e == BP_UNKNOWN; }
bool likely() const { return m_e == BP_LIKELY; }
bool unlikely() const { return m_e == BP_UNLIKELY; }
VBranchPred invert() const {
if (m_e == BP_UNLIKELY) {
return BP_LIKELY;
} else if (m_e == BP_LIKELY) {
return BP_UNLIKELY;
} else {
return m_e;
}
}
const char* ascii() const {
static const char* const names[] = {"", "VL_LIKELY", "VL_UNLIKELY"};
return names[m_e];
}
};
inline bool operator==(const VBranchPred& lhs, const VBranchPred& rhs) {
return lhs.m_e == rhs.m_e;
}
inline bool operator==(const VBranchPred& lhs, VBranchPred::en rhs) { return lhs.m_e == rhs; }
inline bool operator==(VBranchPred::en lhs, const VBranchPred& rhs) { return lhs == rhs.m_e; }
inline std::ostream& operator<<(std::ostream& os, const VBranchPred& rhs) {
return os << rhs.ascii();
}
//######################################################################
class VVarAttrClocker final {
public:
enum en : uint8_t { CLOCKER_UNKNOWN = 0, CLOCKER_YES, CLOCKER_NO, _ENUM_END };
enum en m_e;
// CONSTRUCTOR - note defaults to *UNKNOWN*
inline VVarAttrClocker()
: m_e{CLOCKER_UNKNOWN} {}
// cppcheck-suppress noExplicitConstructor
inline VVarAttrClocker(en _e)
: m_e{_e} {}
explicit inline VVarAttrClocker(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
operator en() const { return m_e; }
bool unknown() const { return m_e == CLOCKER_UNKNOWN; }
VVarAttrClocker invert() const {
if (m_e == CLOCKER_YES) {
return CLOCKER_NO;
} else if (m_e == CLOCKER_NO) {
return CLOCKER_YES;
} else {
return m_e;
}
}
const char* ascii() const {
static const char* const names[] = {"", "clker", "non_clker"};
return names[m_e];
}
};
inline bool operator==(const VVarAttrClocker& lhs, const VVarAttrClocker& rhs) {
return lhs.m_e == rhs.m_e;
}
inline bool operator==(const VVarAttrClocker& lhs, VVarAttrClocker::en rhs) {
return lhs.m_e == rhs;
}
inline bool operator==(VVarAttrClocker::en lhs, const VVarAttrClocker& rhs) {
return lhs == rhs.m_e;
}
inline std::ostream& operator<<(std::ostream& os, const VVarAttrClocker& rhs) {
return os << rhs.ascii();
}
//######################################################################
class VAlwaysKwd final {
public:
enum en : uint8_t { ALWAYS, ALWAYS_FF, ALWAYS_LATCH, ALWAYS_COMB };
enum en m_e;
inline VAlwaysKwd()
: m_e{ALWAYS} {}
// cppcheck-suppress noExplicitConstructor
inline VAlwaysKwd(en _e)
: m_e{_e} {}
explicit inline VAlwaysKwd(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
operator en() const { return m_e; }
const char* ascii() const {
static const char* const names[] = {"always", "always_ff", "always_latch", "always_comb"};
return names[m_e];
}
};
inline bool operator==(const VAlwaysKwd& lhs, const VAlwaysKwd& rhs) { return lhs.m_e == rhs.m_e; }
inline bool operator==(const VAlwaysKwd& lhs, VAlwaysKwd::en rhs) { return lhs.m_e == rhs; }
inline bool operator==(VAlwaysKwd::en lhs, const VAlwaysKwd& rhs) { return lhs == rhs.m_e; }
//######################################################################
class VCaseType final {
public:
enum en : uint8_t { CT_CASE, CT_CASEX, CT_CASEZ, CT_CASEINSIDE };
enum en m_e;
inline VCaseType()
: m_e{CT_CASE} {}
// cppcheck-suppress noExplicitConstructor
inline VCaseType(en _e)
: m_e{_e} {}
explicit inline VCaseType(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
operator en() const { return m_e; }
};
inline bool operator==(const VCaseType& lhs, const VCaseType& rhs) { return lhs.m_e == rhs.m_e; }
inline bool operator==(const VCaseType& lhs, VCaseType::en rhs) { return lhs.m_e == rhs; }
inline bool operator==(VCaseType::en lhs, const VCaseType& rhs) { return lhs == rhs.m_e; }
//######################################################################
class AstDisplayType final {
public:
enum en : uint8_t {
DT_DISPLAY,
DT_WRITE,
DT_MONITOR,
DT_STROBE,
DT_INFO,
DT_ERROR,
DT_WARNING,
DT_FATAL
};
enum en m_e;
AstDisplayType()
: m_e{DT_DISPLAY} {}
// cppcheck-suppress noExplicitConstructor
AstDisplayType(en _e)
: m_e{_e} {}
explicit inline AstDisplayType(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
operator en() const { return m_e; }
bool addNewline() const { return m_e != DT_WRITE; }
bool needScopeTracking() const { return m_e != DT_DISPLAY && m_e != DT_WRITE; }
const char* ascii() const {
static const char* const names[]
= {"display", "write", "monitor", "strobe", "info", "error", "warning", "fatal"};
return names[m_e];
}
};
inline bool operator==(const AstDisplayType& lhs, const AstDisplayType& rhs) {
return lhs.m_e == rhs.m_e;
}
inline bool operator==(const AstDisplayType& lhs, AstDisplayType::en rhs) {
return lhs.m_e == rhs;
}
inline bool operator==(AstDisplayType::en lhs, const AstDisplayType& rhs) {
return lhs == rhs.m_e;
}
//######################################################################
class VDumpCtlType final {
public:
enum en : uint8_t { FILE, VARS, ALL, FLUSH, LIMIT, OFF, ON };
enum en m_e;
inline VDumpCtlType()
: m_e{ON} {}
// cppcheck-suppress noExplicitConstructor
inline VDumpCtlType(en _e)
: m_e{_e} {}
explicit inline VDumpCtlType(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
operator en() const { return m_e; }
const char* ascii() const {
static const char* const names[] = {"$dumpfile", "$dumpvars", "$dumpall", "$dumpflush",
"$dumplimit", "$dumpoff", "$dumpon"};
return names[m_e];
}
};
inline bool operator==(const VDumpCtlType& lhs, const VDumpCtlType& rhs) {
return lhs.m_e == rhs.m_e;
}
inline bool operator==(const VDumpCtlType& lhs, VDumpCtlType::en rhs) { return lhs.m_e == rhs; }
inline bool operator==(VDumpCtlType::en lhs, const VDumpCtlType& rhs) { return lhs == rhs.m_e; }
//######################################################################
class VParseRefExp final {
public:
enum en : uint8_t {
PX_NONE, // Used in V3LinkParse only
PX_ROOT,
PX_TEXT // Unknown ID component
};
enum en m_e;
inline VParseRefExp()
: m_e{PX_NONE} {}
// cppcheck-suppress noExplicitConstructor
inline VParseRefExp(en _e)
: m_e{_e} {}
explicit inline VParseRefExp(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
operator en() const { return m_e; }
const char* ascii() const {
static const char* const names[] = {"", "$root", "TEXT", "PREDOT"};
return names[m_e];
}
};
inline bool operator==(const VParseRefExp& lhs, const VParseRefExp& rhs) {
return lhs.m_e == rhs.m_e;
}
inline bool operator==(const VParseRefExp& lhs, VParseRefExp::en rhs) { return lhs.m_e == rhs; }
inline bool operator==(VParseRefExp::en lhs, const VParseRefExp& rhs) { return lhs == rhs.m_e; }
inline std::ostream& operator<<(std::ostream& os, const VParseRefExp& rhs) {
return os << rhs.ascii();
}
//######################################################################
// VNumRange - Structure containing numeric range information
// See also AstRange, which is a symbolic version of this
class VNumRange final {
public:
int m_hi = 0; // HI part, HI always >= LO
int m_lo = 0; // LO
union {
int mu_flags;
struct {
bool m_ranged : 1; // Has a range
bool m_littleEndian : 1; // Bit vector is little endian
};
};
inline bool operator==(const VNumRange& rhs) const {
return m_hi == rhs.m_hi && m_lo == rhs.m_lo && mu_flags == rhs.mu_flags;
}
inline bool operator<(const VNumRange& rhs) const {
if ((m_hi < rhs.m_hi)) return true;
if (!(m_hi == rhs.m_hi)) return false; // lhs > rhs
if ((m_lo < rhs.m_lo)) return true;
if (!(m_lo == rhs.m_lo)) return false; // lhs > rhs
if ((mu_flags < rhs.mu_flags)) return true;
if (!(mu_flags == rhs.mu_flags)) return false; // lhs > rhs
return false;
}
//
class LeftRight {};
VNumRange()
: mu_flags{0} {}
VNumRange(int hi, int lo, bool littleEndian)
: mu_flags{0} {
init(hi, lo, littleEndian);
}
VNumRange(LeftRight, int left, int right)
: mu_flags{0} {
init((right > left) ? right : left, (right > left) ? left : right, (right > left));
}
~VNumRange() = default;
// MEMBERS
void init(int hi, int lo, bool littleEndian) {
m_hi = hi;
m_lo = lo;
mu_flags = 0;
m_ranged = true;
m_littleEndian = littleEndian;
}
int hi() const { return m_hi; }
int lo() const { return m_lo; }
int left() const { return littleEndian() ? lo() : hi(); } // How to show a declaration
int right() const { return littleEndian() ? hi() : lo(); }
int leftToRightInc() const { return littleEndian() ? 1 : -1; }
int elements() const { return hi() - lo() + 1; }
bool ranged() const { return m_ranged; }
bool littleEndian() const { return m_littleEndian; }
int hiMaxSelect() const {
return (lo() < 0 ? hi() - lo() : hi());
} // Maximum value a [] select may index
bool representableByWidth() const { // Could be represented by just width=1, or [width-1:0]
return (!m_ranged || (m_lo == 0 && m_hi >= 1 && !m_littleEndian));
}
void dump(std::ostream& str) const {
if (ranged()) {
str << "[" << left() << ":" << right() << "]";
} else {
str << "[norg]";
}
}
};
inline std::ostream& operator<<(std::ostream& os, const VNumRange& rhs) {
rhs.dump(os);
return os;
}
//######################################################################
class VUseType final {
public:
enum en : uint8_t {
IMP_INCLUDE, // Implementation (.cpp) needs an include
INT_INCLUDE, // Interface (.h) needs an include
IMP_FWD_CLASS, // Implementation (.cpp) needs a forward class declaration
INT_FWD_CLASS, // Interface (.h) needs a forward class declaration
};
enum en m_e;
inline VUseType()
: m_e{IMP_FWD_CLASS} {}
// cppcheck-suppress noExplicitConstructor
inline VUseType(en _e)
: m_e{_e} {}
explicit inline VUseType(int _e)
: m_e(static_cast<en>(_e)) {} // Need () or GCC 4.8 false warning
bool isInclude() const { return m_e == IMP_INCLUDE || m_e == INT_INCLUDE; }
bool isFwdClass() const { return m_e == IMP_FWD_CLASS || m_e == INT_FWD_CLASS; }
operator en() const { return m_e; }
const char* ascii() const {
static const char* const names[] = {"IMP_INC", "INT_INC", "IMP_FWD", "INT_FWD"};
return names[m_e];
}
};
inline bool operator==(const VUseType& lhs, const VUseType& rhs) { return lhs.m_e == rhs.m_e; }
inline bool operator==(const VUseType& lhs, VUseType::en rhs) { return lhs.m_e == rhs; }
inline bool operator==(VUseType::en lhs, const VUseType& rhs) { return lhs == rhs.m_e; }
inline std::ostream& operator<<(std::ostream& os, const VUseType& rhs) {
return os << rhs.ascii();
}
//######################################################################
class VBasicTypeKey final {
public:
int m_width; // From AstNodeDType: Bit width of operation
int m_widthMin; // From AstNodeDType: If unsized, bitwidth of minimum implementation
VSigning m_numeric; // From AstNodeDType: Node is signed
AstBasicDTypeKwd m_keyword; // From AstBasicDType: What keyword created basic type
VNumRange m_nrange; // From AstBasicDType: Numeric msb/lsb (if non-opaque keyword)
inline bool operator==(const VBasicTypeKey& rhs) const {
return m_width == rhs.m_width && m_widthMin == rhs.m_widthMin && m_numeric == rhs.m_numeric
&& m_keyword == rhs.m_keyword && m_nrange == rhs.m_nrange;
}
inline bool operator<(const VBasicTypeKey& rhs) const {
if ((m_width < rhs.m_width)) return true;
if (!(m_width == rhs.m_width)) return false; // lhs > rhs
if ((m_widthMin < rhs.m_widthMin)) return true;
if (!(m_widthMin == rhs.m_widthMin)) return false; // lhs > rhs
if ((m_numeric < rhs.m_numeric)) return true;
if (!(m_numeric == rhs.m_numeric)) return false; // lhs > rhs
if ((m_keyword < rhs.m_keyword)) return true;
if (!(m_keyword == rhs.m_keyword)) return false; // lhs > rhs
if ((m_nrange < rhs.m_nrange)) return true;
if (!(m_nrange == rhs.m_nrange)) return false; // lhs > rhs
return false;
}
VBasicTypeKey(int width, int widthMin, VSigning numeric, AstBasicDTypeKwd kwd,
const VNumRange& nrange)
: m_width{width}
, m_widthMin{widthMin}
, m_numeric{numeric}
, m_keyword{kwd}
, m_nrange{nrange} {}
~VBasicTypeKey() = default;
};
//######################################################################
// AstNUser - Generic base class for AST User nodes.
// - Also used to allow parameter passing up/down iterate calls
class WidthVP;
class V3GraphVertex;
class VSymEnt;
class VNUser final {
union {
void* up;
int ui;
} m_u;
public:
VNUser() {}
// non-explicit:
// cppcheck-suppress noExplicitConstructor
VNUser(int i) {
m_u.up = 0;
m_u.ui = i;
}
explicit VNUser(void* p) { m_u.up = p; }
~VNUser() = default;
// Casters
WidthVP* c() const { return reinterpret_cast<WidthVP*>(m_u.up); }
VSymEnt* toSymEnt() const { return reinterpret_cast<VSymEnt*>(m_u.up); }
AstNode* toNodep() const { return reinterpret_cast<AstNode*>(m_u.up); }
V3GraphVertex* toGraphVertex() const { return reinterpret_cast<V3GraphVertex*>(m_u.up); }
int toInt() const { return m_u.ui; }
static inline VNUser fromInt(int i) { return VNUser(i); }
};
//######################################################################
// AstUserResource - Generic pointer base class for tracking usage of user()
//
// Where AstNode->user2() is going to be used, for example, you write:
//
// AstUser2InUse m_userres;
//
// This will clear the tree, and prevent another visitor from clobbering
// user2. When the member goes out of scope it will be automagically
// freed up.
class AstUserInUseBase VL_NOT_FINAL {
protected:
static void allocate(int id, uint32_t& cntGblRef, bool& userBusyRef) {
// Perhaps there's still a AstUserInUse in scope for this?
UASSERT_STATIC(!userBusyRef, "Conflicting user use; AstUser" + cvtToStr(id)
+ "InUse request when under another AstUserInUse");
userBusyRef = true;
clearcnt(id, cntGblRef, userBusyRef);
}
static void free(int id, uint32_t& cntGblRef, bool& userBusyRef) {
UASSERT_STATIC(userBusyRef, "Free of User" + cvtToStr(id) + "() not under AstUserInUse");
clearcnt(id, cntGblRef, userBusyRef); // Includes a checkUse for us
userBusyRef = false;
}
static void clearcnt(int id, uint32_t& cntGblRef, const bool& userBusyRef) {
UASSERT_STATIC(userBusyRef, "Clear of User" + cvtToStr(id) + "() not under AstUserInUse");
// If this really fires and is real (after 2^32 edits???)
// we could just walk the tree and clear manually
++cntGblRef;
UASSERT_STATIC(cntGblRef, "User*() overflowed!");
}
static void checkcnt(int id, uint32_t&, const bool& userBusyRef) {
UASSERT_STATIC(userBusyRef,
"Check of User" + cvtToStr(id) + "() failed, not under AstUserInUse");
}
};
// For each user() declare the in use structure
// We let AstNode peek into here, because when under low optimization even
// an accessor would be way too slow.
// clang-format off
class AstUser1InUse final : AstUserInUseBase {
protected:
friend class AstNode;
static uint32_t s_userCntGbl; // Count of which usage of userp() this is
static bool s_userBusy; // Count is in use
public:
AstUser1InUse() { allocate(1, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
~AstUser1InUse() { free (1, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
static void clear() { clearcnt(1, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
static void check() { checkcnt(1, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
};
class AstUser2InUse final : AstUserInUseBase {
protected:
friend class AstNode;
static uint32_t s_userCntGbl; // Count of which usage of userp() this is
static bool s_userBusy; // Count is in use
public:
AstUser2InUse() { allocate(2, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
~AstUser2InUse() { free (2, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
static void clear() { clearcnt(2, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
static void check() { checkcnt(2, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
};
class AstUser3InUse final : AstUserInUseBase {
protected:
friend class AstNode;
static uint32_t s_userCntGbl; // Count of which usage of userp() this is
static bool s_userBusy; // Count is in use
public:
AstUser3InUse() { allocate(3, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
~AstUser3InUse() { free (3, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
static void clear() { clearcnt(3, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
static void check() { checkcnt(3, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
};
class AstUser4InUse final : AstUserInUseBase {
protected:
friend class AstNode;
static uint32_t s_userCntGbl; // Count of which usage of userp() this is
static bool s_userBusy; // Count is in use
public:
AstUser4InUse() { allocate(4, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
~AstUser4InUse() { free (4, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
static void clear() { clearcnt(4, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
static void check() { checkcnt(4, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
};
class AstUser5InUse final : AstUserInUseBase {
protected:
friend class AstNode;
static uint32_t s_userCntGbl; // Count of which usage of userp() this is
static bool s_userBusy; // Count is in use
public:
AstUser5InUse() { allocate(5, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
~AstUser5InUse() { free (5, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
static void clear() { clearcnt(5, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
static void check() { checkcnt(5, s_userCntGbl/*ref*/, s_userBusy/*ref*/); }
};
// clang-format on
//######################################################################
// AstNVisitor -- Allows new functions to be called on each node
// type without changing the base classes. See "Modern C++ Design".
class AstNVisitor VL_NOT_FINAL {
private:
// MEMBERS
std::vector<AstNode*> m_deleteps; // Nodes to delete when doDeletes() called
protected:
friend class AstNode;
public:
// METHODS
/// At the end of the visitor (or doDeletes()), delete this pushed node
/// along with all children and next(s). This is often better to use
/// than an immediate deleteTree, as any pointers into this node will
/// persist for the lifetime of the visitor
void pushDeletep(AstNode* nodep) {
UASSERT_STATIC(nodep, "Cannot delete nullptr node");
m_deleteps.push_back(nodep);
}
/// Call deleteTree on all previously pushDeletep()'ed nodes
void doDeletes();
public:
virtual ~AstNVisitor() { doDeletes(); }
/// Call visit()s on nodep
void iterate(AstNode* nodep);
/// Call visit()s on nodep's children
void iterateChildren(AstNode* nodep);
/// Call visit()s on nodep's children in backp() order
void iterateChildrenBackwards(AstNode* nodep);
/// Call visit()s on const nodep's children
void iterateChildrenConst(AstNode* nodep);
/// Call visit()s on nodep (maybe nullptr) and nodep's nextp() list
void iterateAndNextNull(AstNode* nodep);
/// Call visit()s on const nodep (maybe nullptr) and nodep's nextp() list
void iterateAndNextConstNull(AstNode* nodep);
/// Return edited nodep; see comments in V3Ast.cpp
AstNode* iterateSubtreeReturnEdits(AstNode* nodep);
#include "V3Ast__gen_visitor.h" // From ./astgen
// Things like:
// virtual void visit(AstBreak* nodep) { visit((AstNodeStmt*)(nodep)); }
// virtual void visit(AstNodeStmt* nodep) { visit((AstNode*)(nodep)); }
};
//######################################################################
// AstNRelinker -- Holds the state of a unlink so a new node can be
// added at the same point.
class AstNRelinker final {
protected:
friend class AstNode;
enum RelinkWhatEn : uint8_t {
RELINK_BAD,
RELINK_NEXT,
RELINK_OP1,
RELINK_OP2,
RELINK_OP3,
RELINK_OP4
};
AstNode* m_oldp = nullptr; // The old node that was linked to this point in the tree
AstNode* m_backp = nullptr;
RelinkWhatEn m_chg = RELINK_BAD;
AstNode** m_iterpp = nullptr;
public:
AstNRelinker() = default;
void relink(AstNode* newp);
AstNode* oldp() const { return m_oldp; }
void dump(std::ostream& str = std::cout) const;
};
inline std::ostream& operator<<(std::ostream& os, const AstNRelinker& rhs) {
rhs.dump(os);
return os;
}
//######################################################################
// V3Hash -- Node hashing for V3Combine
class V3Hash final {
// A hash of a tree of nodes, consisting of 8 bits with the number of nodes in the hash
// and 24 bit value hash of relevant information about the node.
// A value of 0 is illegal
uint32_t m_both;
static const uint32_t M24 = ((1 << 24) - 1);
void setBoth(uint32_t depth, uint32_t hshval) {
if (depth == 0) depth = 1;
if (depth > 255) depth = 255;
m_both = (depth << 24) | (hshval & M24);
}
public:
// METHODS
bool isIllegal() const { return m_both == 0; }
uint32_t fullValue() const { return m_both; }
uint32_t depth() const { return (m_both >> 24) & 255; }
uint32_t hshval() const { return m_both & M24; }
// OPERATORS
inline bool operator==(const V3Hash& rh) const { return m_both == rh.m_both; }
inline bool operator!=(const V3Hash& rh) const { return m_both != rh.m_both; }
inline bool operator<(const V3Hash& rh) const { return m_both < rh.m_both; }
// CONSTRUCTORS
class Illegal {}; // for creator type-overload selection
class FullValue {}; // for creator type-overload selection
explicit V3Hash(Illegal) { m_both = 0; }
// Saving and restoring inside a userp
explicit V3Hash(const VNUser& u) { m_both = u.toInt(); }
V3Hash operator+=(const V3Hash& rh) {
setBoth(depth() + rh.depth(), (hshval() * 31 + rh.hshval()));
return *this;
}
// Creating from raw data (sameHash functions)
V3Hash() { setBoth(1, 0); }
// cppcheck-suppress noExplicitConstructor
V3Hash(uint32_t val) { setBoth(1, val); }
// cppcheck-suppress noExplicitConstructor
V3Hash(const void* vp) { setBoth(1, cvtToHash(vp)); }
// cppcheck-suppress noExplicitConstructor
V3Hash(const string& name);
V3Hash(V3Hash h1, V3Hash h2) { setBoth(1, h1.hshval() * 31 + h2.hshval()); }
V3Hash(V3Hash h1, V3Hash h2, V3Hash h3) {
setBoth(1, (h1.hshval() * 31 + h2.hshval()) * 31 + h3.hshval());
}
V3Hash(V3Hash h1, V3Hash h2, V3Hash h3, V3Hash h4) {
setBoth(1, ((h1.hshval() * 31 + h2.hshval()) * 31 + h3.hshval()) * 31 + h4.hshval());
}
};
std::ostream& operator<<(std::ostream& os, const V3Hash& rhs);
//######################################################################
// Callback base class to determine if node matches some formula
class VNodeMatcher VL_NOT_FINAL {
public:
virtual bool nodeMatch(const AstNode* nodep) const { return true; }
};
//######################################################################
// AstNode -- Base type of all Ast types
// Prefetch a node.
// The if() makes it faster, even though prefetch won't fault on null pointers
#define ASTNODE_PREFETCH(nodep) \
do { \
if (nodep) { \
VL_PREFETCH_RD(&((nodep)->m_nextp)); \
VL_PREFETCH_RD(&((nodep)->m_type)); \
} \
} while (false)
class AstNode VL_NOT_FINAL {
// v ASTNODE_PREFETCH depends on below ordering of members
AstNode* m_nextp; // Next peer in the parent's list
AstNode* m_backp; // Node that points to this one (via next/op1/op2/...)
AstNode* m_op1p; // Generic pointer 1
AstNode* m_op2p; // Generic pointer 2
AstNode* m_op3p; // Generic pointer 3
AstNode* m_op4p; // Generic pointer 4
AstNode** m_iterpp; // Pointer to node iterating on, change it if we replace this node.
const AstType m_type; // Node sub-type identifier
// ^ ASTNODE_PREFETCH depends on above ordering of members
// padding - 2 extra bytes here after m_type
int m_cloneCnt; // Mark of when userp was set
AstNodeDType* m_dtypep; // Data type of output or assignment (etc)
AstNode* m_headtailp; // When at begin/end of list, the opposite end of the list
FileLine* m_fileline; // Where it was declared
vluint64_t m_editCount; // When it was last edited
static vluint64_t s_editCntGbl; // Global edit counter
// Global edit counter, last value for printing * near node #s
static vluint64_t s_editCntLast;
AstNode* m_clonep; // Pointer to clone of/ source of this module (for *LAST* cloneTree() ONLY)
static int s_cloneCntGbl; // Count of which userp is set
// Attributes
bool m_didWidth : 1; // Did V3Width computation
bool m_doingWidth : 1; // Inside V3Width
bool m_protect : 1; // Protect name if protection is on
// // Space for more bools here
// This member ordering both allows 64 bit alignment and puts associated data together
VNUser m_user1u; // Contains any information the user iteration routine wants
uint32_t m_user1Cnt; // Mark of when userp was set
uint32_t m_user2Cnt; // Mark of when userp was set
VNUser m_user2u; // Contains any information the user iteration routine wants
VNUser m_user3u; // Contains any information the user iteration routine wants
uint32_t m_user3Cnt; // Mark of when userp was set
uint32_t m_user4Cnt; // Mark of when userp was set
VNUser m_user4u; // Contains any information the user iteration routine wants
VNUser m_user5u; // Contains any information the user iteration routine wants
uint32_t m_user5Cnt; // Mark of when userp was set
// METHODS
void op1p(AstNode* nodep) {
m_op1p = nodep;
if (nodep) nodep->m_backp = this;
}
void op2p(AstNode* nodep) {
m_op2p = nodep;
if (nodep) nodep->m_backp = this;
}
void op3p(AstNode* nodep) {
m_op3p = nodep;
if (nodep) nodep->m_backp = this;
}
void op4p(AstNode* nodep) {
m_op4p = nodep;
if (nodep) nodep->m_backp = this;
}
private:
AstNode* cloneTreeIter();
AstNode* cloneTreeIterList();
void checkTreeIter(AstNode* backp);
void checkTreeIterList(AstNode* backp);
bool gateTreeIter() const;
static bool sameTreeIter(const AstNode* node1p, const AstNode* node2p, bool ignNext,
bool gateOnly);
void deleteTreeIter();
void deleteNode();
string locationStr() const;
public:
static void relinkOneLink(AstNode*& pointpr, AstNode* newp);
// cppcheck-suppress functionConst
void debugTreeChange(const char* prefix, int lineno, bool next);
protected:
// CONSTRUCTORS
AstNode(AstType t, FileLine* fl);
virtual AstNode* clone() = 0; // Generally, cloneTree is what you want instead
virtual void cloneRelink() {}
void cloneRelinkTree();
// METHODS
void setOp1p(AstNode* newp); // Set non-list-type op1 to non-list element
void setOp2p(AstNode* newp); // Set non-list-type op2 to non-list element
void setOp3p(AstNode* newp); // Set non-list-type op3 to non-list element
void setOp4p(AstNode* newp); // Set non-list-type op4 to non-list element
void addOp1p(AstNode* newp); // Append newp to end of op1
void addOp2p(AstNode* newp); // Append newp to end of op2
void addOp3p(AstNode* newp); // Append newp to end of op3
void addOp4p(AstNode* newp); // Append newp to end of op4
// clang-format off
void setNOp1p(AstNode* newp) { if (newp) setOp1p(newp); }
void setNOp2p(AstNode* newp) { if (newp) setOp2p(newp); }
void setNOp3p(AstNode* newp) { if (newp) setOp3p(newp); }
void setNOp4p(AstNode* newp) { if (newp) setOp4p(newp); }
void addNOp1p(AstNode* newp) { if (newp) addOp1p(newp); }
void addNOp2p(AstNode* newp) { if (newp) addOp2p(newp); }
void addNOp3p(AstNode* newp) { if (newp) addOp3p(newp); }
void addNOp4p(AstNode* newp) { if (newp) addOp4p(newp); }
// clang-format on
void clonep(AstNode* nodep) {
m_clonep = nodep;
m_cloneCnt = s_cloneCntGbl;
}
static void cloneClearTree() {
s_cloneCntGbl++;
UASSERT_STATIC(s_cloneCntGbl, "Rollover");
}
public:
// ACCESSORS
inline AstType type() const { return m_type; }
const char* typeName() const { return type().ascii(); } // See also prettyTypeName
AstNode* nextp() const { return m_nextp; }
AstNode* backp() const { return m_backp; }
AstNode* abovep() const; // Parent node above, only when no nextp() as otherwise slow
AstNode* op1p() const { return m_op1p; }
AstNode* op2p() const { return m_op2p; }
AstNode* op3p() const { return m_op3p; }
AstNode* op4p() const { return m_op4p; }
AstNodeDType* dtypep() const { return m_dtypep; }
AstNode* clonep() const { return ((m_cloneCnt == s_cloneCntGbl) ? m_clonep : nullptr); }
AstNode* firstAbovep() const { // Returns nullptr when second or later in list
return ((backp() && backp()->nextp() != this) ? backp() : nullptr);
}
bool brokeExists() const;
bool brokeExistsAbove() const;
bool brokeExistsBelow() const;
// CONSTRUCTORS
virtual ~AstNode() = default;
#ifdef VL_LEAK_CHECKS
static void* operator new(size_t size);
static void operator delete(void* obj, size_t size);
#endif
// CONSTANT ACCESSORS
static int instrCountBranch() { return 4; } ///< Instruction cycles to branch
static int instrCountDiv() { return 10; } ///< Instruction cycles to divide
static int instrCountDpi() { return 1000; } ///< Instruction cycles to call user function
static int instrCountLd() { return 2; } ///< Instruction cycles to load memory
static int instrCountMul() { return 3; } ///< Instruction cycles to multiply integers
static int instrCountPli() { return 20; } ///< Instruction cycles to call pli routines
static int instrCountDouble() { return 8; } ///< Instruction cycles to convert or do floats
static int instrCountDoubleDiv() { return 40; } ///< Instruction cycles to divide floats
static int instrCountDoubleTrig() { return 200; } ///< Instruction cycles to do trigonomics
static int instrCountString() { return 100; } ///< Instruction cycles to do string ops
/// Instruction cycles to call subroutine
static int instrCountCall() { return instrCountBranch() + 10; }
/// Instruction cycles to determine simulation time
static int instrCountTime() { return instrCountCall() + 5; }
// ACCESSORS
virtual string name() const { return ""; }
virtual string origName() const { return ""; }
virtual void name(const string& name) {
this->v3fatalSrc("name() called on object without name() method");
}
virtual void tag(const string& text) {}
virtual string tag() const { return ""; }
virtual string verilogKwd() const { return ""; }
string nameProtect() const; // Name with --protect-id applied
string origNameProtect() const; // origName with --protect-id applied
string shortName() const; // Name with __PVT__ removed for concatenating scopes
static string dedotName(const string& namein); // Name with dots removed
static string prettyName(const string& namein); // Name for printing out to the user
static string prettyNameQ(const string& namein) { // Quoted pretty name (for errors)
return string("'") + prettyName(namein) + "'";
}
static string
encodeName(const string& namein); // Encode user name into internal C representation
static string encodeNumber(vlsint64_t num); // Encode number into internal C representation
static string vcdName(const string& namein); // Name for printing out to vcd files
string prettyName() const { return prettyName(name()); }
string prettyNameQ() const { return prettyNameQ(name()); }
string prettyTypeName() const; // "VARREF" for error messages (NOT dtype's pretty name)
virtual string prettyOperatorName() const { return "operator " + prettyTypeName(); }
FileLine* fileline() const { return m_fileline; }
void fileline(FileLine* fl) { m_fileline = fl; }
bool width1() const;
int widthInstrs() const;
void didWidth(bool flag) { m_didWidth = flag; }
bool didWidth() const { return m_didWidth; }
bool didWidthAndSet() {
if (didWidth()) return true;
didWidth(true);
return false;
}
bool doingWidth() const { return m_doingWidth; }
void doingWidth(bool flag) { m_doingWidth = flag; }
bool protect() const { return m_protect; }
void protect(bool flag) { m_protect = flag; }
// TODO stomp these width functions out, and call via dtypep() instead
int width() const;
int widthMin() const;
int widthMinV() const {
return v3Global.widthMinUsage() == VWidthMinUsage::VERILOG_WIDTH ? widthMin() : width();
}
int widthWords() const { return VL_WORDS_I(width()); }
bool isQuad() const { return (width() > VL_IDATASIZE && width() <= VL_QUADSIZE); }
bool isWide() const { return (width() > VL_QUADSIZE); }
bool isDouble() const;
bool isSigned() const;
bool isString() const;
// clang-format off
VNUser user1u() const {
// Slows things down measurably, so disabled by default
//UASSERT_STATIC(AstUser1InUse::s_userBusy, "userp set w/o busy");
return ((m_user1Cnt==AstUser1InUse::s_userCntGbl) ? m_user1u : VNUser(0));
}
AstNode* user1p() const { return user1u().toNodep(); }
void user1u(const VNUser& user) { m_user1u=user; m_user1Cnt=AstUser1InUse::s_userCntGbl; }
void user1p(void* userp) { user1u(VNUser(userp)); }
int user1() const { return user1u().toInt(); }
void user1(int val) { user1u(VNUser(val)); }
int user1Inc(int val=1) { int v=user1(); user1(v+val); return v; }
int user1SetOnce() { int v=user1(); if (!v) user1(1); return v; } // Better for cache than user1Inc()
static void user1ClearTree() { AstUser1InUse::clear(); } // Clear userp()'s across the entire tree
VNUser user2u() const {
// Slows things down measurably, so disabled by default
//UASSERT_STATIC(AstUser2InUse::s_userBusy, "userp set w/o busy");
return ((m_user2Cnt==AstUser2InUse::s_userCntGbl) ? m_user2u : VNUser(0));
}
AstNode* user2p() const { return user2u().toNodep(); }
void user2u(const VNUser& user) { m_user2u=user; m_user2Cnt=AstUser2InUse::s_userCntGbl; }
void user2p(void* userp) { user2u(VNUser(userp)); }
int user2() const { return user2u().toInt(); }
void user2(int val) { user2u(VNUser(val)); }
int user2Inc(int val=1) { int v=user2(); user2(v+val); return v; }
int user2SetOnce() { int v=user2(); if (!v) user2(1); return v; } // Better for cache than user2Inc()
static void user2ClearTree() { AstUser2InUse::clear(); } // Clear userp()'s across the entire tree
VNUser user3u() const {
// Slows things down measurably, so disabled by default
//UASSERT_STATIC(AstUser3InUse::s_userBusy, "userp set w/o busy");
return ((m_user3Cnt==AstUser3InUse::s_userCntGbl) ? m_user3u : VNUser(0));
}
AstNode* user3p() const { return user3u().toNodep(); }
void user3u(const VNUser& user) { m_user3u=user; m_user3Cnt=AstUser3InUse::s_userCntGbl; }
void user3p(void* userp) { user3u(VNUser(userp)); }
int user3() const { return user3u().toInt(); }
void user3(int val) { user3u(VNUser(val)); }
int user3Inc(int val=1) { int v=user3(); user3(v+val); return v; }
int user3SetOnce() { int v=user3(); if (!v) user3(1); return v; } // Better for cache than user3Inc()
static void user3ClearTree() { AstUser3InUse::clear(); } // Clear userp()'s across the entire tree
VNUser user4u() const {
// Slows things down measurably, so disabled by default
//UASSERT_STATIC(AstUser4InUse::s_userBusy, "userp set w/o busy");
return ((m_user4Cnt==AstUser4InUse::s_userCntGbl) ? m_user4u : VNUser(0));
}
AstNode* user4p() const { return user4u().toNodep(); }
void user4u(const VNUser& user) { m_user4u=user; m_user4Cnt=AstUser4InUse::s_userCntGbl; }
void user4p(void* userp) { user4u(VNUser(userp)); }
int user4() const { return user4u().toInt(); }
void user4(int val) { user4u(VNUser(val)); }
int user4Inc(int val=1) { int v=user4(); user4(v+val); return v; }
int user4SetOnce() { int v=user4(); if (!v) user4(1); return v; } // Better for cache than user4Inc()
static void user4ClearTree() { AstUser4InUse::clear(); } // Clear userp()'s across the entire tree
VNUser user5u() const {
// Slows things down measurably, so disabled by default
//UASSERT_STATIC(AstUser5InUse::s_userBusy, "userp set w/o busy");
return ((m_user5Cnt==AstUser5InUse::s_userCntGbl) ? m_user5u : VNUser(0));
}
AstNode* user5p() const { return user5u().toNodep(); }
void user5u(const VNUser& user) { m_user5u=user; m_user5Cnt=AstUser5InUse::s_userCntGbl; }
void user5p(void* userp) { user5u(VNUser(userp)); }
int user5() const { return user5u().toInt(); }
void user5(int val) { user5u(VNUser(val)); }
int user5Inc(int val=1) { int v=user5(); user5(v+val); return v; }
int user5SetOnce() { int v=user5(); if (!v) user5(1); return v; } // Better for cache than user5Inc()
static void user5ClearTree() { AstUser5InUse::clear(); } // Clear userp()'s across the entire tree
// clang-format on
vluint64_t editCount() const { return m_editCount; }
void editCountInc() {
m_editCount = ++s_editCntGbl; // Preincrement, so can "watch AstNode::s_editCntGbl=##"
}
static vluint64_t editCountLast() { return s_editCntLast; }
static vluint64_t editCountGbl() { return s_editCntGbl; }
static void editCountSetLast() { s_editCntLast = editCountGbl(); }
// ACCESSORS for specific types
// Alas these can't be virtual or they break when passed a nullptr
bool isZero() const;
bool isOne() const;
bool isNeqZero() const;
bool isAllOnes() const;
bool isAllOnesV() const; // Verilog width rules apply
// METHODS - data type changes especially for initial creation
void dtypep(AstNodeDType* nodep) {
if (m_dtypep != nodep) {
m_dtypep = nodep;
editCountInc();
}
}
void dtypeFrom(AstNode* fromp) {
if (fromp) { dtypep(fromp->dtypep()); }
}
void dtypeChgSigned(bool flag = true);
void dtypeChgWidth(int width, int widthMin);
void dtypeChgWidthSigned(int width, int widthMin, VSigning numeric);
void dtypeSetBitUnsized(int width, int widthMin, VSigning numeric) {
dtypep(findBitDType(width, widthMin, numeric));
}
void dtypeSetBitSized(int width, VSigning numeric) {
dtypep(findBitDType(width, width, numeric)); // Since sized, widthMin is width
}
void dtypeSetLogicUnsized(int width, int widthMin, VSigning numeric) {
dtypep(findLogicDType(width, widthMin, numeric));
}
void dtypeSetLogicSized(int width, VSigning numeric) {
dtypep(findLogicDType(width, width, numeric)); // Since sized, widthMin is width
}
void dtypeSetBit() { dtypep(findBitDType()); }
void dtypeSetDouble() { dtypep(findDoubleDType()); }
void dtypeSetString() { dtypep(findStringDType()); }
void dtypeSetSigned32() { dtypep(findSigned32DType()); }
void dtypeSetUInt32() { dtypep(findUInt32DType()); } // Twostate
void dtypeSetUInt64() { dtypep(findUInt64DType()); } // Twostate
void dtypeSetVoid() { dtypep(findVoidDType()); }
// Data type locators
AstNodeDType* findBitDType() { return findBasicDType(AstBasicDTypeKwd::LOGIC); }
AstNodeDType* findDoubleDType() { return findBasicDType(AstBasicDTypeKwd::DOUBLE); }
AstNodeDType* findStringDType() { return findBasicDType(AstBasicDTypeKwd::STRING); }
AstNodeDType* findSigned32DType() { return findBasicDType(AstBasicDTypeKwd::INTEGER); }
AstNodeDType* findUInt32DType() { return findBasicDType(AstBasicDTypeKwd::UINT32); }
AstNodeDType* findUInt64DType() { return findBasicDType(AstBasicDTypeKwd::UINT64); }
AstNodeDType* findVoidDType() const;
AstNodeDType* findQueueIndexDType() const;
AstNodeDType* findBitDType(int width, int widthMin, VSigning numeric) const;
AstNodeDType* findLogicDType(int width, int widthMin, VSigning numeric) const;
AstNodeDType* findLogicRangeDType(const VNumRange& range, int widthMin,
VSigning numeric) const;
AstNodeDType* findBitRangeDType(const VNumRange& range, int widthMin, VSigning numeric) const;
AstNodeDType* findBasicDType(AstBasicDTypeKwd kwd) const;
AstBasicDType* findInsertSameDType(AstBasicDType* nodep);
// METHODS - dump and error
void v3errorEnd(std::ostringstream& str) const;
void v3errorEndFatal(std::ostringstream& str) const VL_ATTR_NORETURN;
string warnContextPrimary() const { return fileline()->warnContextPrimary(); }
string warnContextSecondary() const { return fileline()->warnContextSecondary(); }
string warnMore() const { return fileline()->warnMore(); }
string warnOther() const { return fileline()->warnOther(); }
virtual void dump(std::ostream& str = std::cout) const;
static void dumpGdb(const AstNode* nodep); // For GDB only
void dumpGdbHeader() const;
// METHODS - Tree modifications
// Returns nodep, adds newp to end of nodep's list
static AstNode* addNext(AstNode* nodep, AstNode* newp);
// Returns nodep, adds newp (maybe nullptr) to end of nodep's list
static AstNode* addNextNull(AstNode* nodep, AstNode* newp);
inline AstNode* addNext(AstNode* newp) { return addNext(this, newp); }
inline AstNode* addNextNull(AstNode* newp) { return addNextNull(this, newp); }
void addNextHere(AstNode* newp); // Insert newp at this->nextp
void addPrev(AstNode* newp) {
replaceWith(newp);
newp->addNext(this);
}
void addHereThisAsNext(AstNode* newp); // Adds at old place of this, this becomes next
void replaceWith(AstNode* newp); // Replace current node in tree with new node
AstNode* unlinkFrBack(AstNRelinker* linkerp
= nullptr); // Unlink this from whoever points to it.
// Unlink this from whoever points to it, keep entire next list with unlinked node
AstNode* unlinkFrBackWithNext(AstNRelinker* linkerp = nullptr);
void swapWith(AstNode* bp);
void relink(AstNRelinker* linkerp); // Generally use linker->relink() instead
void cloneRelinkNode() { cloneRelink(); }
// Iterate and insert - assumes tree format
virtual void addNextStmt(AstNode* newp,
AstNode* belowp); // When calling, "this" is second argument
virtual void addBeforeStmt(AstNode* newp,
AstNode* belowp); // When calling, "this" is second argument
// METHODS - Iterate on a tree
// Clone or return nullptr if nullptr
static AstNode* cloneTreeNull(AstNode* nodep, bool cloneNextLink) {
return nodep ? nodep->cloneTree(cloneNextLink) : nullptr;
}
AstNode* cloneTree(bool cloneNextLink); // Not const, as sets clonep() on original nodep
bool gateTree() { return gateTreeIter(); } // Is tree isGateOptimizable?
bool sameTree(const AstNode* node2p) const; // Does tree of this == node2p?
// Does tree of this == node2p?, not allowing non-isGateOptimizable
bool sameGateTree(const AstNode* node2p) const;
void deleteTree(); // Always deletes the next link
void checkTree(); // User Interface version
void checkIter() const;
void clearIter() { m_iterpp = nullptr; }
void dumpPtrs(std::ostream& os = std::cout) const;
void dumpTree(std::ostream& os = std::cout, const string& indent = " ",
int maxDepth = 0) const;
void dumpTree(const string& indent, int maxDepth = 0) const {
dumpTree(cout, indent, maxDepth);
}
static void dumpTreeGdb(const AstNode* nodep); // For GDB only
void dumpTreeAndNext(std::ostream& os = std::cout, const string& indent = " ",
int maxDepth = 0) const;
void dumpTreeFile(const string& filename, bool append = false, bool doDump = true,
bool doCheck = true);
static void dumpTreeFileGdb(const AstNode* nodep, const char* filenamep = nullptr);
// METHODS - queries
// Changes control flow, disable some optimizations
virtual bool isBrancher() const { return false; }
// Else a AstTime etc that can't be pushed out
virtual bool isGateOptimizable() const { return true; }
// GateDedupable is a slightly larger superset of GateOptimzable (eg, AstNodeIf)
virtual bool isGateDedupable() const { return isGateOptimizable(); }
// Needs verilated_heavy.h (uses std::string or some others)
virtual bool isHeavy() const { return false; }
// Else creates output or exits, etc, not unconsumed
virtual bool isOutputter() const { return false; }
// Else a AstTime etc which output can't be predicted from input
virtual bool isPredictOptimizable() const { return true; }
// Else a $display, etc, that must be ordered with other displays
virtual bool isPure() const { return true; }
// Else a AstTime etc that can't be substituted out
virtual bool isSubstOptimizable() const { return true; }
// isUnlikely handles $stop or similar statement which means an above IF
// statement is unlikely to be taken
virtual bool isUnlikely() const { return false; }
virtual int instrCount() const { return 0; }
virtual V3Hash sameHash() const {
return V3Hash(V3Hash::Illegal()); // Not a node that supports it
}
virtual bool same(const AstNode*) const { return true; }
// Iff has a data type; dtype() must be non null
virtual bool hasDType() const { return false; }
// Iff has a non-null childDTypep(), as generic node function
virtual AstNodeDType* getChildDTypep() const { return nullptr; }
// Iff has a non-null child2DTypep(), as generic node function
virtual AstNodeDType* getChild2DTypep() const { return nullptr; }
// Another AstNode* may have a pointer into this node, other then normal front/back/etc.
virtual bool maybePointedTo() const { return false; }
virtual const char* broken() const { return nullptr; }
// INVOKERS
virtual void accept(AstNVisitor& v) = 0;
protected:
// All AstNVisitor related functions are called as methods off the visitor
friend class AstNVisitor;
// Use instead AstNVisitor::iterateChildren
void iterateChildren(AstNVisitor& v);
// Use instead AstNVisitor::iterateChildrenBackwards
void iterateChildrenBackwards(AstNVisitor& v);
// Use instead AstNVisitor::iterateChildrenConst
void iterateChildrenConst(AstNVisitor& v);
// Use instead AstNVisitor::iterateAndNextNull
void iterateAndNext(AstNVisitor& v);
// Use instead AstNVisitor::iterateAndNextConstNull
void iterateAndNextConst(AstNVisitor& v);
// Use instead AstNVisitor::iterateSubtreeReturnEdits
AstNode* iterateSubtreeReturnEdits(AstNVisitor& v);
private:
void iterateListBackwards(AstNVisitor& v);
// CONVERSION
public:
// These for use by VN_IS macro only
template <class T> static bool privateIs(const AstNode* nodep);
// These for use by VN_CAST macro only
template <class T> static T* privateCast(AstNode* nodep);
// These for use by VN_CAST_CONST macro only
template <class T> static const T* privateConstCast(const AstNode* nodep);
};
// Specialisations of privateIs/privateCast
#include "V3Ast__gen_impl.h" // From ./astgen
inline std::ostream& operator<<(std::ostream& os, const AstNode* rhs) {
if (!rhs) {
os << "nullptr";
} else {
rhs->dump(os);
}
return os;
}
inline void AstNRelinker::relink(AstNode* newp) { newp->AstNode::relink(this); }
//######################################################################
//######################################################################
//=== AstNode* : Derived generic node types
#define ASTNODE_BASE_FUNCS(name) \
virtual ~Ast##name() override = default; \
static Ast##name* cloneTreeNull(Ast##name* nodep, bool cloneNextLink) { \
return nodep ? nodep->cloneTree(cloneNextLink) : nullptr; \
} \
Ast##name* cloneTree(bool cloneNext) { \
return static_cast<Ast##name*>(AstNode::cloneTree(cloneNext)); \
} \
Ast##name* clonep() const { return static_cast<Ast##name*>(AstNode::clonep()); }
class AstNodeMath VL_NOT_FINAL : public AstNode {
// Math -- anything that's part of an expression tree
public:
AstNodeMath(AstType t, FileLine* fl)
: AstNode{t, fl} {}
ASTNODE_BASE_FUNCS(NodeMath)
// METHODS
virtual void dump(std::ostream& str) const override;
virtual bool hasDType() const override { return true; }
virtual string emitVerilog() = 0; /// Format string for verilog writing; see V3EmitV
// For documentation on emitC format see EmitCStmts::emitOpName
virtual string emitC() = 0;
virtual string emitSimpleOperator() { return ""; }
virtual bool emitCheckMaxWords() { return false; } // Check VL_MULS_MAX_WORDS
virtual bool cleanOut() const = 0; // True if output has extra upper bits zero
// Someday we will generically support data types on every math node
// Until then isOpaque indicates we shouldn't constant optimize this node type
bool isOpaque() { return VN_IS(this, CvtPackString); }
};
class AstNodeTermop VL_NOT_FINAL : public AstNodeMath {
// Terminal operator -- a operator with no "inputs"
public:
AstNodeTermop(AstType t, FileLine* fl)
: AstNodeMath{t, fl} {}
ASTNODE_BASE_FUNCS(NodeTermop)
// Know no children, and hot function, so skip iterator for speed
// See checkTreeIter also that asserts no children
// cppcheck-suppress functionConst
void iterateChildren(AstNVisitor& v) {}
virtual void dump(std::ostream& str) const override;
};
class AstNodeUniop VL_NOT_FINAL : public AstNodeMath {
// Unary math
public:
AstNodeUniop(AstType t, FileLine* fl, AstNode* lhsp)
: AstNodeMath{t, fl} {
dtypeFrom(lhsp);
setOp1p(lhsp);
}
ASTNODE_BASE_FUNCS(NodeUniop)
AstNode* lhsp() const { return op1p(); }
void lhsp(AstNode* nodep) { return setOp1p(nodep); }
// METHODS
virtual void dump(std::ostream& str) const override;
// Set out to evaluation of a AstConst'ed lhs
virtual void numberOperate(V3Number& out, const V3Number& lhs) = 0;
virtual bool cleanLhs() const = 0;
virtual bool sizeMattersLhs() const = 0; // True if output result depends on lhs size
virtual bool doubleFlavor() const { return false; } // D flavor of nodes with both flavors?
// Signed flavor of nodes with both flavors?
virtual bool signedFlavor() const { return false; }
virtual bool stringFlavor() const { return false; } // N flavor of nodes with both flavors?
virtual int instrCount() const override { return widthInstrs(); }
virtual V3Hash sameHash() const override { return V3Hash(); }
virtual bool same(const AstNode*) const override { return true; }
};
class AstNodeBiop VL_NOT_FINAL : public AstNodeMath {
// Binary math
public:
AstNodeBiop(AstType t, FileLine* fl, AstNode* lhs, AstNode* rhs)
: AstNodeMath{t, fl} {
setOp1p(lhs);
setOp2p(rhs);
}
ASTNODE_BASE_FUNCS(NodeBiop)
// Clone single node, just get same type back.
virtual AstNode* cloneType(AstNode* lhsp, AstNode* rhsp) = 0;
// ACCESSORS
AstNode* lhsp() const { return op1p(); }
AstNode* rhsp() const { return op2p(); }
void lhsp(AstNode* nodep) { return setOp1p(nodep); }
void rhsp(AstNode* nodep) { return setOp2p(nodep); }
// METHODS
// Set out to evaluation of a AstConst'ed
virtual void numberOperate(V3Number& out, const V3Number& lhs, const V3Number& rhs) = 0;
virtual bool cleanLhs() const = 0; // True if LHS must have extra upper bits zero
virtual bool cleanRhs() const = 0; // True if RHS must have extra upper bits zero
virtual bool sizeMattersLhs() const = 0; // True if output result depends on lhs size
virtual bool sizeMattersRhs() const = 0; // True if output result depends on rhs size
virtual bool doubleFlavor() const { return false; } // D flavor of nodes with both flavors?
// Signed flavor of nodes with both flavors?
virtual bool signedFlavor() const { return false; }
virtual bool stringFlavor() const { return false; } // N flavor of nodes with both flavors?
virtual int instrCount() const override { return widthInstrs(); }
virtual V3Hash sameHash() const override { return V3Hash(); }
virtual bool same(const AstNode*) const override { return true; }
};
class AstNodeTriop VL_NOT_FINAL : public AstNodeMath {
// Trinary math
public:
AstNodeTriop(AstType t, FileLine* fl, AstNode* lhs, AstNode* rhs, AstNode* ths)
: AstNodeMath{t, fl} {
setOp1p(lhs);
setOp2p(rhs);
setOp3p(ths);
}
ASTNODE_BASE_FUNCS(NodeTriop)
AstNode* lhsp() const { return op1p(); }
AstNode* rhsp() const { return op2p(); }
AstNode* thsp() const { return op3p(); }
void lhsp(AstNode* nodep) { return setOp1p(nodep); }
void rhsp(AstNode* nodep) { return setOp2p(nodep); }
void thsp(AstNode* nodep) { return setOp3p(nodep); }
// METHODS
virtual void dump(std::ostream& str) const override;
// Set out to evaluation of a AstConst'ed
virtual void numberOperate(V3Number& out, const V3Number& lhs, const V3Number& rhs,
const V3Number& ths)
= 0;
virtual bool cleanLhs() const = 0; // True if LHS must have extra upper bits zero
virtual bool cleanRhs() const = 0; // True if RHS must have extra upper bits zero
virtual bool cleanThs() const = 0; // True if THS must have extra upper bits zero
virtual bool sizeMattersLhs() const = 0; // True if output result depends on lhs size
virtual bool sizeMattersRhs() const = 0; // True if output result depends on rhs size
virtual bool sizeMattersThs() const = 0; // True if output result depends on ths size
virtual int instrCount() const override { return widthInstrs(); }
virtual V3Hash sameHash() const override { return V3Hash(); }
virtual bool same(const AstNode*) const override { return true; }
};
class AstNodeQuadop VL_NOT_FINAL : public AstNodeMath {
// Quaternary math
public:
AstNodeQuadop(AstType t, FileLine* fl, AstNode* lhs, AstNode* rhs, AstNode* ths, AstNode* fhs)
: AstNodeMath{t, fl} {
setOp1p(lhs);
setOp2p(rhs);
setOp3p(ths);
setOp4p(fhs);
}
ASTNODE_BASE_FUNCS(NodeQuadop)
AstNode* lhsp() const { return op1p(); }
AstNode* rhsp() const { return op2p(); }
AstNode* thsp() const { return op3p(); }
AstNode* fhsp() const { return op4p(); }
void lhsp(AstNode* nodep) { return setOp1p(nodep); }
void rhsp(AstNode* nodep) { return setOp2p(nodep); }
void thsp(AstNode* nodep) { return setOp3p(nodep); }
void fhsp(AstNode* nodep) { return setOp4p(nodep); }
// METHODS
// Set out to evaluation of a AstConst'ed
virtual void numberOperate(V3Number& out, const V3Number& lhs, const V3Number& rhs,
const V3Number& ths, const V3Number& fhs)
= 0;
virtual bool cleanLhs() const = 0; // True if LHS must have extra upper bits zero
virtual bool cleanRhs() const = 0; // True if RHS must have extra upper bits zero
virtual bool cleanThs() const = 0; // True if THS must have extra upper bits zero
virtual bool cleanFhs() const = 0; // True if THS must have extra upper bits zero
virtual bool sizeMattersLhs() const = 0; // True if output result depends on lhs size
virtual bool sizeMattersRhs() const = 0; // True if output result depends on rhs size
virtual bool sizeMattersThs() const = 0; // True if output result depends on ths size
virtual bool sizeMattersFhs() const = 0; // True if output result depends on ths size
virtual int instrCount() const override { return widthInstrs(); }
virtual V3Hash sameHash() const override { return V3Hash(); }
virtual bool same(const AstNode*) const override { return true; }
};
class AstNodeBiCom VL_NOT_FINAL : public AstNodeBiop {
// Binary math with commutative properties
public:
AstNodeBiCom(AstType t, FileLine* fl, AstNode* lhs, AstNode* rhs)
: AstNodeBiop{t, fl, lhs, rhs} {}
ASTNODE_BASE_FUNCS(NodeBiCom)
};
class AstNodeBiComAsv VL_NOT_FINAL : public AstNodeBiCom {
// Binary math with commutative & associative properties
public:
AstNodeBiComAsv(AstType t, FileLine* fl, AstNode* lhs, AstNode* rhs)
: AstNodeBiCom{t, fl, lhs, rhs} {}
ASTNODE_BASE_FUNCS(NodeBiComAsv)
};
class AstNodeCond VL_NOT_FINAL : public AstNodeTriop {
public:
AstNodeCond(AstType t, FileLine* fl, AstNode* condp, AstNode* expr1p, AstNode* expr2p)
: AstNodeTriop{t, fl, condp, expr1p, expr2p} {
if (expr1p) {
dtypeFrom(expr1p);
} else if (expr2p) {
dtypeFrom(expr2p);
}
}
ASTNODE_BASE_FUNCS(NodeCond)
virtual void numberOperate(V3Number& out, const V3Number& lhs, const V3Number& rhs,
const V3Number& ths) override;
AstNode* condp() const { return op1p(); } // op1 = Condition
AstNode* expr1p() const { return op2p(); } // op2 = If true...
AstNode* expr2p() const { return op3p(); } // op3 = If false...
virtual string emitVerilog() override { return "%k(%l %f? %r %k: %t)"; }
virtual string emitC() override {
return "VL_COND_%nq%lq%rq%tq(%nw,%lw,%rw,%tw, %P, %li, %ri, %ti)";
}
virtual bool cleanOut() const override { return false; } // clean if e1 & e2 clean
virtual bool cleanLhs() const override { return true; }
virtual bool cleanRhs() const override { return false; }
virtual bool cleanThs() const override { return false; } // Propagates up
virtual bool sizeMattersLhs() const override { return false; }
virtual bool sizeMattersRhs() const override { return false; }
virtual bool sizeMattersThs() const override { return false; }
virtual int instrCount() const override { return instrCountBranch(); }
virtual AstNode* cloneType(AstNode* condp, AstNode* expr1p, AstNode* expr2p) = 0;
};
class AstNodeBlock VL_NOT_FINAL : public AstNode {
// A Begin/fork block
// Parents: statement
// Children: statements
private:
string m_name; // Name of block
bool m_unnamed; // Originally unnamed (name change does not affect this)
public:
AstNodeBlock(AstType t, FileLine* fl, const string& name, AstNode* stmtsp)
: AstNode{t, fl}
, m_name{name} {
addNOp1p(stmtsp);
m_unnamed = (name == "");
}
ASTNODE_BASE_FUNCS(NodeBlock)
virtual void dump(std::ostream& str) const override;
virtual string name() const override { return m_name; } // * = Block name
virtual void name(const string& name) override { m_name = name; }
// op1 = Statements
AstNode* stmtsp() const { return op1p(); } // op1 = List of statements
void addStmtsp(AstNode* nodep) { addNOp1p(nodep); }
bool unnamed() const { return m_unnamed; }
};
class AstNodePreSel VL_NOT_FINAL : public AstNode {
// Something that becomes an AstSel
public:
AstNodePreSel(AstType t, FileLine* fl, AstNode* lhs, AstNode* rhs, AstNode* ths)
: AstNode{t, fl} {
setOp1p(lhs);
setOp2p(rhs);
setNOp3p(ths);
}
ASTNODE_BASE_FUNCS(NodePreSel)
AstNode* lhsp() const { return op1p(); }
AstNode* fromp() const { return lhsp(); }
AstNode* rhsp() const { return op2p(); }
AstNode* thsp() const { return op3p(); }
AstAttrOf* attrp() const { return VN_CAST(op4p(), AttrOf); }
void lhsp(AstNode* nodep) { return setOp1p(nodep); }
void rhsp(AstNode* nodep) { return setOp2p(nodep); }
void thsp(AstNode* nodep) { return setOp3p(nodep); }
void attrp(AstAttrOf* nodep) { return setOp4p((AstNode*)nodep); }
// METHODS
virtual V3Hash sameHash() const override { return V3Hash(); }
virtual bool same(const AstNode*) const override { return true; }
};
class AstNodeProcedure VL_NOT_FINAL : public AstNode {
// IEEE procedure: initial, final, always
public:
AstNodeProcedure(AstType t, FileLine* fl, AstNode* bodysp)
: AstNode{t, fl} {
addNOp2p(bodysp);
}
ASTNODE_BASE_FUNCS(NodeProcedure)
// METHODS
virtual void dump(std::ostream& str) const override;
AstNode* bodysp() const { return op2p(); } // op2 = Statements to evaluate
void addStmtp(AstNode* nodep) { addOp2p(nodep); }
bool isJustOneBodyStmt() const { return bodysp() && !bodysp()->nextp(); }
};
class AstNodeStmt VL_NOT_FINAL : public AstNode {
// Statement -- anything that's directly under a function
bool m_statement; // Really a statement (e.g. not a function with return)
public:
AstNodeStmt(AstType t, FileLine* fl, bool statement = true)
: AstNode{t, fl}
, m_statement{statement} {}
ASTNODE_BASE_FUNCS(NodeStmt)
// METHODS
bool isStatement() const { return m_statement; } // Really a statement
void statement(bool flag) { m_statement = flag; }
virtual void addNextStmt(AstNode* newp,
AstNode* belowp) override; // Stop statement searchback here
virtual void addBeforeStmt(AstNode* newp,
AstNode* belowp) override; // Stop statement searchback here
virtual void dump(std::ostream& str = std::cout) const override;
};
class AstNodeAssign VL_NOT_FINAL : public AstNodeStmt {
public:
AstNodeAssign(AstType t, FileLine* fl, AstNode* lhsp, AstNode* rhsp)
: AstNodeStmt{t, fl} {
setOp1p(rhsp);
setOp2p(lhsp);
dtypeFrom(lhsp);
}
ASTNODE_BASE_FUNCS(NodeAssign)
// Clone single node, just get same type back.
virtual AstNode* cloneType(AstNode* lhsp, AstNode* rhsp) = 0;
// So iteration hits the RHS which is "earlier" in execution order, it's op1, not op2
AstNode* rhsp() const { return op1p(); } // op1 = Assign from
AstNode* lhsp() const { return op2p(); } // op2 = Assign to
void rhsp(AstNode* np) { setOp1p(np); }
void lhsp(AstNode* np) { setOp2p(np); }
virtual bool hasDType() const override { return true; }
virtual bool cleanRhs() const { return true; }
virtual int instrCount() const override { return widthInstrs(); }
virtual V3Hash sameHash() const override { return V3Hash(); }
virtual bool same(const AstNode*) const override { return true; }
virtual string verilogKwd() const override { return "="; }
virtual bool brokeLhsMustBeLvalue() const = 0;
};
class AstNodeFor VL_NOT_FINAL : public AstNodeStmt {
public:
AstNodeFor(AstType t, FileLine* fl, AstNode* initsp, AstNode* condp, AstNode* incsp,
AstNode* bodysp)
: AstNodeStmt{t, fl} {
addNOp1p(initsp);
setOp2p(condp);
addNOp3p(incsp);
addNOp4p(bodysp);
}
ASTNODE_BASE_FUNCS(NodeFor)
AstNode* initsp() const { return op1p(); } // op1 = initial statements
AstNode* condp() const { return op2p(); } // op2 = condition to continue
AstNode* incsp() const { return op3p(); } // op3 = increment statements
AstNode* bodysp() const { return op4p(); } // op4 = body of loop
virtual bool isGateOptimizable() const override { return false; }
virtual int instrCount() const override { return instrCountBranch(); }
virtual V3Hash sameHash() const override { return V3Hash(); }
virtual bool same(const AstNode* samep) const override { return true; }
};
class AstNodeIf VL_NOT_FINAL : public AstNodeStmt {
private:
VBranchPred m_branchPred; // Branch prediction as taken/untaken?
public:
AstNodeIf(AstType t, FileLine* fl, AstNode* condp, AstNode* ifsp, AstNode* elsesp)
: AstNodeStmt{t, fl} {
setOp1p(condp);
addNOp2p(ifsp);
addNOp3p(elsesp);
}
ASTNODE_BASE_FUNCS(NodeIf)
AstNode* condp() const { return op1p(); } // op1 = condition
AstNode* ifsp() const { return op2p(); } // op2 = list of true statements
AstNode* elsesp() const { return op3p(); } // op3 = list of false statements
void condp(AstNode* newp) { setOp1p(newp); }
void addIfsp(AstNode* newp) { addOp2p(newp); }
void addElsesp(AstNode* newp) { addOp3p(newp); }
virtual bool isGateOptimizable() const override { return false; }
virtual bool isGateDedupable() const override { return true; }
virtual int instrCount() const override { return instrCountBranch(); }
virtual V3Hash sameHash() const override { return V3Hash(); }
virtual bool same(const AstNode* samep) const override { return true; }
void branchPred(VBranchPred flag) { m_branchPred = flag; }
VBranchPred branchPred() const { return m_branchPred; }
};
class AstNodeCase VL_NOT_FINAL : public AstNodeStmt {
public:
AstNodeCase(AstType t, FileLine* fl, AstNode* exprp, AstNode* casesp)
: AstNodeStmt{t, fl} {
setOp1p(exprp);
addNOp2p(casesp);
}
ASTNODE_BASE_FUNCS(NodeCase)
virtual int instrCount() const override { return instrCountBranch(); }
AstNode* exprp() const { return op1p(); } // op1 = case condition <expression>
AstCaseItem* itemsp() const {
return VN_CAST(op2p(), CaseItem);
} // op2 = list of case expressions
AstNode* notParallelp() const { return op3p(); } // op3 = assertion code for non-full case's
void addItemsp(AstNode* nodep) { addOp2p(nodep); }
void addNotParallelp(AstNode* nodep) { setOp3p(nodep); }
};
class AstNodeVarRef VL_NOT_FINAL : public AstNodeMath {
// An AstVarRef or AstVarXRef
private:
VAccess m_access; // Left hand side assignment
AstVar* m_varp; // [AfterLink] Pointer to variable itself
AstVarScope* m_varScopep = nullptr; // Varscope for hierarchy
AstNodeModule* m_classOrPackagep = nullptr; // Package hierarchy
string m_name; // Name of variable
string m_hiernameToProt; // Scope converted into name-> for emitting
string m_hiernameToUnprot; // Scope converted into name-> for emitting
bool m_hierThis = false; // Hiername points to "this" function
public:
AstNodeVarRef(AstType t, FileLine* fl, const string& name, const VAccess& access)
: AstNodeMath{t, fl}
, m_access{access}
, m_name{name} {
this->varp(nullptr);
}
AstNodeVarRef(AstType t, FileLine* fl, const string& name, AstVar* varp, const VAccess& access)
: AstNodeMath{t, fl}
, m_access{access}
, m_name{name} {
// May have varp==nullptr
this->varp(varp);
}
ASTNODE_BASE_FUNCS(NodeVarRef)
virtual void dump(std::ostream& str) const override;
virtual bool hasDType() const override { return true; }
virtual const char* broken() const override;
virtual int instrCount() const override { return widthInstrs(); }
virtual void cloneRelink() override;
virtual string name() const override { return m_name; } // * = Var name
virtual void name(const string& name) override { m_name = name; }
VAccess access() const { return m_access; }
void access(const VAccess& flag) { m_access = flag; } // Avoid using this; Set in constructor
AstVar* varp() const { return m_varp; } // [After Link] Pointer to variable
void varp(AstVar* varp);
AstVarScope* varScopep() const { return m_varScopep; }
void varScopep(AstVarScope* varscp) { m_varScopep = varscp; }
string hiernameToProt() const { return m_hiernameToProt; }
void hiernameToProt(const string& hn) { m_hiernameToProt = hn; }
string hiernameToUnprot() const { return m_hiernameToUnprot; }
void hiernameToUnprot(const string& hn) { m_hiernameToUnprot = hn; }
string hiernameProtect() const;
bool hierThis() const { return m_hierThis; }
void hierThis(bool flag) { m_hierThis = flag; }
AstNodeModule* classOrPackagep() const { return m_classOrPackagep; }
void classOrPackagep(AstNodeModule* nodep) { m_classOrPackagep = nodep; }
// Know no children, and hot function, so skip iterator for speed
// See checkTreeIter also that asserts no children
// cppcheck-suppress functionConst
void iterateChildren(AstNVisitor& v) {}
};
class AstNodeText VL_NOT_FINAL : public AstNode {
private:
string m_text;
public:
// Node that simply puts text into the output stream
AstNodeText(AstType t, FileLine* fl, const string& textp)
: AstNode{t, fl} {
m_text = textp; // Copy it
}
ASTNODE_BASE_FUNCS(NodeText)
virtual void dump(std::ostream& str = std::cout) const override;
virtual V3Hash sameHash() const override { return V3Hash(text()); }
virtual bool same(const AstNode* samep) const override {
const AstNodeText* asamep = static_cast<const AstNodeText*>(samep);
return text() == asamep->text();
}
const string& text() const { return m_text; }
};
class AstNodeDType VL_NOT_FINAL : public AstNode {
// Ideally width() would migrate to BasicDType as that's where it makes sense,
// but it's currently so prevalent in the code we leave it here.
// Note the below members are included in AstTypeTable::Key lookups
private:
int m_width; // (also in AstTypeTable::Key) Bit width of operation
int m_widthMin; // (also in AstTypeTable::Key) If unsized, bitwidth of minimum implementation
VSigning m_numeric; // (also in AstTypeTable::Key) Node is signed
// Other members
bool m_generic; // Simple globally referenced type, don't garbage collect
// Unique number assigned to each dtype during creation for IEEE matching
static int s_uniqueNum;
public:
// CONSTRUCTORS
AstNodeDType(AstType t, FileLine* fl)
: AstNode{t, fl} {
m_width = 0;
m_widthMin = 0;
m_generic = false;
}
ASTNODE_BASE_FUNCS(NodeDType)
// ACCESSORS
virtual void dump(std::ostream& str) const override;
virtual void dumpSmall(std::ostream& str) const;
virtual bool hasDType() const override { return true; }
virtual AstBasicDType* basicp() const = 0; // (Slow) recurse down to find basic data type
// recurses over typedefs/const/enum to next non-typeref type
virtual AstNodeDType* skipRefp() const = 0;
// recurses over typedefs to next non-typeref-or-const type
virtual AstNodeDType* skipRefToConstp() const = 0;
// recurses over typedefs/const to next non-typeref-or-enum/struct type
virtual AstNodeDType* skipRefToEnump() const = 0;
// (Slow) recurses - Structure alignment 1,2,4 or 8 bytes (arrays affect this)
virtual int widthAlignBytes() const = 0;
// (Slow) recurses - Width in bytes rounding up 1,2,4,8,12,...
virtual int widthTotalBytes() const = 0;
virtual bool maybePointedTo() const override { return true; }
// Iff has a non-null refDTypep(), as generic node function
virtual AstNodeDType* virtRefDTypep() const { return nullptr; }
// Iff has refDTypep(), set as generic node function
virtual void virtRefDTypep(AstNodeDType* nodep) {}
// Iff has a non-null second dtypep, as generic node function
virtual AstNodeDType* virtRefDType2p() const { return nullptr; }
// Iff has second dtype, set as generic node function
virtual void virtRefDType2p(AstNodeDType* nodep) {}
// Assignable equivalence. Call skipRefp() on this and samep before calling
virtual bool similarDType(AstNodeDType* samep) const = 0;
// Iff has a non-null subDTypep(), as generic node function
virtual AstNodeDType* subDTypep() const { return nullptr; }
virtual bool isFourstate() const;
// Ideally an IEEE $typename
virtual string prettyDTypeName() const { return prettyTypeName(); }
string prettyDTypeNameQ() const { return "'" + prettyDTypeName() + "'"; }
//
// Changing the width may confuse the data type resolution, so must clear
// TypeTable cache after use.
void widthForce(int width, int widthMin) {
m_width = width;
m_widthMin = widthMin;
}
// For backward compatibility inherit width and signing from the subDType/base type
void widthFromSub(AstNodeDType* nodep) {
m_width = nodep->m_width;
m_widthMin = nodep->m_widthMin;
m_numeric = nodep->m_numeric;
}
//
int width() const { return m_width; }
void numeric(VSigning flag) { m_numeric = flag; }
bool isSigned() const { return m_numeric.isSigned(); }
bool isNosign() const { return m_numeric.isNosign(); }
VSigning numeric() const { return m_numeric; }
int widthWords() const { return VL_WORDS_I(width()); }
int widthMin() const { // If sized, the size, if unsized the min digits to represent it
return m_widthMin ? m_widthMin : m_width;
}
int widthPow2() const;
void widthMinFromWidth() { m_widthMin = m_width; }
bool widthSized() const { return !m_widthMin || m_widthMin == m_width; }
bool generic() const { return m_generic; }
void generic(bool flag) { m_generic = flag; }
AstNodeDType* dtypeDimensionp(int dimension);
std::pair<uint32_t, uint32_t> dimensions(bool includeBasic);
uint32_t arrayUnpackedElements(); // 1, or total multiplication of all dimensions
static int uniqueNumInc() { return ++s_uniqueNum; }
const char* charIQWN() const {
return (isString() ? "N" : isWide() ? "W" : isQuad() ? "Q" : "I");
}
string cType(const string& name, bool forFunc, bool isRef) const;
private:
class CTypeRecursed;
CTypeRecursed cTypeRecurse(bool compound) const;
};
class AstNodeUOrStructDType VL_NOT_FINAL : public AstNodeDType {
// A struct or union; common handling
private:
// TYPES
typedef std::map<const string, AstMemberDType*> MemberNameMap;
// MEMBERS
string m_name; // Name from upper typedef, if any
bool m_packed;
bool m_isFourstate;
MemberNameMap m_members;
public:
AstNodeUOrStructDType(AstType t, FileLine* fl, VSigning numericUnpack)
: AstNodeDType{t, fl} {
// VSigning::NOSIGN overloaded to indicate not packed
m_packed = (numericUnpack != VSigning::NOSIGN);
m_isFourstate = false; // V3Width computes
numeric(VSigning::fromBool(numericUnpack.isSigned()));
}
ASTNODE_BASE_FUNCS(NodeUOrStructDType)
virtual const char* broken() const override;
virtual void dump(std::ostream& str) const override;
// For basicp() we reuse the size to indicate a "fake" basic type of same size
virtual AstBasicDType* basicp() const override {
return (isFourstate() ? VN_CAST(
findLogicRangeDType(VNumRange(width() - 1, 0, false), width(), numeric()),
BasicDType)
: VN_CAST(findBitRangeDType(VNumRange(width() - 1, 0, false),
width(), numeric()),
BasicDType));
}
virtual AstNodeDType* skipRefp() const override { return (AstNodeDType*)this; }
virtual AstNodeDType* skipRefToConstp() const override { return (AstNodeDType*)this; }
virtual AstNodeDType* skipRefToEnump() const override { return (AstNodeDType*)this; }
// (Slow) recurses - Structure alignment 1,2,4 or 8 bytes (arrays affect this)
virtual int widthAlignBytes() const override;
// (Slow) recurses - Width in bytes rounding up 1,2,4,8,12,...
virtual int widthTotalBytes() const override;
// op1 = members
virtual bool similarDType(AstNodeDType* samep) const override {
return this == samep; // We don't compare members, require exact equivalence
}
virtual string name() const override { return m_name; }
virtual void name(const string& flag) override { m_name = flag; }
AstMemberDType* membersp() const {
return VN_CAST(op1p(), MemberDType);
} // op1 = AstMember list
void addMembersp(AstNode* nodep) { addNOp1p(nodep); }
bool packed() const { return m_packed; }
// packed() but as don't support unpacked, presently all structs
static bool packedUnsup() { return true; }
void isFourstate(bool flag) { m_isFourstate = flag; }
virtual bool isFourstate() const override { return m_isFourstate; }
void clearCache() { m_members.clear(); }
void repairMemberCache();
AstMemberDType* findMember(const string& name) const {
const auto it = m_members.find(name);
return (it == m_members.end()) ? nullptr : it->second;
}
static int lsb() { return 0; }
int msb() const { return dtypep()->width() - 1; } // Packed classes look like arrays
VNumRange declRange() const { return VNumRange(msb(), lsb(), false); }
};
class AstNodeArrayDType VL_NOT_FINAL : public AstNodeDType {
// Array data type, ie "some_dtype var_name [2:0]"
// Children: DTYPE (moved to refDTypep() in V3Width)
// Children: RANGE (array bounds)
private:
AstNodeDType* m_refDTypep = nullptr; // Elements of this type (after widthing)
AstNode* rangenp() const { return op2p(); } // op2 = Array(s) of variable
public:
AstNodeArrayDType(AstType t, FileLine* fl)
: AstNodeDType{t, fl} {}
ASTNODE_BASE_FUNCS(NodeArrayDType)
virtual void dump(std::ostream& str) const override;
virtual void dumpSmall(std::ostream& str) const override;
virtual const char* broken() const override {
BROKEN_RTN(!((m_refDTypep && !childDTypep() && m_refDTypep->brokeExists())
|| (!m_refDTypep && childDTypep())));
return nullptr;
}
virtual void cloneRelink() override {
if (m_refDTypep && m_refDTypep->clonep()) { m_refDTypep = m_refDTypep->clonep(); }
}
virtual bool same(const AstNode* samep) const override {
const AstNodeArrayDType* asamep = static_cast<const AstNodeArrayDType*>(samep);
return (msb() == asamep->msb() && subDTypep() == asamep->subDTypep()
&& rangenp()->sameTree(asamep->rangenp()));
} // HashedDT doesn't recurse, so need to check children
virtual bool similarDType(AstNodeDType* samep) const override {
const AstNodeArrayDType* asamep = static_cast<const AstNodeArrayDType*>(samep);
return (asamep && type() == samep->type() && msb() == asamep->msb()
&& rangenp()->sameTree(asamep->rangenp())
&& subDTypep()->skipRefp()->similarDType(asamep->subDTypep()->skipRefp()));
}
virtual V3Hash sameHash() const override {
return V3Hash(V3Hash(m_refDTypep), V3Hash(msb()), V3Hash(lsb()));
}
virtual AstNodeDType* getChildDTypep() const override { return childDTypep(); }
AstNodeDType* childDTypep() const { return VN_CAST(op1p(), NodeDType); }
void childDTypep(AstNodeDType* nodep) { setOp1p(nodep); }
virtual AstNodeDType* subDTypep() const override {
return m_refDTypep ? m_refDTypep : childDTypep();
}
void refDTypep(AstNodeDType* nodep) { m_refDTypep = nodep; }
virtual AstNodeDType* virtRefDTypep() const override { return m_refDTypep; }
virtual void virtRefDTypep(AstNodeDType* nodep) override { refDTypep(nodep); }
AstRange* rangep() const { return VN_CAST(op2p(), Range); } // op2 = Array(s) of variable
void rangep(AstRange* nodep);
// METHODS
virtual AstBasicDType* basicp() const override {
return subDTypep()->basicp();
} // (Slow) recurse down to find basic data type
virtual AstNodeDType* skipRefp() const override { return (AstNodeDType*)this; }
virtual AstNodeDType* skipRefToConstp() const override { return (AstNodeDType*)this; }
virtual AstNodeDType* skipRefToEnump() const override { return (AstNodeDType*)this; }
virtual int widthAlignBytes() const override { return subDTypep()->widthAlignBytes(); }
virtual int widthTotalBytes() const override {
return elementsConst() * subDTypep()->widthTotalBytes();
}
int msb() const;
int lsb() const;
int elementsConst() const;
VNumRange declRange() const;
};
class AstNodeSel VL_NOT_FINAL : public AstNodeBiop {
// Single bit range extraction, perhaps with non-constant selection or array selection
public:
AstNodeSel(AstType t, FileLine* fl, AstNode* fromp, AstNode* bitp)
: AstNodeBiop{t, fl, fromp, bitp} {}
ASTNODE_BASE_FUNCS(NodeSel)
AstNode* fromp() const {
return op1p();
} // op1 = Extracting what (nullptr=TBD during parsing)
void fromp(AstNode* nodep) { setOp1p(nodep); }
AstNode* bitp() const { return op2p(); } // op2 = Msb selection expression
void bitp(AstNode* nodep) { setOp2p(nodep); }
int bitConst() const;
virtual bool hasDType() const override { return true; }
};
class AstNodeStream VL_NOT_FINAL : public AstNodeBiop {
// Verilog {rhs{lhs}} - Note rhsp() is the slice size, not the lhsp()
public:
AstNodeStream(AstType t, FileLine* fl, AstNode* lhsp, AstNode* rhsp)
: AstNodeBiop{t, fl, lhsp, rhsp} {
if (lhsp->dtypep()) { dtypeSetLogicSized(lhsp->dtypep()->width(), VSigning::UNSIGNED); }
}
ASTNODE_BASE_FUNCS(NodeStream)
};
//######################################################################
// Tasks/functions common handling
class AstNodeCCall VL_NOT_FINAL : public AstNodeStmt {
// A call of a C++ function, perhaps a AstCFunc or perhaps globally named
// Functions are not statements, while tasks are. AstNodeStmt needs isStatement() to deal.
AstCFunc* m_funcp;
string m_hiernameToProt;
string m_hiernameToUnprot;
string m_argTypes;
public:
AstNodeCCall(AstType t, FileLine* fl, AstCFunc* funcp, AstNode* argsp = nullptr)
: AstNodeStmt{t, fl, true}
, m_funcp{funcp} {
addNOp2p(argsp);
}
// Replacement form for V3Combine
// Note this removes old attachments from the oldp
AstNodeCCall(AstType t, AstNodeCCall* oldp, AstCFunc* funcp)
: AstNodeStmt{t, oldp->fileline(), true}
, m_funcp{funcp} {
m_hiernameToProt = oldp->hiernameToProt();
m_hiernameToUnprot = oldp->hiernameToUnprot();
m_argTypes = oldp->argTypes();
if (oldp->argsp()) addNOp2p(oldp->argsp()->unlinkFrBackWithNext());
}
ASTNODE_BASE_FUNCS(NodeCCall)
virtual void dump(std::ostream& str = std::cout) const override;
virtual void cloneRelink() override;
virtual const char* broken() const override;
virtual int instrCount() const override { return instrCountCall(); }
virtual V3Hash sameHash() const override { return V3Hash(funcp()); }
virtual bool same(const AstNode* samep) const override {
const AstNodeCCall* asamep = static_cast<const AstNodeCCall*>(samep);
return (funcp() == asamep->funcp() && argTypes() == asamep->argTypes());
}
AstNode* exprsp() const { return op2p(); } // op2 = expressions to print
virtual bool isGateOptimizable() const override { return false; }
virtual bool isPredictOptimizable() const override { return false; }
virtual bool isPure() const override;
virtual bool isOutputter() const override { return !isPure(); }
AstCFunc* funcp() const { return m_funcp; }
string hiernameToProt() const { return m_hiernameToProt; }
void hiernameToProt(const string& hn) { m_hiernameToProt = hn; }
string hiernameToUnprot() const { return m_hiernameToUnprot; }
void hiernameToUnprot(const string& hn) { m_hiernameToUnprot = hn; }
string hiernameProtect() const;
void argTypes(const string& str) { m_argTypes = str; }
string argTypes() const { return m_argTypes; }
// op1p reserved for AstCMethodCall
AstNode* argsp() const { return op2p(); }
void addArgsp(AstNode* nodep) { addOp2p(nodep); }
};
class AstNodeFTask VL_NOT_FINAL : public AstNode {
private:
string m_name; // Name of task
string m_cname; // Name of task if DPI import
uint64_t m_dpiOpenParent = 0; // DPI import open array, if !=0, how many callees
bool m_taskPublic : 1; // Public task
bool m_attrIsolateAssign : 1; // User isolate_assignments attribute
bool m_classMethod : 1; // Class method
bool m_externProto : 1; // Extern prototype
bool m_externDef : 1; // Extern definition
bool m_prototype : 1; // Just a prototype
bool m_dpiExport : 1; // DPI exported
bool m_dpiImport : 1; // DPI imported
bool m_dpiContext : 1; // DPI import context
bool m_dpiOpenChild : 1; // DPI import open array child wrapper
bool m_dpiTask : 1; // DPI import task (vs. void function)
bool m_isConstructor : 1; // Class constructor
bool m_isHideLocal : 1; // Verilog local
bool m_isHideProtected : 1; // Verilog protected
bool m_pure : 1; // DPI import pure (vs. virtual pure)
bool m_pureVirtual : 1; // Pure virtual
bool m_virtual : 1; // Virtual method in class
VLifetime m_lifetime; // Lifetime
public:
AstNodeFTask(AstType t, FileLine* fl, const string& name, AstNode* stmtsp)
: AstNode{t, fl}
, m_name{name}
, m_taskPublic{false}
, m_attrIsolateAssign{false}
, m_classMethod{false}
, m_externProto{false}
, m_externDef{false}
, m_prototype{false}
, m_dpiExport{false}
, m_dpiImport{false}
, m_dpiContext{false}
, m_dpiOpenChild{false}
, m_dpiTask{false}
, m_isConstructor{false}
, m_isHideLocal{false}
, m_isHideProtected{false}
, m_pure{false}
, m_pureVirtual{false}
, m_virtual{false} {
addNOp3p(stmtsp);
cname(name); // Might be overridden by dpi import/export
}
ASTNODE_BASE_FUNCS(NodeFTask)
virtual void dump(std::ostream& str = std::cout) const override;
virtual string name() const override { return m_name; } // * = Var name
virtual bool maybePointedTo() const override { return true; }
virtual bool isGateOptimizable() const override {
return !((m_dpiExport || m_dpiImport) && !m_pure);
}
// {AstFunc only} op1 = Range output variable
virtual void name(const string& name) override { m_name = name; }
string cname() const { return m_cname; }
void cname(const string& cname) { m_cname = cname; }
// op1 = Output variable (functions only, nullptr for tasks)
AstNode* fvarp() const { return op1p(); }
void addFvarp(AstNode* nodep) { addNOp1p(nodep); }
bool isFunction() const { return fvarp() != nullptr; }
// op2 = Class/package scope
AstNode* classOrPackagep() const { return op2p(); }
void classOrPackagep(AstNode* nodep) { setNOp2p(nodep); }
// op3 = Statements/Ports/Vars
AstNode* stmtsp() const { return op3p(); } // op3 = List of statements
void addStmtsp(AstNode* nodep) { addNOp3p(nodep); }
// op4 = scope name
AstScopeName* scopeNamep() const { return VN_CAST(op4p(), ScopeName); }
// MORE ACCESSORS
void dpiOpenParentInc() { ++m_dpiOpenParent; }
void dpiOpenParentClear() { m_dpiOpenParent = 0; }
uint64_t dpiOpenParent() const { return m_dpiOpenParent; }
void scopeNamep(AstNode* nodep) { setNOp4p(nodep); }
void taskPublic(bool flag) { m_taskPublic = flag; }
bool taskPublic() const { return m_taskPublic; }
void attrIsolateAssign(bool flag) { m_attrIsolateAssign = flag; }
bool attrIsolateAssign() const { return m_attrIsolateAssign; }
void classMethod(bool flag) { m_classMethod = flag; }
bool classMethod() const { return m_classMethod; }
void isExternProto(bool flag) { m_externProto = flag; }
bool isExternProto() const { return m_externProto; }
void isExternDef(bool flag) { m_externDef = flag; }
bool isExternDef() const { return m_externDef; }
void prototype(bool flag) { m_prototype = flag; }
bool prototype() const { return m_prototype; }
void dpiExport(bool flag) { m_dpiExport = flag; }
bool dpiExport() const { return m_dpiExport; }
void dpiImport(bool flag) { m_dpiImport = flag; }
bool dpiImport() const { return m_dpiImport; }
void dpiContext(bool flag) { m_dpiContext = flag; }
bool dpiContext() const { return m_dpiContext; }
void dpiOpenChild(bool flag) { m_dpiOpenChild = flag; }
bool dpiOpenChild() const { return m_dpiOpenChild; }
void dpiTask(bool flag) { m_dpiTask = flag; }
bool dpiTask() const { return m_dpiTask; }
void isConstructor(bool flag) { m_isConstructor = flag; }
bool isConstructor() const { return m_isConstructor; }
bool isHideLocal() const { return m_isHideLocal; }
void isHideLocal(bool flag) { m_isHideLocal = flag; }
bool isHideProtected() const { return m_isHideProtected; }
void isHideProtected(bool flag) { m_isHideProtected = flag; }
void pure(bool flag) { m_pure = flag; }
bool pure() const { return m_pure; }
void pureVirtual(bool flag) { m_pureVirtual = flag; }
bool pureVirtual() const { return m_pureVirtual; }
void isVirtual(bool flag) { m_virtual = flag; }
bool isVirtual() const { return m_virtual; }
void lifetime(const VLifetime& flag) { m_lifetime = flag; }
VLifetime lifetime() const { return m_lifetime; }
};
class AstNodeFTaskRef VL_NOT_FINAL : public AstNodeStmt {
// A reference to a task (or function)
// Functions are not statements, while tasks are. AstNodeStmt needs isStatement() to deal.
private:
AstNodeFTask* m_taskp = nullptr; // [AfterLink] Pointer to task referenced
AstNodeModule* m_classOrPackagep = nullptr; // Package hierarchy
string m_name; // Name of variable
string m_dotted; // Dotted part of scope the name()ed task/func is under or ""
string m_inlinedDots; // Dotted hierarchy flattened out
bool m_pli = false; // Pli system call ($name)
public:
AstNodeFTaskRef(AstType t, FileLine* fl, bool statement, AstNode* namep, AstNode* pinsp)
: AstNodeStmt{t, fl, statement} {
setOp1p(namep);
addNOp3p(pinsp);
}
AstNodeFTaskRef(AstType t, FileLine* fl, bool statement, const string& name, AstNode* pinsp)
: AstNodeStmt{t, fl, statement}
, m_name{name} {
addNOp3p(pinsp);
}
ASTNODE_BASE_FUNCS(NodeFTaskRef)
virtual const char* broken() const override;
virtual void cloneRelink() override {
if (m_taskp && m_taskp->clonep()) { m_taskp = m_taskp->clonep(); }
}
virtual void dump(std::ostream& str = std::cout) const override;
virtual string name() const override { return m_name; } // * = Var name
virtual bool isGateOptimizable() const override {
return m_taskp && m_taskp->isGateOptimizable();
}
string dotted() const { return m_dotted; } // * = Scope name or ""
string prettyDotted() const { return prettyName(dotted()); }
string inlinedDots() const { return m_inlinedDots; }
void inlinedDots(const string& flag) { m_inlinedDots = flag; }
AstNodeFTask* taskp() const { return m_taskp; } // [After Link] Pointer to variable
void taskp(AstNodeFTask* taskp) { m_taskp = taskp; }
virtual void name(const string& name) override { m_name = name; }
void dotted(const string& name) { m_dotted = name; }
AstNodeModule* classOrPackagep() const { return m_classOrPackagep; }
void classOrPackagep(AstNodeModule* nodep) { m_classOrPackagep = nodep; }
bool pli() const { return m_pli; }
void pli(bool flag) { m_pli = flag; }
// op1 = namep
AstNode* namep() const { return op1p(); }
// op2 = reserved for AstMethodCall
// op3 = Pin interconnection list
AstNode* pinsp() const { return op3p(); }
void addPinsp(AstNode* nodep) { addOp3p(nodep); }
// op4 = scope tracking
AstScopeName* scopeNamep() const { return VN_CAST(op4p(), ScopeName); }
void scopeNamep(AstNode* nodep) { setNOp4p(nodep); }
};
class AstNodeModule VL_NOT_FINAL : public AstNode {
// A module, package, program or interface declaration;
// something that can live directly under the TOP,
// excluding $unit package stuff
private:
string m_name; // Name of the module
string m_origName; // Name of the module, ignoring name() changes, for dot lookup
string m_hierName; // Hierarchical name for errors, etc.
bool m_modPublic : 1; // Module has public references
bool m_modTrace : 1; // Tracing this module
bool m_inLibrary : 1; // From a library, no error if not used, never top level
bool m_dead : 1; // LinkDot believes is dead; will remove in Dead visitors
bool m_hierBlock : 1; // Hiearchical Block marked by HIER_BLOCK pragma
bool m_internal : 1; // Internally created
bool m_recursive : 1; // Recursive module
bool m_recursiveClone : 1; // If recursive, what module it clones, otherwise nullptr
int m_level = 0; // 1=top module, 2=cell off top module, ...
int m_varNum = 0; // Incrementing variable number
int m_typeNum = 0; // Incrementing implicit type number
VLifetime m_lifetime; // Lifetime
VTimescale m_timeunit; // Global time unit
VOptionBool m_unconnectedDrive; // State of `unconnected_drive
public:
AstNodeModule(AstType t, FileLine* fl, const string& name)
: AstNode{t, fl}
, m_name{name}
, m_origName{name}
, m_modPublic{false}
, m_modTrace{false}
, m_inLibrary{false}
, m_dead{false}
, m_hierBlock{false}
, m_internal{false}
, m_recursive{false}
, m_recursiveClone{false} {}
ASTNODE_BASE_FUNCS(NodeModule)
virtual void dump(std::ostream& str) const override;
virtual bool maybePointedTo() const override { return true; }
virtual string name() const override { return m_name; }
AstNode* stmtsp() const { return op2p(); } // op2 = List of statements
AstActive* activesp() const { return VN_CAST(op3p(), Active); } // op3 = List of i/sblocks
// METHODS
void addInlinesp(AstNode* nodep) { addOp1p(nodep); }
void addStmtp(AstNode* nodep) { addNOp2p(nodep); }
void addActivep(AstNode* nodep) { addOp3p(nodep); }
// ACCESSORS
virtual void name(const string& name) override { m_name = name; }
virtual string origName() const override { return m_origName; }
string hierName() const { return m_hierName; }
void hierName(const string& hierName) { m_hierName = hierName; }
bool inLibrary() const { return m_inLibrary; }
void inLibrary(bool flag) { m_inLibrary = flag; }
void level(int level) { m_level = level; }
int level() const { return m_level; }
bool isTop() const { return level() == 1; }
int varNumGetInc() { return ++m_varNum; }
int typeNumGetInc() { return ++m_typeNum; }
void modPublic(bool flag) { m_modPublic = flag; }
bool modPublic() const { return m_modPublic; }
void modTrace(bool flag) { m_modTrace = flag; }
bool modTrace() const { return m_modTrace; }
void dead(bool flag) { m_dead = flag; }
bool dead() const { return m_dead; }
void hierBlock(bool flag) { m_hierBlock = flag; }
bool hierBlock() const { return m_hierBlock; }
void internal(bool flag) { m_internal = flag; }
bool internal() const { return m_internal; }
void recursive(bool flag) { m_recursive = flag; }
bool recursive() const { return m_recursive; }
void recursiveClone(bool flag) { m_recursiveClone = flag; }
bool recursiveClone() const { return m_recursiveClone; }
void lifetime(const VLifetime& flag) { m_lifetime = flag; }
VLifetime lifetime() const { return m_lifetime; }
void timeunit(const VTimescale& flag) { m_timeunit = flag; }
VTimescale timeunit() const { return m_timeunit; }
void unconnectedDrive(const VOptionBool flag) { m_unconnectedDrive = flag; }
VOptionBool unconnectedDrive() const { return m_unconnectedDrive; }
};
class AstNodeRange VL_NOT_FINAL : public AstNode {
// A range, sized or unsized
public:
AstNodeRange(AstType t, FileLine* fl)
: AstNode{t, fl} {}
ASTNODE_BASE_FUNCS(NodeRange)
virtual void dump(std::ostream& str) const override;
};
//######################################################################
#include "V3AstNodes__gen.h"
//######################################################################
// Inline AstNVisitor METHODS
inline void AstNVisitor::iterate(AstNode* nodep) { nodep->accept(*this); }
inline void AstNVisitor::iterateChildren(AstNode* nodep) { nodep->iterateChildren(*this); }
inline void AstNVisitor::iterateChildrenBackwards(AstNode* nodep) {
nodep->iterateChildrenBackwards(*this);
}
inline void AstNVisitor::iterateChildrenConst(AstNode* nodep) {
nodep->iterateChildrenConst(*this);
}
inline void AstNVisitor::iterateAndNextNull(AstNode* nodep) {
if (VL_LIKELY(nodep)) nodep->iterateAndNext(*this);
}
inline void AstNVisitor::iterateAndNextConstNull(AstNode* nodep) {
if (VL_LIKELY(nodep)) nodep->iterateAndNextConst(*this);
}
inline AstNode* AstNVisitor::iterateSubtreeReturnEdits(AstNode* nodep) {
return nodep->iterateSubtreeReturnEdits(*this);
}
//######################################################################
// Inline ACCESSORS
inline int AstNode::width() const { return dtypep() ? dtypep()->width() : 0; }
inline int AstNode::widthMin() const { return dtypep() ? dtypep()->widthMin() : 0; }
inline bool AstNode::width1() const { // V3Const uses to know it can optimize
return dtypep() && dtypep()->width() == 1;
}
inline int AstNode::widthInstrs() const {
return (!dtypep() ? 1 : (dtypep()->isWide() ? dtypep()->widthWords() : 1));
}
inline bool AstNode::isDouble() const {
return dtypep() && VN_IS(dtypep(), BasicDType) && VN_CAST(dtypep(), BasicDType)->isDouble();
}
inline bool AstNode::isString() const {
return dtypep() && dtypep()->basicp() && dtypep()->basicp()->isString();
}
inline bool AstNode::isSigned() const { return dtypep() && dtypep()->isSigned(); }
inline bool AstNode::isZero() const {
return (VN_IS(this, Const) && VN_CAST_CONST(this, Const)->num().isEqZero());
}
inline bool AstNode::isNeqZero() const {
return (VN_IS(this, Const) && VN_CAST_CONST(this, Const)->num().isNeqZero());
}
inline bool AstNode::isOne() const {
return (VN_IS(this, Const) && VN_CAST_CONST(this, Const)->num().isEqOne());
}
inline bool AstNode::isAllOnes() const {
return (VN_IS(this, Const) && VN_CAST_CONST(this, Const)->isEqAllOnes());
}
inline bool AstNode::isAllOnesV() const {
return (VN_IS(this, Const) && VN_CAST_CONST(this, Const)->isEqAllOnesV());
}
inline bool AstNode::sameTree(const AstNode* node2p) const {
return sameTreeIter(this, node2p, true, false);
}
inline bool AstNode::sameGateTree(const AstNode* node2p) const {
return sameTreeIter(this, node2p, true, true);
}
inline void AstNodeVarRef::varp(AstVar* varp) {
m_varp = varp;
dtypeFrom(varp);
}
inline bool AstNodeDType::isFourstate() const { return basicp()->isFourstate(); }
inline void AstNodeArrayDType::rangep(AstRange* nodep) { setOp2p(nodep); }
inline int AstNodeArrayDType::msb() const { return rangep()->msbConst(); }
inline int AstNodeArrayDType::lsb() const { return rangep()->lsbConst(); }
inline int AstNodeArrayDType::elementsConst() const { return rangep()->elementsConst(); }
inline VNumRange AstNodeArrayDType::declRange() const {
return VNumRange(msb(), lsb(), rangep()->littleEndian());
}
inline const char* AstNodeFTaskRef::broken() const {
BROKEN_RTN(m_taskp && !m_taskp->brokeExists());
BROKEN_RTN(m_classOrPackagep && !m_classOrPackagep->brokeExists());
return nullptr;
}
inline void AstIfaceRefDType::cloneRelink() {
if (m_cellp && m_cellp->clonep()) m_cellp = m_cellp->clonep();
if (m_ifacep && m_ifacep->clonep()) m_ifacep = m_ifacep->clonep();
if (m_modportp && m_modportp->clonep()) m_modportp = m_modportp->clonep();
}
#endif // Guard