verilator/include/verilated.h
Yutetsu TAKATSUKASA 31779b8b8b
Format time string using integer (#2940)
Co-authored-by: Wilson Snyder <wsnyder@wsnyder.org>
2021-05-16 19:01:03 +09:00

2999 lines
127 KiB
C++

// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
//
// Code available from: https://verilator.org
//
// Copyright 2003-2021 by Wilson Snyder. This program is free software; you can
// redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//*************************************************************************
///
/// \file
/// \brief Verilated common header, include for all Verilated C files
///
/// This file is included automatically by Verilator at the top of all C++
/// files it generates. It contains standard macros and classes required
/// by the Verilated code.
///
/// User wrapper code may need to include this to get appropriate
/// structures, however they would generally just include the
/// Verilated-model's header instead (which then includes this).
///
/// Those macro/function/variable starting or ending in _ are internal,
/// however many of the other function/macros here are also internal.
///
//*************************************************************************
#ifndef VERILATOR_VERILATED_H_
#define VERILATOR_VERILATED_H_
// clang-format off
#include "verilatedos.h"
#if VM_SC
# include "verilated_sc.h" // Get SYSTEMC_VERSION and time declarations
#endif
#include <cassert>
#include <cmath>
#include <cstdarg>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <memory>
#include <string>
#include <vector>
// <iostream> avoided to reduce compile time
// <map> avoided and instead in verilated_heavy.h to reduce compile time
// <string> avoided and instead in verilated_heavy.h to reduce compile time
#ifdef VL_THREADED
# include <atomic>
# include <mutex>
# include <thread>
#endif
// Allow user to specify their own include file
#ifdef VL_VERILATED_INCLUDE
// cppcheck-suppress preprocessorErrorDirective
# include VL_VERILATED_INCLUDE
#endif
// clang-format on
//=============================================================================
// Switches
// clang-format off
#if VM_TRACE // Verilator tracing requested
# define WAVES 1 // Set backward compatibility flag
#endif
// Version check
#if defined(SYSTEMC_VERSION) && (SYSTEMC_VERSION < 20111121)
# warning "Verilator requires SystemC 2.3.* or newer."
#endif
// clang-format on
class VerilatedContextImp;
class VerilatedContextImpData;
class VerilatedCovContext;
class VerilatedEvalMsgQueue;
class VerilatedFst;
class VerilatedFstC;
class VerilatedScope;
class VerilatedScopeNameMap;
class VerilatedVar;
class VerilatedVarNameMap;
class VerilatedVcd;
class VerilatedVcdC;
class VerilatedVcdSc;
//=========================================================================
// Basic types
// clang-format off
// P // Packed data of bit type (C/S/I/Q/W)
using CData = vluint8_t; ///< Data representing 'bit' of 1-8 packed bits
using SData = vluint16_t; ///< Data representing 'bit' of 9-16 packed bits
using IData = vluint32_t; ///< Data representing 'bit' of 17-32 packed bits
using QData = vluint64_t; ///< Data representing 'bit' of 33-64 packed bits
using EData = vluint32_t; ///< Data representing one element of WData array
using WData = EData; ///< Data representing >64 packed bits (used as pointer)
// F = float; // No typedef needed; Verilator uses float
// D = double; // No typedef needed; Verilator uses double
// N = std::string; // No typedef needed; Verilator uses string
// clang-format on
using WDataInP = const WData*; ///< 'bit' of >64 packed bits as array input to a function
using WDataOutP = WData*; ///< 'bit' of >64 packed bits as array output from a function
enum VerilatedVarType : vluint8_t {
VLVT_UNKNOWN = 0,
VLVT_PTR, // Pointer to something
VLVT_UINT8, // AKA CData
VLVT_UINT16, // AKA SData
VLVT_UINT32, // AKA IData
VLVT_UINT64, // AKA QData
VLVT_WDATA, // AKA WData
VLVT_STRING // C++ string
};
enum VerilatedVarFlags {
VLVD_0 = 0, // None
VLVD_IN = 1, // == vpiInput
VLVD_OUT = 2, // == vpiOutput
VLVD_INOUT = 3, // == vpiInOut
VLVD_NODIR = 5, // == vpiNoDirection
VLVF_MASK_DIR = 7, // Bit mask for above directions
// Flags
VLVF_PUB_RD = (1 << 8), // Public readable
VLVF_PUB_RW = (1 << 9), // Public writable
VLVF_DPI_CLAY = (1 << 10) // DPI compatible C standard layout
};
//=========================================================================
// Mutex and threading support
// Return current thread ID (or 0), not super fast, cache if needed
extern vluint32_t VL_THREAD_ID() VL_MT_SAFE;
#if VL_THREADED
#define VL_LOCK_SPINS 50000 /// Number of times to spin for a mutex before relaxing
/// Mutex, wrapped to allow -fthread_safety checks
class VL_CAPABILITY("mutex") VerilatedMutex final {
private:
std::mutex m_mutex; // Mutex
public:
/// Construct mutex (without locking it)
VerilatedMutex() = default;
~VerilatedMutex() = default;
const VerilatedMutex& operator!() const { return *this; } // For -fthread_safety
/// Acquire/lock mutex
void lock() VL_ACQUIRE() {
// Try to acquire the lock by spinning. If the wait is short,
// avoids a trap to the OS plus OS scheduler overhead.
if (VL_LIKELY(try_lock())) return; // Short circuit loop
for (int i = 0; i < VL_LOCK_SPINS; ++i) {
if (VL_LIKELY(try_lock())) return;
VL_CPU_RELAX();
}
// Spinning hasn't worked, pay the cost of blocking.
m_mutex.lock();
}
/// Release/unlock mutex
void unlock() VL_RELEASE() { m_mutex.unlock(); }
/// Try to acquire mutex. Returns true on success, and false on failure.
bool try_lock() VL_TRY_ACQUIRE(true) { return m_mutex.try_lock(); }
};
/// Lock guard for mutex (ala std::unique_lock), wrapped to allow -fthread_safety checks
class VL_SCOPED_CAPABILITY VerilatedLockGuard final {
VL_UNCOPYABLE(VerilatedLockGuard);
private:
VerilatedMutex& m_mutexr;
public:
/// Construct and hold given mutex lock until destruction or unlock()
explicit VerilatedLockGuard(VerilatedMutex& mutexr) VL_ACQUIRE(mutexr)
: m_mutexr(mutexr) { // Need () or GCC 4.8 false warning
m_mutexr.lock();
}
/// Destruct and unlock the mutex
~VerilatedLockGuard() VL_RELEASE() { m_mutexr.unlock(); }
/// Unlock the mutex
void lock() VL_ACQUIRE() { m_mutexr.lock(); }
/// Lock the mutex
void unlock() VL_RELEASE() { m_mutexr.unlock(); }
};
#else // !VL_THREADED
// Empty non-threaded mutex to avoid #ifdefs in consuming code
class VerilatedMutex final {
public:
void lock() {} // LCOV_EXCL_LINE
void unlock() {} // LCOV_EXCL_LINE
};
// Empty non-threaded lock guard to avoid #ifdefs in consuming code
class VerilatedLockGuard final {
VL_UNCOPYABLE(VerilatedLockGuard);
public:
explicit VerilatedLockGuard(VerilatedMutex&) {}
~VerilatedLockGuard() = default;
void lock() {} // LCOV_EXCL_LINE
void unlock() {} // LCOV_EXCL_LINE
};
#endif // VL_THREADED
// Internals: Remember the calling thread at construction time, and make
// sure later calls use same thread
class VerilatedAssertOneThread final {
// MEMBERS
#if defined(VL_THREADED) && defined(VL_DEBUG)
vluint32_t m_threadid; // Thread that is legal
public:
// CONSTRUCTORS
// The constructor establishes the thread id for all later calls.
// If necessary, a different class could be made that inits it otherwise.
VerilatedAssertOneThread()
: m_threadid{VL_THREAD_ID()} {}
~VerilatedAssertOneThread() { check(); }
// METHODS
// Check that the current thread ID is the same as the construction thread ID
void check() VL_MT_UNSAFE_ONE {
if (VL_UNCOVERABLE(m_threadid != VL_THREAD_ID())) {
if (m_threadid == 0) {
m_threadid = VL_THREAD_ID();
} else {
fatal_different(); // LCOV_EXCL_LINE
}
}
}
static void fatal_different() VL_MT_SAFE;
#else // !VL_THREADED || !VL_DEBUG
public:
void check() {}
#endif
};
//=========================================================================
/// Base class for all Verilated module classes.
class VerilatedModule VL_NOT_FINAL {
VL_UNCOPYABLE(VerilatedModule);
private:
const char* m_namep; // Module name
public:
explicit VerilatedModule(const char* namep); // Create module with given hierarchy name
~VerilatedModule();
const char* name() const { return m_namep; } ///< Return name of module
};
//=========================================================================
// Declare nets
#define VL_SIG8(name, msb, lsb) CData name ///< Declare signal, 1-8 bits
#define VL_SIG16(name, msb, lsb) SData name ///< Declare signal, 9-16 bits
#define VL_SIG64(name, msb, lsb) QData name ///< Declare signal, 33-64 bits
#define VL_SIG(name, msb, lsb) IData name ///< Declare signal, 17-32 bits
#define VL_SIGW(name, msb, lsb, words) WData name[words] ///< Declare signal, 65+ bits
#define VL_IN8(name, msb, lsb) CData name ///< Declare input signal, 1-8 bits
#define VL_IN16(name, msb, lsb) SData name ///< Declare input signal, 9-16 bits
#define VL_IN64(name, msb, lsb) QData name ///< Declare input signal, 33-64 bits
#define VL_IN(name, msb, lsb) IData name ///< Declare input signal, 17-32 bits
#define VL_INW(name, msb, lsb, words) WData name[words] ///< Declare input signal, 65+ bits
#define VL_INOUT8(name, msb, lsb) CData name ///< Declare bidir signal, 1-8 bits
#define VL_INOUT16(name, msb, lsb) SData name ///< Declare bidir signal, 9-16 bits
#define VL_INOUT64(name, msb, lsb) QData name ///< Declare bidir signal, 33-64 bits
#define VL_INOUT(name, msb, lsb) IData name ///< Declare bidir signal, 17-32 bits
#define VL_INOUTW(name, msb, lsb, words) WData name[words] ///< Declare bidir signal, 65+ bits
#define VL_OUT8(name, msb, lsb) CData name ///< Declare output signal, 1-8 bits
#define VL_OUT16(name, msb, lsb) SData name ///< Declare output signal, 9-16 bits
#define VL_OUT64(name, msb, lsb) QData name ///< Declare output signal, 33-64bits
#define VL_OUT(name, msb, lsb) IData name ///< Declare output signal, 17-32 bits
#define VL_OUTW(name, msb, lsb, words) WData name[words] ///< Declare output signal, 65+ bits
#define VL_CELL(instname, type) ///< Declare a cell, ala SP_CELL
///< Declare a module, ala SC_MODULE
#define VL_MODULE(modname) class modname VL_NOT_FINAL : public VerilatedModule
// Not class final in VL_MODULE, as users might be abstracting our models (--hierarchical)
//=========================================================================
// Functions overridable by user defines
// (Internals however must use VL_PRINTF_MT, which calls these.)
// clang-format off
#ifndef VL_PRINTF
# define VL_PRINTF printf ///< Print ala printf, called from main thread; redefine if desired
#endif
#ifndef VL_VPRINTF
# define VL_VPRINTF vprintf ///< Print ala vprintf, called from main thread; redefine if desired
#endif
// clang-format on
//===========================================================================
// Internal: Base class to allow virtual destruction
class VerilatedVirtualBase VL_NOT_FINAL {
public:
VerilatedVirtualBase() = default;
virtual ~VerilatedVirtualBase() = default;
};
//===========================================================================
/// Verilator simulation context
///
/// The VerilatedContext contains the information common across all models
/// that are interconnected, for example this contains the simulation time
/// and if $finish was executed.
///
/// VerilatedContexts maybe created by the user wrapper code and passed
/// when a model is created. If this is not done, then Verilator will use
/// the Verilated::defaultContextp()'s global context.
class VerilatedContext VL_NOT_FINAL {
friend class VerilatedContextImp;
protected:
// MEMBERS
// Slow path variables
mutable VerilatedMutex m_mutex; // Mutex for most s_s/s_ns members, when VL_THREADED
struct Serialized { // All these members serialized/deserialized
// No std::strings or pointers or will serialize badly!
// Fast path
bool m_assertOn = true; // Assertions are enabled
bool m_calcUnusedSigs = false; // Waves file on, need all signals calculated
bool m_fatalOnError = true; // Fatal on $stop/non-fatal error
bool m_fatalOnVpiError = true; // Fatal on vpi error/unsupported
bool m_gotError = false; // A $finish statement executed
bool m_gotFinish = false; // A $finish or $stop statement executed
vluint64_t m_time = 0; // Current $time (unscaled), 0=at zero, or legacy
// Slow path
vlsint8_t m_timeunit; // Time unit as 0..15
vlsint8_t m_timeprecision; // Time precision as 0..15
int m_errorCount = 0; // Number of errors
int m_errorLimit = 1; // Stop on error number
int m_randReset = 0; // Random reset: 0=all 0s, 1=all 1s, 2=random
int m_randSeed = 0; // Random seed: 0=random
enum { UNITS_NONE = 99 }; // Default based on precision
int m_timeFormatUnits = UNITS_NONE; // $timeformat units
int m_timeFormatPrecision = 0; // $timeformat number of decimal places
int m_timeFormatWidth = 20; // $timeformat character width
// CONSTRUCTORS
Serialized();
~Serialized() = default;
} m_s;
mutable VerilatedMutex m_timeDumpMutex; // Protect misc slow strings
std::string m_timeFormatSuffix VL_GUARDED_BY(m_timeDumpMutex); // $timeformat printf format
std::string m_dumpfile VL_GUARDED_BY(m_timeDumpMutex); // $dumpfile setting
struct NonSerialized { // Non-serialized information
// These are reloaded from on command-line settings, so do not need to persist
// Fast path
vluint64_t m_profThreadsStart = 1; // +prof+threads starting time
vluint32_t m_profThreadsWindow = 2; // +prof+threads window size
// Slow path
std::string m_profThreadsFilename; // +prof+threads filename
} m_ns;
mutable VerilatedMutex m_argMutex; // Protect m_argVec, m_argVecLoaded
// no need to be save-restored (serialized) the
// assumption is that the restore is allowed to pass different arguments
struct NonSerializedCommandArgs {
// Medium speed
bool m_argVecLoaded = false; // Ever loaded argument list
std::vector<std::string> m_argVec; // Aargument list
} m_args VL_GUARDED_BY(m_argMutex);
// Implementation details
std::unique_ptr<VerilatedContextImpData> m_impdatap;
// Coverage access
std::unique_ptr<VerilatedVirtualBase> m_coveragep; // Pointer for coveragep()
// File I/O
// Not serialized
mutable VerilatedMutex m_fdMutex; // Protect m_fdps, m_fdFree
std::vector<FILE*> m_fdps VL_GUARDED_BY(m_fdMutex); // File descriptors
// List of free descriptors (SLOW - FOPEN/CLOSE only)
std::vector<IData> m_fdFree VL_GUARDED_BY(m_fdMutex);
// List of free descriptors in the MCT region [4, 32)
std::vector<IData> m_fdFreeMct VL_GUARDED_BY(m_fdMutex);
private:
// CONSTRUCTORS
VL_UNCOPYABLE(VerilatedContext);
public:
/// Construct context. Also sets Verilated::threadContextp to the created context.
VerilatedContext();
~VerilatedContext();
// METHODS - User called
/// Enable assertions
void assertOn(bool flag) VL_MT_SAFE;
/// Return if assertions enabled
bool assertOn() const VL_MT_SAFE { return m_s.m_assertOn; }
/// Enable calculation of unused signals (for traces)
void calcUnusedSigs(bool flag) VL_MT_SAFE;
/// Return if calculating of unused signals (for traces)
bool calcUnusedSigs() const VL_MT_SAFE { return m_s.m_calcUnusedSigs; }
/// Record command-line arguments, for retrieval by $test$plusargs/$value$plusargs,
/// and for parsing +verilator+ run-time arguments.
/// This should be called before the first model is created.
void commandArgs(int argc, const char** argv) VL_MT_SAFE_EXCLUDES(m_argMutex);
void commandArgs(int argc, char** argv) VL_MT_SAFE {
commandArgs(argc, const_cast<const char**>(argv));
}
/// Add a command-line argument to existing arguments
void commandArgsAdd(int argc, const char** argv) VL_MT_SAFE_EXCLUDES(m_argMutex);
/// Match plusargs with a given prefix. Returns static char* valid only for a single call
const char* commandArgsPlusMatch(const char* prefixp) VL_MT_SAFE_EXCLUDES(m_argMutex);
/// Return VerilatedCovContext, allocate if needed
/// Note if get unresolved reference then likely forgot to link verilated_cov.cpp
VerilatedCovContext* coveragep() VL_MT_SAFE;
/// Set debug level
/// Debug is currently global, but for forward compatibility have a per-context method
static void debug(int val) VL_MT_SAFE;
/// Return debug level
static int debug() VL_MT_SAFE;
/// Set current number of errors/assertions
void errorCount(int val) VL_MT_SAFE;
/// Increment current number of errors/assertions
void errorCountInc() VL_MT_SAFE;
/// Return current number of errors/assertions
int errorCount() const VL_MT_SAFE { return m_s.m_errorCount; }
/// Set number of errors/assertions before stop
void errorLimit(int val) VL_MT_SAFE;
/// Return number of errors/assertions before stop
int errorLimit() const VL_MT_SAFE { return m_s.m_errorLimit; }
/// Set to throw fatal error on $stop/non-fatal ettot
void fatalOnError(bool flag) VL_MT_SAFE;
/// Return if to throw fatal error on $stop/non-fatal
bool fatalOnError() const VL_MT_SAFE { return m_s.m_fatalOnError; }
/// Set to throw fatal error on VPI errors
void fatalOnVpiError(bool flag) VL_MT_SAFE;
/// Return if to throw fatal error on VPI errors
bool fatalOnVpiError() const VL_MT_SAFE { return m_s.m_fatalOnVpiError; }
/// Set if got a $stop or non-fatal error
void gotError(bool flag) VL_MT_SAFE;
/// Return if got a $stop or non-fatal error
bool gotError() const VL_MT_SAFE { return m_s.m_gotError; }
/// Set if got a $finish or $stop/error
void gotFinish(bool flag) VL_MT_SAFE;
/// Return if got a $finish or $stop/error
bool gotFinish() const VL_MT_SAFE { return m_s.m_gotFinish; }
/// Select initial value of otherwise uninitialized signals.
/// 0 = Set to zeros
/// 1 = Set all bits to one
/// 2 = Randomize all bits
void randReset(int val) VL_MT_SAFE;
/// Return randReset value
int randReset() VL_MT_SAFE { return m_s.m_randReset; }
/// Return default random seed
void randSeed(int val) VL_MT_SAFE;
/// Set default random seed, 0 = seed it automatically
int randSeed() const VL_MT_SAFE { return m_s.m_randSeed; }
// Time handling
/// Returns current simulation time.
///
/// How Verilator runtime gets the current simulation time:
///
/// * If using SystemC, time comes from the SystemC kernel-defined
/// sc_time_stamp64(). User's wrapper must not call
/// SimulationContext::time(value) nor timeInc(value).
///
/// * Else, if SimulationContext::time(value) or
/// SimulationContext::timeInc(value) is ever called with non-zero,
/// then time will come via the context. This allows multiple contexts
/// to exist and have different simulation times. This must not be used
/// with SystemC. Note Verilated::time(value) and
/// Verilated::timeInc(value) call into SimulationContext::time and
/// timeInc, operating on the thread's context.
///
/// * Else, if VL_TIME_STAMP64 is defined, time comes from the legacy
/// 'vluint64_t vl_time_stamp64()' which must a function be defined by
/// the user's wrapper.
///
/// * Else, time comes from the legacy 'double sc_time_stamp()' which
/// must be a function defined by the user's wrapper.
vluint64_t time() const VL_MT_SAFE;
/// Set current simulation time. See time() for side effect details
void time(vluint64_t value) VL_MT_SAFE { m_s.m_time = value; }
/// Advance current simulation time. See time() for side effect details
void timeInc(vluint64_t add) VL_MT_UNSAFE { m_s.m_time += add; }
/// Return time units as power-of-ten
int timeunit() const VL_MT_SAFE { return -m_s.m_timeunit; }
/// Set time units as power-of-ten
void timeunit(int value) VL_MT_SAFE;
/// Return time units as IEEE-standard text
const char* timeunitString() const VL_MT_SAFE;
/// Get time precision as power-of-ten
int timeprecision() const VL_MT_SAFE { return -m_s.m_timeprecision; }
/// Return time precision as power-of-ten
void timeprecision(int value) VL_MT_SAFE;
/// Get time precision as IEEE-standard text
const char* timeprecisionString() const VL_MT_SAFE;
/// Allow traces to at some point be enabled (disables some optimizations)
void traceEverOn(bool flag) VL_MT_SAFE {
if (flag) calcUnusedSigs(true);
}
/// For debugging, print much of the Verilator internal state.
/// The output of this function may change in future
/// releases - contact the authors before production use.
void internalsDump() const VL_MT_SAFE;
/// For debugging, print text list of all scope names with
/// dpiImport/Export context. This function may change in future
/// releases - contact the authors before production use.
void scopesDump() const VL_MT_SAFE;
public: // But for internal use only
// Internal: access to implementation class
VerilatedContextImp* impp() { return reinterpret_cast<VerilatedContextImp*>(this); }
const VerilatedContextImp* impp() const {
return reinterpret_cast<const VerilatedContextImp*>(this);
}
// Internal: $dumpfile
void dumpfile(const std::string& flag) VL_MT_SAFE_EXCLUDES(m_timeDumpMutex);
std::string dumpfile() const VL_MT_SAFE_EXCLUDES(m_timeDumpMutex);
std::string dumpfileCheck() const VL_MT_SAFE_EXCLUDES(m_timeDumpMutex);
// Internal: --prof-threads related settings
void profThreadsStart(vluint64_t flag) VL_MT_SAFE;
vluint64_t profThreadsStart() const VL_MT_SAFE { return m_ns.m_profThreadsStart; }
void profThreadsWindow(vluint64_t flag) VL_MT_SAFE;
vluint32_t profThreadsWindow() const VL_MT_SAFE { return m_ns.m_profThreadsWindow; }
void profThreadsFilename(const std::string& flag) VL_MT_SAFE;
std::string profThreadsFilename() const VL_MT_SAFE;
// Internal: Find scope
const VerilatedScope* scopeFind(const char* namep) const VL_MT_SAFE;
const VerilatedScopeNameMap* scopeNameMap() VL_MT_SAFE;
// Internal: Serialization setup
static constexpr size_t serialized1Size() VL_PURE { return sizeof(m_s); }
void* serialized1Ptr() VL_MT_UNSAFE { return &m_s; }
};
//===========================================================================
// Verilator symbol table base class
// Used for internal VPI implementation, and introspection into scopes
class VerilatedSyms VL_NOT_FINAL {
public: // But for internal use only
// MEMBERS
// Keep first so is at zero offset for fastest code
VerilatedContext* const _vm_contextp__; // Context for current model
#ifdef VL_THREADED
VerilatedEvalMsgQueue* __Vm_evalMsgQp;
#endif
explicit VerilatedSyms(VerilatedContext* contextp); // Pass null for default context
~VerilatedSyms();
};
//===========================================================================
// Verilator scope information class
// Used for internal VPI implementation, and introspection into scopes
class VerilatedScope final {
public:
enum Type : vluint8_t {
SCOPE_MODULE,
SCOPE_OTHER
}; // Type of a scope, currently module is only interesting
private:
// Fastpath:
VerilatedSyms* m_symsp = nullptr; // Symbol table
void** m_callbacksp = nullptr; // Callback table pointer (Fastpath)
int m_funcnumMax = 0; // Maxium function number stored (Fastpath)
// 4 bytes padding (on -m64), for rent.
VerilatedVarNameMap* m_varsp = nullptr; // Variable map
const char* m_namep = nullptr; // Scope name (Slowpath)
const char* m_identifierp = nullptr; // Identifier of scope (with escapes removed)
vlsint8_t m_timeunit = 0; // Timeunit in negative power-of-10
Type m_type = SCOPE_OTHER; // Type of the scope
public: // But internals only - called from VerilatedModule's
VerilatedScope() = default;
~VerilatedScope();
void configure(VerilatedSyms* symsp, const char* prefixp, const char* suffixp,
const char* identifier, vlsint8_t timeunit, const Type& type) VL_MT_UNSAFE;
void exportInsert(int finalize, const char* namep, void* cb) VL_MT_UNSAFE;
void varInsert(int finalize, const char* namep, void* datap, bool isParam,
VerilatedVarType vltype, int vlflags, int dims, ...) VL_MT_UNSAFE;
// ACCESSORS
const char* name() const { return m_namep; }
const char* identifier() const { return m_identifierp; }
vlsint8_t timeunit() const { return m_timeunit; }
inline VerilatedSyms* symsp() const { return m_symsp; }
VerilatedVar* varFind(const char* namep) const VL_MT_SAFE_POSTINIT;
VerilatedVarNameMap* varsp() const VL_MT_SAFE_POSTINIT { return m_varsp; }
void scopeDump() const;
void* exportFindError(int funcnum) const;
static void* exportFindNullError(int funcnum) VL_MT_SAFE;
static inline void* exportFind(const VerilatedScope* scopep, int funcnum) VL_MT_SAFE {
if (VL_UNLIKELY(!scopep)) return exportFindNullError(funcnum);
if (VL_LIKELY(funcnum < scopep->m_funcnumMax)) {
// m_callbacksp must be declared, as Max'es are > 0
return scopep->m_callbacksp[funcnum];
} else { // LCOV_EXCL_LINE
return scopep->exportFindError(funcnum); // LCOV_EXCL_LINE
}
}
Type type() const { return m_type; }
};
class VerilatedHierarchy final {
public:
static void add(VerilatedScope* fromp, VerilatedScope* top);
static void remove(VerilatedScope* fromp, VerilatedScope* top);
};
//===========================================================================
/// Verilator global static information class
class Verilated final {
// MEMBERS
// Internal Note: There should be no Serialized state in Verilated::,
// instead serialized state should all be in VerilatedContext:: as by
// definition it needs to vary per-simulation
// Internal note: Globals may multi-construct, see verilated.cpp top.
// Debug is reloaded from on command-line settings, so do not need to persist
static int s_debug; // See accessors... only when VL_DEBUG set
static VerilatedContext* s_lastContextp; // Last context constructed/attached
// Not covered by mutex, as per-thread
static VL_THREAD_LOCAL struct ThreadLocal {
// No non-POD objects here due to this:
// Internal note: Globals may multi-construct, see verilated.cpp top.
// Fast path
VerilatedContext* t_contextp = nullptr; // Thread's context
#ifdef VL_THREADED
vluint32_t t_mtaskId = 0; // mtask# executing on this thread
// Messages maybe pending on thread, needs end-of-eval calls
vluint32_t t_endOfEvalReqd = 0;
#endif
const VerilatedScope* t_dpiScopep = nullptr; // DPI context scope
const char* t_dpiFilename = nullptr; // DPI context filename
int t_dpiLineno = 0; // DPI context line number
ThreadLocal() = default;
~ThreadLocal() = default;
} t_s;
friend struct VerilatedInitializer;
// CONSTRUCTORS
VL_UNCOPYABLE(Verilated);
public:
// METHODS - User called
/// Enable debug of internal verilated code
static void debug(int level) VL_MT_SAFE;
#ifdef VL_DEBUG
/// Return debug level
/// When multithreaded this may not immediately react to another thread
/// changing the level (no mutex)
static inline int debug() VL_MT_SAFE { return s_debug; }
#else
/// Return constant 0 debug level, so C++'s optimizer rips up
static constexpr int debug() VL_PURE { return 0; }
#endif
/// Set the last VerilatedContext accessed
/// Generally threadContextp(value) should be called instead
static void lastContextp(VerilatedContext* contextp) VL_MT_SAFE { s_lastContextp = contextp; }
/// Return the last VerilatedContext accessed
/// Generally threadContextp() should be called instead
static VerilatedContext* lastContextp() VL_MT_SAFE {
if (!s_lastContextp) lastContextp(defaultContextp());
return s_lastContextp;
}
/// Set the VerilatedContext used by the current thread
/// If using multiple contexts, and threads are created by the user's
/// wrapper (not Verilator itself) then this must be called to set the
/// context that applies to each thread
static void threadContextp(VerilatedContext* contextp) VL_MT_SAFE {
t_s.t_contextp = contextp;
lastContextp(contextp);
}
/// Return the VerilatedContext for the current thread
static VerilatedContext* threadContextp() {
if (VL_UNLIKELY(!t_s.t_contextp)) t_s.t_contextp = lastContextp();
return t_s.t_contextp;
}
/// Return the global VerilatedContext, used if none created by user
static VerilatedContext* defaultContextp() VL_MT_SAFE {
static VerilatedContext s_s;
return &s_s;
}
#ifndef VL_NO_LEGACY
/// Call VerilatedContext::assertOn using current thread's VerilatedContext
static void assertOn(bool flag) VL_MT_SAFE { Verilated::threadContextp()->assertOn(flag); }
/// Return VerilatedContext::assertOn() using current thread's VerilatedContext
static bool assertOn() VL_MT_SAFE { return Verilated::threadContextp()->assertOn(); }
/// Call VerilatedContext::calcUnusedSigs using current thread's VerilatedContext
static void calcUnusedSigs(bool flag) VL_MT_SAFE {
Verilated::threadContextp()->calcUnusedSigs(flag);
}
/// Return VerilatedContext::calcUnusedSigs using current thread's VerilatedContext
static bool calcUnusedSigs() VL_MT_SAFE {
return Verilated::threadContextp()->calcUnusedSigs();
}
/// Call VerilatedContext::commandArgs using current thread's VerilatedContext
static void commandArgs(int argc, const char** argv) VL_MT_SAFE {
Verilated::threadContextp()->commandArgs(argc, argv);
}
static void commandArgs(int argc, char** argv) VL_MT_SAFE {
commandArgs(argc, const_cast<const char**>(argv));
}
/// Call VerilatedContext::commandArgsAdd using current thread's VerilatedContext
static void commandArgsAdd(int argc, const char** argv) {
Verilated::threadContextp()->commandArgsAdd(argc, argv);
}
/// Return VerilatedContext::commandArgsPlusMatch using current thread's VerilatedContext
static const char* commandArgsPlusMatch(const char* prefixp) VL_MT_SAFE {
return Verilated::threadContextp()->commandArgsPlusMatch(prefixp);
}
/// Call VerilatedContext::errorLimit using current thread's VerilatedContext
static void errorLimit(int val) VL_MT_SAFE { Verilated::threadContextp()->errorLimit(val); }
/// Return VerilatedContext::errorLimit using current thread's VerilatedContext
static int errorLimit() VL_MT_SAFE { return Verilated::threadContextp()->errorLimit(); }
/// Call VerilatedContext::fatalOnError using current thread's VerilatedContext
static void fatalOnError(bool flag) VL_MT_SAFE {
Verilated::threadContextp()->fatalOnError(flag);
}
/// Return VerilatedContext::fatalOnError using current thread's VerilatedContext
static bool fatalOnError() VL_MT_SAFE { return Verilated::threadContextp()->fatalOnError(); }
/// Call VerilatedContext::fatalOnVpiError using current thread's VerilatedContext
static void fatalOnVpiError(bool flag) VL_MT_SAFE {
Verilated::threadContextp()->fatalOnVpiError(flag);
}
/// Return VerilatedContext::fatalOnVpiError using current thread's VerilatedContext
static bool fatalOnVpiError() VL_MT_SAFE {
return Verilated::threadContextp()->fatalOnVpiError();
}
/// Call VerilatedContext::gotError using current thread's VerilatedContext
static void gotError(bool flag) VL_MT_SAFE { Verilated::threadContextp()->gotError(flag); }
/// Return VerilatedContext::gotError using current thread's VerilatedContext
static bool gotError() VL_MT_SAFE { return Verilated::threadContextp()->gotError(); }
/// Call VerilatedContext::gotFinish using current thread's VerilatedContext
static void gotFinish(bool flag) VL_MT_SAFE { Verilated::threadContextp()->gotFinish(flag); }
/// Return VerilatedContext::gotFinish using current thread's VerilatedContext
static bool gotFinish() VL_MT_SAFE { return Verilated::threadContextp()->gotFinish(); }
/// Call VerilatedContext::randReset using current thread's VerilatedContext
static void randReset(int val) VL_MT_SAFE { Verilated::threadContextp()->randReset(val); }
/// Return VerilatedContext::randReset using current thread's VerilatedContext
static int randReset() VL_MT_SAFE { return Verilated::threadContextp()->randReset(); }
/// Call VerilatedContext::randSeed using current thread's VerilatedContext
static void randSeed(int val) VL_MT_SAFE { Verilated::threadContextp()->randSeed(val); }
/// Return VerilatedContext::randSeed using current thread's VerilatedContext
static int randSeed() VL_MT_SAFE { return Verilated::threadContextp()->randSeed(); }
/// Call VerilatedContext::time using current thread's VerilatedContext
static void time(vluint64_t val) VL_MT_SAFE { Verilated::threadContextp()->time(val); }
/// Return VerilatedContext::time using current thread's VerilatedContext
static vluint64_t time() VL_MT_SAFE { return Verilated::threadContextp()->time(); }
/// Call VerilatedContext::timeInc using current thread's VerilatedContext
static void timeInc(vluint64_t add) VL_MT_UNSAFE { Verilated::threadContextp()->timeInc(add); }
// Deprecated
static int timeunit() VL_MT_SAFE { return Verilated::threadContextp()->timeunit(); }
static int timeprecision() VL_MT_SAFE { return Verilated::threadContextp()->timeprecision(); }
/// Call VerilatedContext::tracesEverOn using current thread's VerilatedContext
static void traceEverOn(bool flag) VL_MT_SAFE {
Verilated::threadContextp()->traceEverOn(flag);
}
#endif
/// Callback typedef for addFlushCb, addExitCb
using VoidPCb = void (*)(void*);
/// Add callback to run on global flush
static void addFlushCb(VoidPCb cb, void* datap) VL_MT_SAFE;
/// Remove callback to run on global flush
static void removeFlushCb(VoidPCb cb, void* datap) VL_MT_SAFE;
/// Run flush callbacks registered with addFlushCb
static void runFlushCallbacks() VL_MT_SAFE;
#ifndef VL_NO_LEGACY
static void flushCall() VL_MT_SAFE { runFlushCallbacks(); } // Deprecated
#endif
/// Add callback to run prior to exit termination
static void addExitCb(VoidPCb cb, void* datap) VL_MT_SAFE;
/// Remove callback to run prior to exit termination
static void removeExitCb(VoidPCb cb, void* datap) VL_MT_SAFE;
/// Run exit callbacks registered with addExitCb
static void runExitCallbacks() VL_MT_SAFE;
/// Return product name for (at least) VPI
static const char* productName() VL_PURE;
/// Return product version for (at least) VPI
static const char* productVersion() VL_PURE;
/// Call OS to make a directory
static void mkdir(const char* dirname) VL_MT_UNSAFE;
/// When multithreaded, quiesce the model to prepare for trace/saves/coverage
/// This may only be called when no locks are held.
static void quiesce() VL_MT_SAFE;
#ifndef VL_NO_LEGACY
/// For debugging, print much of the Verilator internal state.
/// The output of this function may change in future
/// releases - contact the authors before production use.
static void internalsDump() VL_MT_SAFE { Verilated::threadContextp()->internalsDump(); }
/// For debugging, print text list of all scope names with
/// dpiImport/Export context. This function may change in future
/// releases - contact the authors before production use.
static void scopesDump() VL_MT_SAFE { Verilated::threadContextp()->scopesDump(); }
// Internal: Find scope
static const VerilatedScope* scopeFind(const char* namep) VL_MT_SAFE {
return Verilated::threadContextp()->scopeFind(namep);
}
static const VerilatedScopeNameMap* scopeNameMap() VL_MT_SAFE {
return Verilated::threadContextp()->scopeNameMap();
}
#endif
public:
// METHODS - INTERNAL USE ONLY (but public due to what uses it)
// Internal: Create a new module name by concatenating two strings
static const char* catName(const char* n1, const char* n2, int scopet = 0,
const char* delimiter = "."); // Returns static data
// Internal: Throw signal assertion
static void nullPointerError(const char* filename, int linenum) VL_ATTR_NORETURN VL_MT_SAFE;
static void overWidthError(const char* signame) VL_ATTR_NORETURN VL_MT_SAFE;
// Internal: Get and set DPI context
static const VerilatedScope* dpiScope() VL_MT_SAFE { return t_s.t_dpiScopep; }
static void dpiScope(const VerilatedScope* scopep) VL_MT_SAFE { t_s.t_dpiScopep = scopep; }
static void dpiContext(const VerilatedScope* scopep, const char* filenamep,
int lineno) VL_MT_SAFE {
t_s.t_dpiScopep = scopep;
t_s.t_dpiFilename = filenamep;
t_s.t_dpiLineno = lineno;
}
static void dpiClearContext() VL_MT_SAFE { t_s.t_dpiScopep = nullptr; }
static bool dpiInContext() VL_MT_SAFE { return t_s.t_dpiScopep != nullptr; }
static const char* dpiFilenamep() VL_MT_SAFE { return t_s.t_dpiFilename; }
static int dpiLineno() VL_MT_SAFE { return t_s.t_dpiLineno; }
static int exportFuncNum(const char* namep) VL_MT_SAFE;
#ifdef VL_THREADED
// Internal: Set the mtaskId, called when an mtask starts
// Per thread, so no need to be in VerilatedContext
static void mtaskId(vluint32_t id) VL_MT_SAFE { t_s.t_mtaskId = id; }
static vluint32_t mtaskId() VL_MT_SAFE { return t_s.t_mtaskId; }
static void endOfEvalReqdInc() VL_MT_SAFE { ++t_s.t_endOfEvalReqd; }
static void endOfEvalReqdDec() VL_MT_SAFE { --t_s.t_endOfEvalReqd; }
// Internal: Called at end of each thread mtask, before finishing eval
static void endOfThreadMTask(VerilatedEvalMsgQueue* evalMsgQp) VL_MT_SAFE {
if (VL_UNLIKELY(t_s.t_endOfEvalReqd)) endOfThreadMTaskGuts(evalMsgQp);
}
// Internal: Called at end of eval loop
static void endOfEval(VerilatedEvalMsgQueue* evalMsgQp) VL_MT_SAFE;
#endif
private:
#ifdef VL_THREADED
static void endOfThreadMTaskGuts(VerilatedEvalMsgQueue* evalMsgQp) VL_MT_SAFE;
#endif
};
inline void VerilatedContext::debug(int val) VL_MT_SAFE { Verilated::debug(val); }
inline int VerilatedContext::debug() VL_MT_SAFE { return Verilated::debug(); }
//=========================================================================
// Extern functions -- User may override -- See verilated.cpp
/// Routine to call for $finish
/// User code may wish to replace this function, to do so, define VL_USER_FINISH.
/// This code does not have to be thread safe.
/// Verilator internal code must call VL_FINISH_MT instead, which eventually calls this.
extern void vl_finish(const char* filename, int linenum, const char* hier);
/// Routine to call for $stop and non-fatal error
/// User code may wish to replace this function, to do so, define VL_USER_STOP.
/// This code does not have to be thread safe.
/// Verilator internal code must call VL_FINISH_MT instead, which eventually calls this.
extern void vl_stop(const char* filename, int linenum, const char* hier);
/// Routine to call for a couple of fatal messages
/// User code may wish to replace this function, to do so, define VL_USER_FATAL.
/// This code does not have to be thread safe.
/// Verilator internal code must call VL_FINISH_MT instead, which eventually calls this.
extern void vl_fatal(const char* filename, int linenum, const char* hier, const char* msg);
//=========================================================================
// Extern functions -- Slow path
/// Multithread safe wrapper for calls to $finish
extern void VL_FINISH_MT(const char* filename, int linenum, const char* hier) VL_MT_SAFE;
/// Multithread safe wrapper for calls to $stop
extern void VL_STOP_MT(const char* filename, int linenum, const char* hier,
bool maybe = true) VL_MT_SAFE;
/// Multithread safe wrapper to call for a couple of fatal messages
extern void VL_FATAL_MT(const char* filename, int linenum, const char* hier,
const char* msg) VL_MT_SAFE;
// clang-format off
/// Print a string, multithread safe. Eventually VL_PRINTF will get called.
#ifdef VL_THREADED
extern void VL_PRINTF_MT(const char* formatp, ...) VL_ATTR_PRINTF(1) VL_MT_SAFE;
#else
# define VL_PRINTF_MT VL_PRINTF // The following parens will take care of themselves
#endif
// clang-format on
/// Print a debug message from internals with standard prefix, with printf style format
extern void VL_DBG_MSGF(const char* formatp, ...) VL_ATTR_PRINTF(1) VL_MT_SAFE;
extern vluint64_t vl_rand64() VL_MT_SAFE;
inline IData VL_RANDOM_I(int obits) VL_MT_SAFE { return vl_rand64() & VL_MASK_I(obits); }
inline QData VL_RANDOM_Q(int obits) VL_MT_SAFE { return vl_rand64() & VL_MASK_Q(obits); }
#ifndef VL_NO_LEGACY
extern WDataOutP VL_RANDOM_W(int obits, WDataOutP outwp);
#endif
extern IData VL_RANDOM_SEEDED_II(int obits, IData seed) VL_MT_SAFE;
inline IData VL_URANDOM_RANGE_I(IData hi, IData lo) {
vluint64_t rnd = vl_rand64();
if (VL_LIKELY(hi > lo)) {
// Modulus isn't very fast but it's common that hi-low is power-of-two
return (rnd % (hi - lo + 1)) + lo;
} else {
return (rnd % (lo - hi + 1)) + hi;
}
}
// These are init time only, so slow is fine
/// Random reset a signal of given width
extern IData VL_RAND_RESET_I(int obits);
/// Random reset a signal of given width
extern QData VL_RAND_RESET_Q(int obits);
/// Random reset a signal of given width
extern WDataOutP VL_RAND_RESET_W(int obits, WDataOutP outwp);
/// Zero reset a signal (slow - else use VL_ZERO_W)
extern WDataOutP VL_ZERO_RESET_W(int obits, WDataOutP outwp);
#if VL_THREADED
/// Return high-precision counter for profiling, or 0x0 if not available
inline QData VL_RDTSC_Q() {
vluint64_t val;
VL_RDTSC(val);
return val;
}
#endif
extern void VL_PRINTTIMESCALE(const char* namep, const char* timeunitp,
const VerilatedContext* contextp) VL_MT_SAFE;
extern WDataOutP _vl_moddiv_w(int lbits, WDataOutP owp, WDataInP lwp, WDataInP rwp,
bool is_modulus);
extern IData VL_FGETS_IXI(int obits, void* destp, IData fpi);
extern void VL_FFLUSH_I(IData fdi);
extern IData VL_FSEEK_I(IData fdi, IData offset, IData origin);
extern IData VL_FTELL_I(IData fdi);
extern void VL_FCLOSE_I(IData fdi);
extern IData VL_FREAD_I(int width, int array_lsb, int array_size, void* memp, IData fpi,
IData start, IData count);
extern void VL_WRITEF(const char* formatp, ...);
extern void VL_FWRITEF(IData fpi, const char* formatp, ...);
extern IData VL_FSCANF_IX(IData fpi, const char* formatp, ...);
extern IData VL_SSCANF_IIX(int lbits, IData ld, const char* formatp, ...);
extern IData VL_SSCANF_IQX(int lbits, QData ld, const char* formatp, ...);
extern IData VL_SSCANF_IWX(int lbits, WDataInP lwp, const char* formatp, ...);
extern void VL_SFORMAT_X(int obits, CData& destr, const char* formatp, ...);
extern void VL_SFORMAT_X(int obits, SData& destr, const char* formatp, ...);
extern void VL_SFORMAT_X(int obits, IData& destr, const char* formatp, ...);
extern void VL_SFORMAT_X(int obits, QData& destr, const char* formatp, ...);
extern void VL_SFORMAT_X(int obits, void* destp, const char* formatp, ...);
extern IData VL_SYSTEM_IW(int lhswords, WDataInP lhsp);
extern IData VL_SYSTEM_IQ(QData lhs);
inline IData VL_SYSTEM_II(IData lhs) VL_MT_SAFE { return VL_SYSTEM_IQ(lhs); }
extern IData VL_TESTPLUSARGS_I(const char* formatp);
extern const char* vl_mc_scan_plusargs(const char* prefixp); // PLIish
//=========================================================================
// Base macros
// Return true if data[bit] set; not 0/1 return, but 0/non-zero return.
#define VL_BITISSET_I(data, bit) ((data) & (VL_UL(1) << VL_BITBIT_I(bit)))
#define VL_BITISSET_Q(data, bit) ((data) & (1ULL << VL_BITBIT_Q(bit)))
#define VL_BITISSET_E(data, bit) ((data) & (VL_EUL(1) << VL_BITBIT_E(bit)))
#define VL_BITISSET_W(data, bit) ((data)[VL_BITWORD_E(bit)] & (VL_EUL(1) << VL_BITBIT_E(bit)))
#define VL_BITISSETLIMIT_W(data, width, bit) (((bit) < (width)) && VL_BITISSET_W(data, bit))
// Shift appropriate word by bit. Does not account for wrapping between two words
#define VL_BITRSHIFT_W(data, bit) ((data)[VL_BITWORD_E(bit)] >> VL_BITBIT_E(bit))
// Create two 32-bit words from quadword
// WData is always at least 2 words; does not clean upper bits
#define VL_SET_WQ(owp, data) \
do { \
(owp)[0] = static_cast<IData>(data); \
(owp)[1] = static_cast<IData>((data) >> VL_EDATASIZE); \
} while (false)
#define VL_SET_WI(owp, data) \
do { \
(owp)[0] = static_cast<IData>(data); \
(owp)[1] = 0; \
} while (false)
#define VL_SET_QW(lwp) \
((static_cast<QData>((lwp)[0])) \
| (static_cast<QData>((lwp)[1]) << (static_cast<QData>(VL_EDATASIZE))))
#define VL_SET_QII(ld, rd) ((static_cast<QData>(ld) << 32ULL) | static_cast<QData>(rd))
// Return FILE* from IData
extern FILE* VL_CVT_I_FP(IData lhs) VL_MT_SAFE;
// clang-format off
// Use a union to avoid cast-to-different-size warnings
// Return void* from QData
static inline void* VL_CVT_Q_VP(QData lhs) VL_PURE {
union { void* fp; QData q; } u;
u.q = lhs;
return u.fp;
}
// Return QData from const void*
static inline QData VL_CVT_VP_Q(const void* fp) VL_PURE {
union { const void* fp; QData q; } u;
u.q = 0;
u.fp = fp;
return u.q;
}
// Return double from QData (bits, not numerically)
static inline double VL_CVT_D_Q(QData lhs) VL_PURE {
union { double d; QData q; } u;
u.q = lhs;
return u.d;
}
// Return QData from double (bits, not numerically)
static inline QData VL_CVT_Q_D(double lhs) VL_PURE {
union { double d; QData q; } u;
u.d = lhs;
return u.q;
}
// clang-format on
// Return double from lhs (numeric) unsigned
double VL_ITOR_D_W(int lbits, WDataInP lwp) VL_PURE;
static inline double VL_ITOR_D_I(int, IData lhs) VL_PURE {
return static_cast<double>(static_cast<vluint32_t>(lhs));
}
static inline double VL_ITOR_D_Q(int, QData lhs) VL_PURE {
return static_cast<double>(static_cast<vluint64_t>(lhs));
}
// Return double from lhs (numeric) signed
double VL_ISTOR_D_W(int lbits, WDataInP lwp) VL_PURE;
static inline double VL_ISTOR_D_I(int lbits, IData lhs) VL_PURE {
if (lbits == 32) return static_cast<double>(static_cast<vlsint32_t>(lhs));
WData lwp[VL_WQ_WORDS_E];
VL_SET_WI(lwp, lhs);
return VL_ISTOR_D_W(lbits, lwp);
}
static inline double VL_ISTOR_D_Q(int lbits, QData lhs) VL_PURE {
if (lbits == 64) return static_cast<double>(static_cast<vlsint64_t>(lhs));
WData lwp[VL_WQ_WORDS_E];
VL_SET_WQ(lwp, lhs);
return VL_ISTOR_D_W(lbits, lwp);
}
// Return QData from double (numeric)
static inline IData VL_RTOI_I_D(double lhs) VL_PURE {
return static_cast<vlsint32_t>(VL_TRUNC(lhs));
}
// Sign extend such that if MSB set, we get ffff_ffff, else 0s
// (Requires clean input)
#define VL_SIGN_I(nbits, lhs) ((lhs) >> VL_BITBIT_I((nbits)-VL_UL(1)))
#define VL_SIGN_Q(nbits, lhs) ((lhs) >> VL_BITBIT_Q((nbits)-1ULL))
#define VL_SIGN_E(nbits, lhs) ((lhs) >> VL_BITBIT_E((nbits)-VL_EUL(1)))
#define VL_SIGN_W(nbits, rwp) \
((rwp)[VL_BITWORD_E((nbits)-VL_EUL(1))] >> VL_BITBIT_E((nbits)-VL_EUL(1)))
#define VL_SIGNONES_E(nbits, lhs) (-(VL_SIGN_E(nbits, lhs)))
// Sign bit extended up to MSB, doesn't include unsigned portion
// Optimization bug in GCC 3.3 returns different bitmasks to later states for
static inline IData VL_EXTENDSIGN_I(int lbits, IData lhs) VL_PURE {
return (-((lhs) & (VL_UL(1) << (lbits - 1))));
}
static inline QData VL_EXTENDSIGN_Q(int lbits, QData lhs) VL_PURE {
return (-((lhs) & (1ULL << (lbits - 1))));
}
// Debugging prints
extern void _vl_debug_print_w(int lbits, WDataInP iwp);
//=========================================================================
// Pli macros
extern int VL_TIME_STR_CONVERT(const char* strp) VL_PURE;
// These are deprecated and used only to establish the default precision/units.
// Use Verilator timescale-override for better control.
// clang-format off
#ifndef VL_TIME_PRECISION
# ifdef VL_TIME_PRECISION_STR
# define VL_TIME_PRECISION VL_TIME_STR_CONVERT(VL_STRINGIFY(VL_TIME_PRECISION_STR))
# else
# define VL_TIME_PRECISION (-12) ///< Timescale default units if not in Verilog - picoseconds
# endif
#endif
#ifndef VL_TIME_UNIT
# ifdef VL_TIME_UNIT_STR
# define VL_TIME_UNIT VL_TIME_STR_CONVERT(VL_STRINGIFY(VL_TIME_PRECISION_STR))
# else
# define VL_TIME_UNIT (-12) ///< Timescale default units if not in Verilog - picoseconds
# endif
#endif
#if defined(SYSTEMC_VERSION)
/// Return current simulation time
// Already defined: extern sc_time sc_time_stamp();
inline vluint64_t vl_time_stamp64() { return sc_time_stamp().value(); }
#else // Non-SystemC
# if !defined(VL_TIME_CONTEXT) && !defined(VL_NO_LEGACY)
# ifdef VL_TIME_STAMP64
// vl_time_stamp64() may be optionally defined by the user to return time.
// On MSVC++ weak symbols are not supported so must be declared, or define
// VL_TIME_CONTEXT.
extern vluint64_t vl_time_stamp64() VL_ATTR_WEAK;
# else
// sc_time_stamp() may be optionally defined by the user to return time.
// On MSVC++ weak symbols are not supported so must be declared, or define
// VL_TIME_CONTEXT.
extern double sc_time_stamp() VL_ATTR_WEAK; // Verilator 4.032 and newer
inline vluint64_t vl_time_stamp64() {
// clang9.0.1 requires & although we really do want the weak symbol value
return VL_LIKELY(&sc_time_stamp) ? static_cast<vluint64_t>(sc_time_stamp()) : 0;
}
# endif
# endif
#endif
inline vluint64_t VerilatedContext::time() const VL_MT_SAFE {
// When using non-default context, fastest path is return time
if (VL_LIKELY(m_s.m_time)) return m_s.m_time;
#if defined(SYSTEMC_VERSION) || (!defined(VL_TIME_CONTEXT) && !defined(VL_NO_LEGACY))
// Zero time could mean really at zero, or using callback
// clang9.0.1 requires & although we really do want the weak symbol value
if (VL_LIKELY(&vl_time_stamp64)) { // else is weak symbol that is not defined
return vl_time_stamp64();
}
#endif
return 0;
}
#define VL_TIME_Q() (Verilated::threadContextp()->time())
#define VL_TIME_D() (static_cast<double>(VL_TIME_Q()))
// Time scaled from 1-per-precision into a module's time units ("Unit"-ed, not "United")
// Optimized assuming scale is always constant.
// Can't use multiply in Q flavor, as might lose precision
#define VL_TIME_UNITED_Q(scale) (VL_TIME_Q() / static_cast<QData>(scale))
#define VL_TIME_UNITED_D(scale) (VL_TIME_D() / static_cast<double>(scale))
// Return time precision as multiplier of time units
double vl_time_multiplier(int scale) VL_PURE;
// Return power of 10. e.g. returns 100 if n==2
vluint64_t vl_time_pow10(int n) VL_PURE;
#ifdef VL_DEBUG
/// Evaluate statement if Verilated::debug() enabled
# define VL_DEBUG_IF(stmt) \
do { \
if (VL_UNLIKELY(Verilated::debug())) {stmt} \
} while (false)
#else
// We intentionally do not compile the stmt to improve compile speed
# define VL_DEBUG_IF(stmt) do {} while (false)
#endif
// clang-format on
//=========================================================================
// Functional macros/routines
// These all take the form
// VL_func_IW(bits, bits, op, op)
// VL_func_WW(bits, bits, out, op, op)
// The I/W indicates if it's a integer or wide for the output and each operand.
// The bits indicate the bit width of the output and each operand.
// If wide output, a temporary storage location is specified.
//===================================================================
// SETTING OPERATORS
// Output clean
// EMIT_RULE: VL_CLEAN: oclean=clean; obits=lbits;
#define VL_CLEAN_II(obits, lbits, lhs) ((lhs)&VL_MASK_I(obits))
#define VL_CLEAN_QQ(obits, lbits, lhs) ((lhs)&VL_MASK_Q(obits))
// EMIT_RULE: VL_ASSIGNCLEAN: oclean=clean; obits==lbits;
#define VL_ASSIGNCLEAN_W(obits, owp, lwp) VL_CLEAN_WW((obits), (obits), (owp), (lwp))
static inline WDataOutP _vl_clean_inplace_w(int obits, WDataOutP owp) VL_MT_SAFE {
int words = VL_WORDS_I(obits);
owp[words - 1] &= VL_MASK_E(obits);
return owp;
}
static inline WDataOutP VL_CLEAN_WW(int obits, int, WDataOutP owp, WDataInP lwp) VL_MT_SAFE {
int words = VL_WORDS_I(obits);
for (int i = 0; (i < (words - 1)); ++i) owp[i] = lwp[i];
owp[words - 1] = lwp[words - 1] & VL_MASK_E(obits);
return owp;
}
static inline WDataOutP VL_ZERO_W(int obits, WDataOutP owp) VL_MT_SAFE {
int words = VL_WORDS_I(obits);
for (int i = 0; i < words; ++i) owp[i] = 0;
return owp;
}
static inline WDataOutP VL_ALLONES_W(int obits, WDataOutP owp) VL_MT_SAFE {
int words = VL_WORDS_I(obits);
for (int i = 0; i < (words - 1); ++i) owp[i] = ~VL_EUL(0);
owp[words - 1] = VL_MASK_E(obits);
return owp;
}
// EMIT_RULE: VL_ASSIGN: oclean=rclean; obits==lbits;
// For now, we always have a clean rhs.
// Note: If a ASSIGN isn't clean, use VL_ASSIGNCLEAN instead to do the same thing.
static inline WDataOutP VL_ASSIGN_W(int obits, WDataOutP owp, WDataInP lwp) VL_MT_SAFE {
int words = VL_WORDS_I(obits);
for (int i = 0; i < words; ++i) owp[i] = lwp[i];
return owp;
}
// EMIT_RULE: VL_ASSIGNBIT: rclean=clean;
static inline void VL_ASSIGNBIT_II(int, int bit, CData& lhsr, IData rhs) VL_PURE {
lhsr = ((lhsr & ~(VL_UL(1) << VL_BITBIT_I(bit))) | (rhs << VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_II(int, int bit, SData& lhsr, IData rhs) VL_PURE {
lhsr = ((lhsr & ~(VL_UL(1) << VL_BITBIT_I(bit))) | (rhs << VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_II(int, int bit, IData& lhsr, IData rhs) VL_PURE {
lhsr = ((lhsr & ~(VL_UL(1) << VL_BITBIT_I(bit))) | (rhs << VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_QI(int, int bit, QData& lhsr, QData rhs) VL_PURE {
lhsr = ((lhsr & ~(1ULL << VL_BITBIT_Q(bit))) | (static_cast<QData>(rhs) << VL_BITBIT_Q(bit)));
}
static inline void VL_ASSIGNBIT_WI(int, int bit, WDataOutP owp, IData rhs) VL_MT_SAFE {
EData orig = owp[VL_BITWORD_E(bit)];
owp[VL_BITWORD_E(bit)] = ((orig & ~(VL_EUL(1) << VL_BITBIT_E(bit)))
| (static_cast<EData>(rhs) << VL_BITBIT_E(bit)));
}
// Alternative form that is an instruction faster when rhs is constant one.
static inline void VL_ASSIGNBIT_IO(int, int bit, CData& lhsr, IData) VL_PURE {
lhsr = (lhsr | (VL_UL(1) << VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_IO(int, int bit, SData& lhsr, IData) VL_PURE {
lhsr = (lhsr | (VL_UL(1) << VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_IO(int, int bit, IData& lhsr, IData) VL_PURE {
lhsr = (lhsr | (VL_UL(1) << VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_QO(int, int bit, QData& lhsr, IData) VL_PURE {
lhsr = (lhsr | (1ULL << VL_BITBIT_Q(bit)));
}
static inline void VL_ASSIGNBIT_WO(int, int bit, WDataOutP owp, IData) VL_MT_SAFE {
EData orig = owp[VL_BITWORD_E(bit)];
owp[VL_BITWORD_E(bit)] = (orig | (VL_EUL(1) << VL_BITBIT_E(bit)));
}
//===================================================================
// SYSTEMC OPERATORS
// Copying verilog format to systemc integers and bit vectors.
// Get a SystemC variable
#define VL_ASSIGN_ISI(obits, vvar, svar) \
{ (vvar) = VL_CLEAN_II((obits), (obits), (svar).read()); }
#define VL_ASSIGN_QSQ(obits, vvar, svar) \
{ (vvar) = VL_CLEAN_QQ((obits), (obits), (svar).read()); }
#define VL_ASSIGN_ISW(obits, od, svar) \
{ (od) = ((svar).read().get_word(0)) & VL_MASK_I(obits); }
#define VL_ASSIGN_QSW(obits, od, svar) \
{ \
(od) = ((static_cast<QData>((svar).read().get_word(1))) << VL_IDATASIZE \
| (svar).read().get_word(0)) \
& VL_MASK_Q(obits); \
}
#define VL_ASSIGN_WSW(obits, owp, svar) \
{ \
int words = VL_WORDS_I(obits); \
for (int i = 0; i < words; ++i) (owp)[i] = (svar).read().get_word(i); \
(owp)[words - 1] &= VL_MASK_E(obits); \
}
#define VL_ASSIGN_ISU(obits, vvar, svar) \
{ (vvar) = VL_CLEAN_II((obits), (obits), (svar).read().to_uint()); }
#define VL_ASSIGN_QSU(obits, vvar, svar) \
{ (vvar) = VL_CLEAN_QQ((obits), (obits), (svar).read().to_uint64()); }
#define VL_ASSIGN_WSB(obits, owp, svar) \
{ \
int words = VL_WORDS_I(obits); \
sc_biguint<(obits)> _butemp = (svar).read(); \
for (int i = 0; i < words; ++i) { \
int msb = ((i + 1) * VL_IDATASIZE) - 1; \
msb = (msb >= (obits)) ? ((obits)-1) : msb; \
(owp)[i] = _butemp.range(msb, i * VL_IDATASIZE).to_uint(); \
} \
(owp)[words - 1] &= VL_MASK_E(obits); \
}
// Copying verilog format from systemc integers and bit vectors.
// Set a SystemC variable
#define VL_ASSIGN_SII(obits, svar, vvar) \
{ (svar).write(vvar); }
#define VL_ASSIGN_SQQ(obits, svar, vvar) \
{ (svar).write(vvar); }
#define VL_ASSIGN_SWI(obits, svar, rd) \
{ \
sc_bv<(obits)> _bvtemp; \
_bvtemp.set_word(0, (rd)); \
(svar).write(_bvtemp); \
}
#define VL_ASSIGN_SWQ(obits, svar, rd) \
{ \
sc_bv<(obits)> _bvtemp; \
_bvtemp.set_word(0, static_cast<IData>(rd)); \
_bvtemp.set_word(1, static_cast<IData>((rd) >> VL_IDATASIZE)); \
(svar).write(_bvtemp); \
}
#define VL_ASSIGN_SWW(obits, svar, rwp) \
{ \
sc_bv<(obits)> _bvtemp; \
for (int i = 0; i < VL_WORDS_I(obits); ++i) _bvtemp.set_word(i, (rwp)[i]); \
(svar).write(_bvtemp); \
}
#define VL_ASSIGN_SUI(obits, svar, rd) \
{ (svar).write(rd); }
#define VL_ASSIGN_SUQ(obits, svar, rd) \
{ (svar).write(rd); }
#define VL_ASSIGN_SBI(obits, svar, rd) \
{ (svar).write(rd); }
#define VL_ASSIGN_SBQ(obits, svar, rd) \
{ (svar).write(rd); }
#define VL_ASSIGN_SBW(obits, svar, rwp) \
{ \
sc_biguint<(obits)> _butemp; \
for (int i = 0; i < VL_WORDS_I(obits); ++i) { \
int msb = ((i + 1) * VL_IDATASIZE) - 1; \
msb = (msb >= (obits)) ? ((obits)-1) : msb; \
_butemp.range(msb, i* VL_IDATASIZE) = (rwp)[i]; \
} \
(svar).write(_butemp); \
}
//===================================================================
// Extending sizes
// CAREFUL, we're width changing, so obits!=lbits
// Right must be clean because otherwise size increase would pick up bad bits
// EMIT_RULE: VL_EXTEND: oclean=clean; rclean==clean;
#define VL_EXTEND_II(obits, lbits, lhs) ((lhs))
#define VL_EXTEND_QI(obits, lbits, lhs) (static_cast<QData>(lhs))
#define VL_EXTEND_QQ(obits, lbits, lhs) ((lhs))
static inline WDataOutP VL_EXTEND_WI(int obits, int, WDataOutP owp, IData ld) VL_MT_SAFE {
// Note for extracts that obits != lbits
owp[0] = ld;
for (int i = 1; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
return owp;
}
static inline WDataOutP VL_EXTEND_WQ(int obits, int, WDataOutP owp, QData ld) VL_MT_SAFE {
VL_SET_WQ(owp, ld);
for (int i = VL_WQ_WORDS_E; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
return owp;
}
static inline WDataOutP VL_EXTEND_WW(int obits, int lbits, WDataOutP owp,
WDataInP lwp) VL_MT_SAFE {
for (int i = 0; i < VL_WORDS_I(lbits); ++i) owp[i] = lwp[i];
for (int i = VL_WORDS_I(lbits); i < VL_WORDS_I(obits); ++i) owp[i] = 0;
return owp;
}
// EMIT_RULE: VL_EXTENDS: oclean=*dirty*; obits=lbits;
// Sign extension; output dirty
static inline IData VL_EXTENDS_II(int, int lbits, IData lhs) VL_PURE {
return VL_EXTENDSIGN_I(lbits, lhs) | lhs;
}
static inline QData VL_EXTENDS_QI(int, int lbits, QData lhs /*Q_as_need_extended*/) VL_PURE {
return VL_EXTENDSIGN_Q(lbits, lhs) | lhs;
}
static inline QData VL_EXTENDS_QQ(int, int lbits, QData lhs) VL_PURE {
return VL_EXTENDSIGN_Q(lbits, lhs) | lhs;
}
static inline WDataOutP VL_EXTENDS_WI(int obits, int lbits, WDataOutP owp, IData ld) VL_MT_SAFE {
EData sign = VL_SIGNONES_E(lbits, static_cast<EData>(ld));
owp[0] = ld | (sign & ~VL_MASK_E(lbits));
for (int i = 1; i < VL_WORDS_I(obits); ++i) owp[i] = sign;
return owp;
}
static inline WDataOutP VL_EXTENDS_WQ(int obits, int lbits, WDataOutP owp, QData ld) VL_MT_SAFE {
VL_SET_WQ(owp, ld);
EData sign = VL_SIGNONES_E(lbits, owp[1]);
owp[1] |= sign & ~VL_MASK_E(lbits);
for (int i = VL_WQ_WORDS_E; i < VL_WORDS_I(obits); ++i) owp[i] = sign;
return owp;
}
static inline WDataOutP VL_EXTENDS_WW(int obits, int lbits, WDataOutP owp,
WDataInP lwp) VL_MT_SAFE {
for (int i = 0; i < VL_WORDS_I(lbits) - 1; ++i) owp[i] = lwp[i];
int lmsw = VL_WORDS_I(lbits) - 1;
EData sign = VL_SIGNONES_E(lbits, lwp[lmsw]);
owp[lmsw] = lwp[lmsw] | (sign & ~VL_MASK_E(lbits));
for (int i = VL_WORDS_I(lbits); i < VL_WORDS_I(obits); ++i) owp[i] = sign;
return owp;
}
//===================================================================
// REDUCTION OPERATORS
// EMIT_RULE: VL_REDAND: oclean=clean; lclean==clean; obits=1;
#define VL_REDAND_II(obits, lbits, lhs) ((lhs) == VL_MASK_I(lbits))
#define VL_REDAND_IQ(obits, lbits, lhs) ((lhs) == VL_MASK_Q(lbits))
static inline IData VL_REDAND_IW(int, int lbits, WDataInP lwp) VL_MT_SAFE {
int words = VL_WORDS_I(lbits);
EData combine = lwp[0];
for (int i = 1; i < words - 1; ++i) combine &= lwp[i];
combine &= ~VL_MASK_E(lbits) | lwp[words - 1];
return ((~combine) == 0);
}
// EMIT_RULE: VL_REDOR: oclean=clean; lclean==clean; obits=1;
#define VL_REDOR_I(lhs) ((lhs) != 0)
#define VL_REDOR_Q(lhs) ((lhs) != 0)
static inline IData VL_REDOR_W(int words, WDataInP lwp) VL_MT_SAFE {
EData equal = 0;
for (int i = 0; i < words; ++i) equal |= lwp[i];
return (equal != 0);
}
// EMIT_RULE: VL_REDXOR: oclean=dirty; obits=1;
static inline IData VL_REDXOR_2(IData r) VL_PURE {
// Experiments show VL_REDXOR_2 is faster than __builtin_parityl
r = (r ^ (r >> 1));
return r;
}
static inline IData VL_REDXOR_4(IData r) VL_PURE {
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
return __builtin_parityl(r);
#else
r = (r ^ (r >> 1));
r = (r ^ (r >> 2));
return r;
#endif
}
static inline IData VL_REDXOR_8(IData r) VL_PURE {
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
return __builtin_parityl(r);
#else
r = (r ^ (r >> 1));
r = (r ^ (r >> 2));
r = (r ^ (r >> 4));
return r;
#endif
}
static inline IData VL_REDXOR_16(IData r) VL_PURE {
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
return __builtin_parityl(r);
#else
r = (r ^ (r >> 1));
r = (r ^ (r >> 2));
r = (r ^ (r >> 4));
r = (r ^ (r >> 8));
return r;
#endif
}
static inline IData VL_REDXOR_32(IData r) VL_PURE {
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
return __builtin_parityl(r);
#else
r = (r ^ (r >> 1));
r = (r ^ (r >> 2));
r = (r ^ (r >> 4));
r = (r ^ (r >> 8));
r = (r ^ (r >> 16));
return r;
#endif
}
static inline IData VL_REDXOR_64(QData r) VL_PURE {
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
return __builtin_parityll(r);
#else
r = (r ^ (r >> 1));
r = (r ^ (r >> 2));
r = (r ^ (r >> 4));
r = (r ^ (r >> 8));
r = (r ^ (r >> 16));
r = (r ^ (r >> 32));
return static_cast<IData>(r);
#endif
}
static inline IData VL_REDXOR_W(int words, WDataInP lwp) VL_MT_SAFE {
EData r = lwp[0];
for (int i = 1; i < words; ++i) r ^= lwp[i];
return VL_REDXOR_32(r);
}
// EMIT_RULE: VL_COUNTONES_II: oclean = false; lhs clean
static inline IData VL_COUNTONES_I(IData lhs) VL_PURE {
// This is faster than __builtin_popcountl
IData r = lhs - ((lhs >> 1) & 033333333333) - ((lhs >> 2) & 011111111111);
r = (r + (r >> 3)) & 030707070707;
r = (r + (r >> 6));
r = (r + (r >> 12) + (r >> 24)) & 077;
return r;
}
static inline IData VL_COUNTONES_Q(QData lhs) VL_PURE {
return VL_COUNTONES_I(static_cast<IData>(lhs)) + VL_COUNTONES_I(static_cast<IData>(lhs >> 32));
}
#define VL_COUNTONES_E VL_COUNTONES_I
static inline IData VL_COUNTONES_W(int words, WDataInP lwp) VL_MT_SAFE {
EData r = 0;
for (int i = 0; i < words; ++i) r += VL_COUNTONES_E(lwp[i]);
return r;
}
// EMIT_RULE: VL_COUNTBITS_II: oclean = false; lhs clean
static inline IData VL_COUNTBITS_I(int lbits, IData lhs, IData ctrl0, IData ctrl1,
IData ctrl2) VL_PURE {
int ctrlSum = (ctrl0 & 0x1) + (ctrl1 & 0x1) + (ctrl2 & 0x1);
if (ctrlSum == 3) {
return VL_COUNTONES_I(lhs);
} else if (ctrlSum == 0) {
IData mask = (lbits == 32) ? -1 : ((1 << lbits) - 1);
return VL_COUNTONES_I(~lhs & mask);
} else {
return (lbits == 32) ? 32 : lbits;
}
}
static inline IData VL_COUNTBITS_Q(int lbits, QData lhs, IData ctrl0, IData ctrl1,
IData ctrl2) VL_PURE {
return VL_COUNTBITS_I(32, static_cast<IData>(lhs), ctrl0, ctrl1, ctrl2)
+ VL_COUNTBITS_I(lbits - 32, static_cast<IData>(lhs >> 32), ctrl0, ctrl1, ctrl2);
}
#define VL_COUNTBITS_E VL_COUNTBITS_I
static inline IData VL_COUNTBITS_W(int lbits, int words, WDataInP lwp, IData ctrl0, IData ctrl1,
IData ctrl2) VL_MT_SAFE {
EData r = 0;
IData wordLbits = 32;
for (int i = 0; i < words; ++i) {
if (i == words - 1) wordLbits = lbits % 32;
r += VL_COUNTBITS_E(wordLbits, lwp[i], ctrl0, ctrl1, ctrl2);
}
return r;
}
static inline IData VL_ONEHOT_I(IData lhs) VL_PURE {
return (((lhs & (lhs - 1)) == 0) & (lhs != 0));
}
static inline IData VL_ONEHOT_Q(QData lhs) VL_PURE {
return (((lhs & (lhs - 1)) == 0) & (lhs != 0));
}
static inline IData VL_ONEHOT_W(int words, WDataInP lwp) VL_MT_SAFE {
EData one = 0;
for (int i = 0; (i < words); ++i) {
if (lwp[i]) {
if (one) return 0;
one = 1;
if (lwp[i] & (lwp[i] - 1)) return 0;
}
}
return one;
}
static inline IData VL_ONEHOT0_I(IData lhs) VL_PURE { return ((lhs & (lhs - 1)) == 0); }
static inline IData VL_ONEHOT0_Q(QData lhs) VL_PURE { return ((lhs & (lhs - 1)) == 0); }
static inline IData VL_ONEHOT0_W(int words, WDataInP lwp) VL_MT_SAFE {
bool one = false;
for (int i = 0; (i < words); ++i) {
if (lwp[i]) {
if (one) return 0;
one = true;
if (lwp[i] & (lwp[i] - 1)) return 0;
}
}
return 1;
}
static inline IData VL_CLOG2_I(IData lhs) VL_PURE {
// There are faster algorithms, or fls GCC4 builtins, but rarely used
if (VL_UNLIKELY(!lhs)) return 0;
lhs--;
int shifts = 0;
for (; lhs != 0; ++shifts) lhs = lhs >> 1;
return shifts;
}
static inline IData VL_CLOG2_Q(QData lhs) VL_PURE {
if (VL_UNLIKELY(!lhs)) return 0;
lhs--;
int shifts = 0;
for (; lhs != 0; ++shifts) lhs = lhs >> 1ULL;
return shifts;
}
static inline IData VL_CLOG2_W(int words, WDataInP lwp) VL_MT_SAFE {
EData adjust = (VL_COUNTONES_W(words, lwp) == 1) ? 0 : 1;
for (int i = words - 1; i >= 0; --i) {
if (VL_UNLIKELY(lwp[i])) { // Shorter worst case if predict not taken
for (int bit = VL_EDATASIZE - 1; bit >= 0; --bit) {
if (VL_UNLIKELY(VL_BITISSET_E(lwp[i], bit))) {
return i * VL_EDATASIZE + bit + adjust;
}
}
// Can't get here - one bit must be set
}
}
return 0;
}
static inline IData VL_MOSTSETBITP1_W(int words, WDataInP lwp) VL_MT_SAFE {
// MSB set bit plus one; similar to FLS. 0=value is zero
for (int i = words - 1; i >= 0; --i) {
if (VL_UNLIKELY(lwp[i])) { // Shorter worst case if predict not taken
for (int bit = VL_EDATASIZE - 1; bit >= 0; --bit) {
if (VL_UNLIKELY(VL_BITISSET_E(lwp[i], bit))) return i * VL_EDATASIZE + bit + 1;
}
// Can't get here - one bit must be set
}
}
return 0;
}
//===================================================================
// SIMPLE LOGICAL OPERATORS
// EMIT_RULE: VL_AND: oclean=lclean||rclean; obits=lbits; lbits==rbits;
static inline WDataOutP VL_AND_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
for (int i = 0; (i < words); ++i) owp[i] = (lwp[i] & rwp[i]);
return owp;
}
// EMIT_RULE: VL_OR: oclean=lclean&&rclean; obits=lbits; lbits==rbits;
static inline WDataOutP VL_OR_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
for (int i = 0; (i < words); ++i) owp[i] = (lwp[i] | rwp[i]);
return owp;
}
// EMIT_RULE: VL_CHANGEXOR: oclean=1; obits=32; lbits==rbits;
static inline IData VL_CHANGEXOR_W(int words, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
IData od = 0;
for (int i = 0; (i < words); ++i) od |= (lwp[i] ^ rwp[i]);
return od;
}
// EMIT_RULE: VL_XOR: oclean=lclean&&rclean; obits=lbits; lbits==rbits;
static inline WDataOutP VL_XOR_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
for (int i = 0; (i < words); ++i) owp[i] = (lwp[i] ^ rwp[i]);
return owp;
}
// EMIT_RULE: VL_NOT: oclean=dirty; obits=lbits;
static inline WDataOutP VL_NOT_W(int words, WDataOutP owp, WDataInP lwp) VL_MT_SAFE {
for (int i = 0; i < words; ++i) owp[i] = ~(lwp[i]);
return owp;
}
//=========================================================================
// Logical comparisons
// EMIT_RULE: VL_EQ: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
// EMIT_RULE: VL_NEQ: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
// EMIT_RULE: VL_LT: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
// EMIT_RULE: VL_GT: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
// EMIT_RULE: VL_GTE: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
// EMIT_RULE: VL_LTE: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
#define VL_NEQ_W(words, lwp, rwp) (!VL_EQ_W(words, lwp, rwp))
#define VL_LT_W(words, lwp, rwp) (_vl_cmp_w(words, lwp, rwp) < 0)
#define VL_LTE_W(words, lwp, rwp) (_vl_cmp_w(words, lwp, rwp) <= 0)
#define VL_GT_W(words, lwp, rwp) (_vl_cmp_w(words, lwp, rwp) > 0)
#define VL_GTE_W(words, lwp, rwp) (_vl_cmp_w(words, lwp, rwp) >= 0)
// Output clean, <lhs> AND <rhs> MUST BE CLEAN
static inline IData VL_EQ_W(int words, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
EData nequal = 0;
for (int i = 0; (i < words); ++i) nequal |= (lwp[i] ^ rwp[i]);
return (nequal == 0);
}
// Internal usage
static inline int _vl_cmp_w(int words, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
for (int i = words - 1; i >= 0; --i) {
if (lwp[i] > rwp[i]) return 1;
if (lwp[i] < rwp[i]) return -1;
}
return 0; // ==
}
#define VL_LTS_IWW(obits, lbits, rbbits, lwp, rwp) (_vl_cmps_w(lbits, lwp, rwp) < 0)
#define VL_LTES_IWW(obits, lbits, rbits, lwp, rwp) (_vl_cmps_w(lbits, lwp, rwp) <= 0)
#define VL_GTS_IWW(obits, lbits, rbits, lwp, rwp) (_vl_cmps_w(lbits, lwp, rwp) > 0)
#define VL_GTES_IWW(obits, lbits, rbits, lwp, rwp) (_vl_cmps_w(lbits, lwp, rwp) >= 0)
static inline IData VL_GTS_III(int, int lbits, int, IData lhs, IData rhs) VL_PURE {
// For lbits==32, this becomes just a single instruction, otherwise ~5.
// GCC 3.3.4 sign extension bugs on AMD64 architecture force us to use quad logic
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); // Q for gcc
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); // Q for gcc
return lhs_signed > rhs_signed;
}
static inline IData VL_GTS_IQQ(int, int lbits, int, QData lhs, QData rhs) VL_PURE {
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
return lhs_signed > rhs_signed;
}
static inline IData VL_GTES_III(int, int lbits, int, IData lhs, IData rhs) VL_PURE {
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); // Q for gcc
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); // Q for gcc
return lhs_signed >= rhs_signed;
}
static inline IData VL_GTES_IQQ(int, int lbits, int, QData lhs, QData rhs) VL_PURE {
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
return lhs_signed >= rhs_signed;
}
static inline IData VL_LTS_III(int, int lbits, int, IData lhs, IData rhs) VL_PURE {
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); // Q for gcc
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); // Q for gcc
return lhs_signed < rhs_signed;
}
static inline IData VL_LTS_IQQ(int, int lbits, int, QData lhs, QData rhs) VL_PURE {
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
return lhs_signed < rhs_signed;
}
static inline IData VL_LTES_III(int, int lbits, int, IData lhs, IData rhs) VL_PURE {
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); // Q for gcc
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); // Q for gcc
return lhs_signed <= rhs_signed;
}
static inline IData VL_LTES_IQQ(int, int lbits, int, QData lhs, QData rhs) VL_PURE {
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
return lhs_signed <= rhs_signed;
}
static inline int _vl_cmps_w(int lbits, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
int words = VL_WORDS_I(lbits);
int i = words - 1;
// We need to flip sense if negative comparison
EData lsign = VL_SIGN_E(lbits, lwp[i]);
EData rsign = VL_SIGN_E(lbits, rwp[i]);
if (!lsign && rsign) return 1; // + > -
if (lsign && !rsign) return -1; // - < +
for (; i >= 0; --i) {
if (lwp[i] > rwp[i]) return 1;
if (lwp[i] < rwp[i]) return -1;
}
return 0; // ==
}
//=========================================================================
// Math
// Output NOT clean
static inline WDataOutP VL_NEGATE_W(int words, WDataOutP owp, WDataInP lwp) VL_MT_SAFE {
EData carry = 1;
for (int i = 0; i < words; ++i) {
owp[i] = ~lwp[i] + carry;
carry = (owp[i] < ~lwp[i]);
}
return owp;
}
static void VL_NEGATE_INPLACE_W(int words, WDataOutP owp_lwp) VL_MT_SAFE {
EData carry = 1;
for (int i = 0; i < words; ++i) {
EData word = ~owp_lwp[i] + carry;
carry = (word < ~owp_lwp[i]);
owp_lwp[i] = word;
}
}
// EMIT_RULE: VL_MUL: oclean=dirty; lclean==clean; rclean==clean;
// EMIT_RULE: VL_DIV: oclean=dirty; lclean==clean; rclean==clean;
// EMIT_RULE: VL_MODDIV: oclean=dirty; lclean==clean; rclean==clean;
#define VL_DIV_III(lbits, lhs, rhs) (((rhs) == 0) ? 0 : (lhs) / (rhs))
#define VL_DIV_QQQ(lbits, lhs, rhs) (((rhs) == 0) ? 0 : (lhs) / (rhs))
#define VL_DIV_WWW(lbits, owp, lwp, rwp) (_vl_moddiv_w(lbits, owp, lwp, rwp, 0))
#define VL_MODDIV_III(lbits, lhs, rhs) (((rhs) == 0) ? 0 : (lhs) % (rhs))
#define VL_MODDIV_QQQ(lbits, lhs, rhs) (((rhs) == 0) ? 0 : (lhs) % (rhs))
#define VL_MODDIV_WWW(lbits, owp, lwp, rwp) (_vl_moddiv_w(lbits, owp, lwp, rwp, 1))
static inline WDataOutP VL_ADD_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
QData carry = 0;
for (int i = 0; i < words; ++i) {
carry = carry + static_cast<QData>(lwp[i]) + static_cast<QData>(rwp[i]);
owp[i] = (carry & 0xffffffffULL);
carry = (carry >> 32ULL) & 0xffffffffULL;
}
// Last output word is dirty
return owp;
}
static inline WDataOutP VL_SUB_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
QData carry = 0;
for (int i = 0; i < words; ++i) {
carry = (carry + static_cast<QData>(lwp[i])
+ static_cast<QData>(static_cast<IData>(~rwp[i])));
if (i == 0) ++carry; // Negation of rwp
owp[i] = (carry & 0xffffffffULL);
carry = (carry >> 32ULL) & 0xffffffffULL;
}
// Last output word is dirty
return owp;
}
static inline WDataOutP VL_MUL_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
for (int i = 0; i < words; ++i) owp[i] = 0;
for (int lword = 0; lword < words; ++lword) {
for (int rword = 0; rword < words; ++rword) {
QData mul = static_cast<QData>(lwp[lword]) * static_cast<QData>(rwp[rword]);
for (int qword = lword + rword; qword < words; ++qword) {
mul += static_cast<QData>(owp[qword]);
owp[qword] = (mul & 0xffffffffULL);
mul = (mul >> 32ULL) & 0xffffffffULL;
}
}
}
// Last output word is dirty
return owp;
}
static inline IData VL_MULS_III(int, int lbits, int, IData lhs, IData rhs) VL_PURE {
vlsint32_t lhs_signed = VL_EXTENDS_II(32, lbits, lhs);
vlsint32_t rhs_signed = VL_EXTENDS_II(32, lbits, rhs);
return lhs_signed * rhs_signed;
}
static inline QData VL_MULS_QQQ(int, int lbits, int, QData lhs, QData rhs) VL_PURE {
vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
return lhs_signed * rhs_signed;
}
static inline WDataOutP VL_MULS_WWW(int, int lbits, int, WDataOutP owp, WDataInP lwp,
WDataInP rwp) VL_MT_SAFE {
int words = VL_WORDS_I(lbits);
// cppcheck-suppress variableScope
WData lwstore[VL_MULS_MAX_WORDS]; // Fixed size, as MSVC++ doesn't allow [words] here
// cppcheck-suppress variableScope
WData rwstore[VL_MULS_MAX_WORDS];
WDataInP lwusp = lwp;
WDataInP rwusp = rwp;
EData lneg = VL_SIGN_E(lbits, lwp[words - 1]);
if (lneg) { // Negate lhs
lwusp = lwstore;
VL_NEGATE_W(words, lwstore, lwp);
lwstore[words - 1] &= VL_MASK_E(lbits); // Clean it
}
EData rneg = VL_SIGN_E(lbits, rwp[words - 1]);
if (rneg) { // Negate rhs
rwusp = rwstore;
VL_NEGATE_W(words, rwstore, rwp);
rwstore[words - 1] &= VL_MASK_E(lbits); // Clean it
}
VL_MUL_W(words, owp, lwusp, rwusp);
owp[words - 1] &= VL_MASK_E(
lbits); // Clean. Note it's ok for the multiply to overflow into the sign bit
if ((lneg ^ rneg) & 1) { // Negate output (not using NEGATE, as owp==lwp)
QData carry = 0;
for (int i = 0; i < words; ++i) {
carry = carry + static_cast<QData>(static_cast<IData>(~owp[i]));
if (i == 0) ++carry; // Negation of temp2
owp[i] = (carry & 0xffffffffULL);
carry = (carry >> 32ULL) & 0xffffffffULL;
}
// Not needed: owp[words-1] |= 1<<VL_BITBIT_E(lbits-1); // Set sign bit
}
// Last output word is dirty
return owp;
}
static inline IData VL_DIVS_III(int lbits, IData lhs, IData rhs) VL_PURE {
if (VL_UNLIKELY(rhs == 0)) return 0;
// -MAX / -1 cannot be represented in twos complement, and will cause SIGFPE
if (VL_UNLIKELY(lhs == 0x80000000 && rhs == 0xffffffff)) return 0;
vlsint32_t lhs_signed = VL_EXTENDS_II(VL_IDATASIZE, lbits, lhs);
vlsint32_t rhs_signed = VL_EXTENDS_II(VL_IDATASIZE, lbits, rhs);
return lhs_signed / rhs_signed;
}
static inline QData VL_DIVS_QQQ(int lbits, QData lhs, QData rhs) VL_PURE {
if (VL_UNLIKELY(rhs == 0)) return 0;
// -MAX / -1 cannot be represented in twos complement, and will cause SIGFPE
if (VL_UNLIKELY(lhs == 0x8000000000000000ULL && rhs == 0xffffffffffffffffULL)) return 0;
vlsint64_t lhs_signed = VL_EXTENDS_QQ(VL_QUADSIZE, lbits, lhs);
vlsint64_t rhs_signed = VL_EXTENDS_QQ(VL_QUADSIZE, lbits, rhs);
return lhs_signed / rhs_signed;
}
static inline IData VL_MODDIVS_III(int lbits, IData lhs, IData rhs) VL_PURE {
if (VL_UNLIKELY(rhs == 0)) return 0;
if (VL_UNLIKELY(lhs == 0x80000000 && rhs == 0xffffffff)) return 0;
vlsint32_t lhs_signed = VL_EXTENDS_II(VL_IDATASIZE, lbits, lhs);
vlsint32_t rhs_signed = VL_EXTENDS_II(VL_IDATASIZE, lbits, rhs);
return lhs_signed % rhs_signed;
}
static inline QData VL_MODDIVS_QQQ(int lbits, QData lhs, QData rhs) VL_PURE {
if (VL_UNLIKELY(rhs == 0)) return 0;
if (VL_UNLIKELY(lhs == 0x8000000000000000ULL && rhs == 0xffffffffffffffffULL)) return 0;
vlsint64_t lhs_signed = VL_EXTENDS_QQ(VL_QUADSIZE, lbits, lhs);
vlsint64_t rhs_signed = VL_EXTENDS_QQ(VL_QUADSIZE, lbits, rhs);
return lhs_signed % rhs_signed;
}
static inline WDataOutP VL_DIVS_WWW(int lbits, WDataOutP owp, WDataInP lwp,
WDataInP rwp) VL_MT_SAFE {
int words = VL_WORDS_I(lbits);
EData lsign = VL_SIGN_E(lbits, lwp[words - 1]);
EData rsign = VL_SIGN_E(lbits, rwp[words - 1]);
// cppcheck-suppress variableScope
WData lwstore[VL_MULS_MAX_WORDS]; // Fixed size, as MSVC++ doesn't allow [words] here
// cppcheck-suppress variableScope
WData rwstore[VL_MULS_MAX_WORDS];
WDataInP ltup = lwp;
WDataInP rtup = rwp;
if (lsign) ltup = _vl_clean_inplace_w(lbits, VL_NEGATE_W(VL_WORDS_I(lbits), lwstore, lwp));
if (rsign) rtup = _vl_clean_inplace_w(lbits, VL_NEGATE_W(VL_WORDS_I(lbits), rwstore, rwp));
if ((lsign && !rsign) || (!lsign && rsign)) {
WData qNoSign[VL_MULS_MAX_WORDS];
VL_DIV_WWW(lbits, qNoSign, ltup, rtup);
_vl_clean_inplace_w(lbits, VL_NEGATE_W(VL_WORDS_I(lbits), owp, qNoSign));
return owp;
} else {
return VL_DIV_WWW(lbits, owp, ltup, rtup);
}
}
static inline WDataOutP VL_MODDIVS_WWW(int lbits, WDataOutP owp, WDataInP lwp,
WDataInP rwp) VL_MT_SAFE {
int words = VL_WORDS_I(lbits);
EData lsign = VL_SIGN_E(lbits, lwp[words - 1]);
EData rsign = VL_SIGN_E(lbits, rwp[words - 1]);
// cppcheck-suppress variableScope
WData lwstore[VL_MULS_MAX_WORDS]; // Fixed size, as MSVC++ doesn't allow [words] here
// cppcheck-suppress variableScope
WData rwstore[VL_MULS_MAX_WORDS];
WDataInP ltup = lwp;
WDataInP rtup = rwp;
if (lsign) ltup = _vl_clean_inplace_w(lbits, VL_NEGATE_W(VL_WORDS_I(lbits), lwstore, lwp));
if (rsign) rtup = _vl_clean_inplace_w(lbits, VL_NEGATE_W(VL_WORDS_I(lbits), rwstore, rwp));
if (lsign) { // Only dividend sign matters for modulus
WData qNoSign[VL_MULS_MAX_WORDS];
VL_MODDIV_WWW(lbits, qNoSign, ltup, rtup);
_vl_clean_inplace_w(lbits, VL_NEGATE_W(VL_WORDS_I(lbits), owp, qNoSign));
return owp;
} else {
return VL_MODDIV_WWW(lbits, owp, ltup, rtup);
}
}
#define VL_POW_IIQ(obits, lbits, rbits, lhs, rhs) VL_POW_QQQ(obits, lbits, rbits, lhs, rhs)
#define VL_POW_IIW(obits, lbits, rbits, lhs, rwp) VL_POW_QQW(obits, lbits, rbits, lhs, rwp)
#define VL_POW_QQI(obits, lbits, rbits, lhs, rhs) VL_POW_QQQ(obits, lbits, rbits, lhs, rhs)
#define VL_POW_WWI(obits, lbits, rbits, owp, lwp, rhs) \
VL_POW_WWQ(obits, lbits, rbits, owp, lwp, rhs)
static inline IData VL_POW_III(int, int, int rbits, IData lhs, IData rhs) VL_PURE {
if (VL_UNLIKELY(rhs == 0)) return 1;
if (VL_UNLIKELY(lhs == 0)) return 0;
IData power = lhs;
IData out = 1;
for (int i = 0; i < rbits; ++i) {
if (i > 0) power = power * power;
if (rhs & (1ULL << i)) out *= power;
}
return out;
}
static inline QData VL_POW_QQQ(int, int, int rbits, QData lhs, QData rhs) VL_PURE {
if (VL_UNLIKELY(rhs == 0)) return 1;
if (VL_UNLIKELY(lhs == 0)) return 0;
QData power = lhs;
QData out = 1ULL;
for (int i = 0; i < rbits; ++i) {
if (i > 0) power = power * power;
if (rhs & (1ULL << i)) out *= power;
}
return out;
}
WDataOutP VL_POW_WWW(int obits, int, int rbits, WDataOutP owp, WDataInP lwp, WDataInP rwp);
WDataOutP VL_POW_WWQ(int obits, int, int rbits, WDataOutP owp, WDataInP lwp, QData rhs);
QData VL_POW_QQW(int obits, int, int rbits, QData lhs, WDataInP rwp);
#define VL_POWSS_IIQ(obits, lbits, rbits, lhs, rhs, lsign, rsign) \
VL_POWSS_QQQ(obits, lbits, rbits, lhs, rhs, lsign, rsign)
#define VL_POWSS_IIQ(obits, lbits, rbits, lhs, rhs, lsign, rsign) \
VL_POWSS_QQQ(obits, lbits, rbits, lhs, rhs, lsign, rsign)
#define VL_POWSS_IIW(obits, lbits, rbits, lhs, rwp, lsign, rsign) \
VL_POWSS_QQW(obits, lbits, rbits, lhs, rwp, lsign, rsign)
#define VL_POWSS_QQI(obits, lbits, rbits, lhs, rhs, lsign, rsign) \
VL_POWSS_QQQ(obits, lbits, rbits, lhs, rhs, lsign, rsign)
#define VL_POWSS_WWI(obits, lbits, rbits, owp, lwp, rhs, lsign, rsign) \
VL_POWSS_WWQ(obits, lbits, rbits, owp, lwp, rhs, lsign, rsign)
static inline IData VL_POWSS_III(int obits, int, int rbits, IData lhs, IData rhs, bool lsign,
bool rsign) VL_MT_SAFE {
if (VL_UNLIKELY(rhs == 0)) return 1;
if (rsign && VL_SIGN_I(rbits, rhs)) {
if (lhs == 0) {
return 0; // "X"
} else if (lhs == 1) {
return 1;
} else if (lsign && lhs == VL_MASK_I(obits)) { // -1
if (rhs & 1) {
return VL_MASK_I(obits); // -1^odd=-1
} else {
return 1; // -1^even=1
}
}
return 0;
}
return VL_POW_III(obits, rbits, rbits, lhs, rhs);
}
static inline QData VL_POWSS_QQQ(int obits, int, int rbits, QData lhs, QData rhs, bool lsign,
bool rsign) VL_MT_SAFE {
if (VL_UNLIKELY(rhs == 0)) return 1;
if (rsign && VL_SIGN_Q(rbits, rhs)) {
if (lhs == 0) {
return 0; // "X"
} else if (lhs == 1) {
return 1;
} else if (lsign && lhs == VL_MASK_Q(obits)) { // -1
if (rhs & 1) {
return VL_MASK_Q(obits); // -1^odd=-1
} else {
return 1; // -1^even=1
}
}
return 0;
}
return VL_POW_QQQ(obits, rbits, rbits, lhs, rhs);
}
WDataOutP VL_POWSS_WWW(int obits, int, int rbits, WDataOutP owp, WDataInP lwp, WDataInP rwp,
bool lsign, bool rsign);
WDataOutP VL_POWSS_WWQ(int obits, int, int rbits, WDataOutP owp, WDataInP lwp, QData rhs,
bool lsign, bool rsign);
QData VL_POWSS_QQW(int obits, int, int rbits, QData lhs, WDataInP rwp, bool lsign, bool rsign);
//===================================================================
// Concat/replication
// INTERNAL: Stuff LHS bit 0++ into OUTPUT at specified offset
// ld may be "dirty", output is clean
static inline void _vl_insert_II(int, CData& lhsr, IData ld, int hbit, int lbit,
int rbits) VL_PURE {
IData cleanmask = VL_MASK_I(rbits);
IData insmask = (VL_MASK_I(hbit - lbit + 1)) << lbit;
lhsr = (lhsr & ~insmask) | ((ld << lbit) & (insmask & cleanmask));
}
static inline void _vl_insert_II(int, SData& lhsr, IData ld, int hbit, int lbit,
int rbits) VL_PURE {
IData cleanmask = VL_MASK_I(rbits);
IData insmask = (VL_MASK_I(hbit - lbit + 1)) << lbit;
lhsr = (lhsr & ~insmask) | ((ld << lbit) & (insmask & cleanmask));
}
static inline void _vl_insert_II(int, IData& lhsr, IData ld, int hbit, int lbit,
int rbits) VL_PURE {
IData cleanmask = VL_MASK_I(rbits);
IData insmask = (VL_MASK_I(hbit - lbit + 1)) << lbit;
lhsr = (lhsr & ~insmask) | ((ld << lbit) & (insmask & cleanmask));
}
static inline void _vl_insert_QQ(int, QData& lhsr, QData ld, int hbit, int lbit,
int rbits) VL_PURE {
QData cleanmask = VL_MASK_Q(rbits);
QData insmask = (VL_MASK_Q(hbit - lbit + 1)) << lbit;
lhsr = (lhsr & ~insmask) | ((ld << lbit) & (insmask & cleanmask));
}
static inline void _vl_insert_WI(int, WDataOutP owp, IData ld, int hbit, int lbit,
int rbits = 0) VL_MT_SAFE {
int hoffset = VL_BITBIT_E(hbit);
int loffset = VL_BITBIT_E(lbit);
int roffset = VL_BITBIT_E(rbits);
int hword = VL_BITWORD_E(hbit);
int lword = VL_BITWORD_E(lbit);
int rword = VL_BITWORD_E(rbits);
EData cleanmask = hword == rword ? VL_MASK_E(roffset) : VL_MASK_E(0);
if (hoffset == VL_SIZEBITS_E && loffset == 0) {
// Fast and common case, word based insertion
owp[VL_BITWORD_E(lbit)] = ld & cleanmask;
} else {
EData lde = static_cast<EData>(ld);
if (hword == lword) { // know < EData bits because above checks it
// Assignment is contained within one word of destination
EData insmask = (VL_MASK_E(hoffset - loffset + 1)) << loffset;
owp[lword] = (owp[lword] & ~insmask) | ((lde << loffset) & (insmask & cleanmask));
} else {
// Assignment crosses a word boundary in destination
EData hinsmask = (VL_MASK_E(hoffset - 0 + 1)) << 0;
EData linsmask = (VL_MASK_E((VL_EDATASIZE - 1) - loffset + 1)) << loffset;
int nbitsonright = VL_EDATASIZE - loffset; // bits that end up in lword
owp[lword] = (owp[lword] & ~linsmask) | ((lde << loffset) & linsmask);
owp[hword]
= (owp[hword] & ~hinsmask) | ((lde >> nbitsonright) & (hinsmask & cleanmask));
}
}
}
// INTERNAL: Stuff large LHS bit 0++ into OUTPUT at specified offset
// lwp may be "dirty"
static inline void _vl_insert_WW(int, WDataOutP owp, WDataInP lwp, int hbit, int lbit,
int rbits = 0) VL_MT_SAFE {
int hoffset = VL_BITBIT_E(hbit);
int loffset = VL_BITBIT_E(lbit);
int roffset = VL_BITBIT_E(rbits);
int lword = VL_BITWORD_E(lbit);
int hword = VL_BITWORD_E(hbit);
int rword = VL_BITWORD_E(rbits);
int words = VL_WORDS_I(hbit - lbit + 1);
// Cleaning mask, only applied to top word of the assignment. Is a no-op
// if we don't assign to the top word of the destination.
EData cleanmask = hword == rword ? VL_MASK_E(roffset) : VL_MASK_E(0);
if (hoffset == VL_SIZEBITS_E && loffset == 0) {
// Fast and common case, word based insertion
for (int i = 0; i < (words - 1); ++i) owp[lword + i] = lwp[i];
owp[hword] = lwp[words - 1] & cleanmask;
} else if (loffset == 0) {
// Non-32bit, but nicely aligned, so stuff all but the last word
for (int i = 0; i < (words - 1); ++i) owp[lword + i] = lwp[i];
// Know it's not a full word as above fast case handled it
EData hinsmask = (VL_MASK_E(hoffset - 0 + 1));
owp[hword] = (owp[hword] & ~hinsmask) | (lwp[words - 1] & (hinsmask & cleanmask));
} else {
EData hinsmask = (VL_MASK_E(hoffset - 0 + 1)) << 0;
EData linsmask = (VL_MASK_E((VL_EDATASIZE - 1) - loffset + 1)) << loffset;
int nbitsonright = VL_EDATASIZE - loffset; // bits that end up in lword (know loffset!=0)
// Middle words
for (int i = 0; i < words; ++i) {
{ // Lower word
int oword = lword + i;
EData d = lwp[i] << loffset;
EData od = (owp[oword] & ~linsmask) | (d & linsmask);
if (oword == hword) {
owp[oword] = (owp[oword] & ~hinsmask) | (od & (hinsmask & cleanmask));
} else {
owp[oword] = od;
}
}
{ // Upper word
int oword = lword + i + 1;
if (oword <= hword) {
EData d = lwp[i] >> nbitsonright;
EData od = (d & ~linsmask) | (owp[oword] & linsmask);
if (oword == hword) {
owp[oword] = (owp[oword] & ~hinsmask) | (od & (hinsmask & cleanmask));
} else {
owp[oword] = od;
}
}
}
}
}
}
static inline void _vl_insert_WQ(int obits, WDataOutP owp, QData ld, int hbit, int lbit,
int rbits = 0) VL_MT_SAFE {
WData lwp[VL_WQ_WORDS_E];
VL_SET_WQ(lwp, ld);
_vl_insert_WW(obits, owp, lwp, hbit, lbit, rbits);
}
// EMIT_RULE: VL_REPLICATE: oclean=clean>width32, dirty<=width32; lclean=clean; rclean==clean;
// RHS MUST BE CLEAN CONSTANT.
#define VL_REPLICATE_IOI(obits, lbits, rbits, ld, rep) (-(ld)) // Iff lbits==1
#define VL_REPLICATE_QOI(obits, lbits, rbits, ld, rep) (-(static_cast<QData>(ld))) // Iff lbits==1
static inline IData VL_REPLICATE_III(int, int lbits, int, IData ld, IData rep) VL_PURE {
IData returndata = ld;
for (unsigned i = 1; i < rep; ++i) {
returndata = returndata << lbits;
returndata |= ld;
}
return returndata;
}
static inline QData VL_REPLICATE_QII(int, int lbits, int, IData ld, IData rep) VL_PURE {
QData returndata = ld;
for (unsigned i = 1; i < rep; ++i) {
returndata = returndata << lbits;
returndata |= static_cast<QData>(ld);
}
return returndata;
}
static inline WDataOutP VL_REPLICATE_WII(int obits, int lbits, int, WDataOutP owp, IData ld,
IData rep) VL_MT_SAFE {
owp[0] = ld;
for (unsigned i = 1; i < rep; ++i) {
_vl_insert_WI(obits, owp, ld, i * lbits + lbits - 1, i * lbits);
}
return owp;
}
static inline WDataOutP VL_REPLICATE_WQI(int obits, int lbits, int, WDataOutP owp, QData ld,
IData rep) VL_MT_SAFE {
VL_SET_WQ(owp, ld);
for (unsigned i = 1; i < rep; ++i) {
_vl_insert_WQ(obits, owp, ld, i * lbits + lbits - 1, i * lbits);
}
return owp;
}
static inline WDataOutP VL_REPLICATE_WWI(int obits, int lbits, int, WDataOutP owp, WDataInP lwp,
IData rep) VL_MT_SAFE {
for (int i = 0; i < VL_WORDS_I(lbits); ++i) owp[i] = lwp[i];
for (unsigned i = 1; i < rep; ++i) {
_vl_insert_WW(obits, owp, lwp, i * lbits + lbits - 1, i * lbits);
}
return owp;
}
// Left stream operator. Output will always be clean. LHS and RHS must be clean.
// Special "fast" versions for slice sizes that are a power of 2. These use
// shifts and masks to execute faster than the slower for-loop approach where a
// subset of bits is copied in during each iteration.
static inline IData VL_STREAML_FAST_III(int, int lbits, int, IData ld, IData rd_log2) VL_PURE {
// Pre-shift bits in most-significant slice:
//
// If lbits is not a multiple of the slice size (i.e., lbits % rd != 0),
// then we end up with a "gap" in our reversed result. For example, if we
// have a 5-bit Verlilog signal (lbits=5) in an 8-bit C data type:
//
// ld = ---43210
//
// (where numbers are the Verilog signal bit numbers and '-' is an unused bit).
// Executing the switch statement below with a slice size of two (rd=2,
// rd_log2=1) produces:
//
// ret = 1032-400
//
// Pre-shifting the bits in the most-significant slice allows us to avoid
// this gap in the shuffled data:
//
// ld_adjusted = --4-3210
// ret = 10324---
IData ret = ld;
if (rd_log2) {
vluint32_t lbitsFloor = lbits & ~VL_MASK_I(rd_log2); // max multiple of rd <= lbits
vluint32_t lbitsRem = lbits - lbitsFloor; // number of bits in most-sig slice (MSS)
IData msbMask = VL_MASK_I(lbitsRem) << lbitsFloor; // mask to sel only bits in MSS
ret = (ret & ~msbMask) | ((ret & msbMask) << ((VL_UL(1) << rd_log2) - lbitsRem));
}
switch (rd_log2) {
case 0: ret = ((ret >> 1) & VL_UL(0x55555555)) | ((ret & VL_UL(0x55555555)) << 1); // FALLTHRU
case 1: ret = ((ret >> 2) & VL_UL(0x33333333)) | ((ret & VL_UL(0x33333333)) << 2); // FALLTHRU
case 2: ret = ((ret >> 4) & VL_UL(0x0f0f0f0f)) | ((ret & VL_UL(0x0f0f0f0f)) << 4); // FALLTHRU
case 3: ret = ((ret >> 8) & VL_UL(0x00ff00ff)) | ((ret & VL_UL(0x00ff00ff)) << 8); // FALLTHRU
case 4: ret = ((ret >> 16) | (ret << 16)); // FALLTHRU
default:;
}
return ret >> (VL_IDATASIZE - lbits);
}
static inline QData VL_STREAML_FAST_QQI(int, int lbits, int, QData ld, IData rd_log2) VL_PURE {
// Pre-shift bits in most-significant slice (see comment in VL_STREAML_FAST_III)
QData ret = ld;
if (rd_log2) {
vluint32_t lbitsFloor = lbits & ~VL_MASK_I(rd_log2);
vluint32_t lbitsRem = lbits - lbitsFloor;
QData msbMask = VL_MASK_Q(lbitsRem) << lbitsFloor;
ret = (ret & ~msbMask) | ((ret & msbMask) << ((1ULL << rd_log2) - lbitsRem));
}
switch (rd_log2) {
case 0:
ret = (((ret >> 1) & 0x5555555555555555ULL)
| ((ret & 0x5555555555555555ULL) << 1)); // FALLTHRU
case 1:
ret = (((ret >> 2) & 0x3333333333333333ULL)
| ((ret & 0x3333333333333333ULL) << 2)); // FALLTHRU
case 2:
ret = (((ret >> 4) & 0x0f0f0f0f0f0f0f0fULL)
| ((ret & 0x0f0f0f0f0f0f0f0fULL) << 4)); // FALLTHRU
case 3:
ret = (((ret >> 8) & 0x00ff00ff00ff00ffULL)
| ((ret & 0x00ff00ff00ff00ffULL) << 8)); // FALLTHRU
case 4:
ret = (((ret >> 16) & 0x0000ffff0000ffffULL)
| ((ret & 0x0000ffff0000ffffULL) << 16)); // FALLTHRU
case 5: ret = ((ret >> 32) | (ret << 32)); // FALLTHRU
default:;
}
return ret >> (VL_QUADSIZE - lbits);
}
// Regular "slow" streaming operators
static inline IData VL_STREAML_III(int, int lbits, int, IData ld, IData rd) VL_PURE {
IData ret = 0;
// Slice size should never exceed the lhs width
IData mask = VL_MASK_I(rd);
for (int istart = 0; istart < lbits; istart += rd) {
int ostart = lbits - rd - istart;
ostart = ostart > 0 ? ostart : 0;
ret |= ((ld >> istart) & mask) << ostart;
}
return ret;
}
static inline QData VL_STREAML_QQI(int, int lbits, int, QData ld, IData rd) VL_PURE {
QData ret = 0;
// Slice size should never exceed the lhs width
QData mask = VL_MASK_Q(rd);
for (int istart = 0; istart < lbits; istart += rd) {
int ostart = lbits - rd - istart;
ostart = ostart > 0 ? ostart : 0;
ret |= ((ld >> istart) & mask) << ostart;
}
return ret;
}
static inline WDataOutP VL_STREAML_WWI(int, int lbits, int, WDataOutP owp, WDataInP lwp,
IData rd) VL_MT_SAFE {
VL_ZERO_W(lbits, owp);
// Slice size should never exceed the lhs width
int ssize = (rd < static_cast<IData>(lbits)) ? rd : (static_cast<IData>(lbits));
for (int istart = 0; istart < lbits; istart += rd) {
int ostart = lbits - rd - istart;
ostart = ostart > 0 ? ostart : 0;
for (int sbit = 0; sbit < ssize && sbit < lbits - istart; ++sbit) {
// Extract a single bit from lwp and shift it to the correct
// location for owp.
EData bit = (VL_BITRSHIFT_W(lwp, (istart + sbit)) & 1) << VL_BITBIT_E(ostart + sbit);
owp[VL_BITWORD_E(ostart + sbit)] |= bit;
}
}
return owp;
}
// Because concats are common and wide, it's valuable to always have a clean output.
// Thus we specify inputs must be clean, so we don't need to clean the output.
// Note the bit shifts are always constants, so the adds in these constify out.
// Casts required, as args may be 8 bit entities, and need to shift to appropriate output size
#define VL_CONCAT_III(obits, lbits, rbits, ld, rd) \
(static_cast<IData>(ld) << (rbits) | static_cast<IData>(rd))
#define VL_CONCAT_QII(obits, lbits, rbits, ld, rd) \
(static_cast<QData>(ld) << (rbits) | static_cast<QData>(rd))
#define VL_CONCAT_QIQ(obits, lbits, rbits, ld, rd) \
(static_cast<QData>(ld) << (rbits) | static_cast<QData>(rd))
#define VL_CONCAT_QQI(obits, lbits, rbits, ld, rd) \
(static_cast<QData>(ld) << (rbits) | static_cast<QData>(rd))
#define VL_CONCAT_QQQ(obits, lbits, rbits, ld, rd) \
(static_cast<QData>(ld) << (rbits) | static_cast<QData>(rd))
static inline WDataOutP VL_CONCAT_WII(int obits, int lbits, int rbits, WDataOutP owp, IData ld,
IData rd) VL_MT_SAFE {
owp[0] = rd;
for (int i = 1; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
_vl_insert_WI(obits, owp, ld, rbits + lbits - 1, rbits);
return owp;
}
static inline WDataOutP VL_CONCAT_WWI(int obits, int lbits, int rbits, WDataOutP owp, WDataInP lwp,
IData rd) VL_MT_SAFE {
owp[0] = rd;
for (int i = 1; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
_vl_insert_WW(obits, owp, lwp, rbits + lbits - 1, rbits);
return owp;
}
static inline WDataOutP VL_CONCAT_WIW(int obits, int lbits, int rbits, WDataOutP owp, IData ld,
WDataInP rwp) VL_MT_SAFE {
for (int i = 0; i < VL_WORDS_I(rbits); ++i) owp[i] = rwp[i];
for (int i = VL_WORDS_I(rbits); i < VL_WORDS_I(obits); ++i) owp[i] = 0;
_vl_insert_WI(obits, owp, ld, rbits + lbits - 1, rbits);
return owp;
}
static inline WDataOutP VL_CONCAT_WIQ(int obits, int lbits, int rbits, WDataOutP owp, IData ld,
QData rd) VL_MT_SAFE {
VL_SET_WQ(owp, rd);
for (int i = VL_WQ_WORDS_E; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
_vl_insert_WI(obits, owp, ld, rbits + lbits - 1, rbits);
return owp;
}
static inline WDataOutP VL_CONCAT_WQI(int obits, int lbits, int rbits, WDataOutP owp, QData ld,
IData rd) VL_MT_SAFE {
owp[0] = rd;
for (int i = 1; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
_vl_insert_WQ(obits, owp, ld, rbits + lbits - 1, rbits);
return owp;
}
static inline WDataOutP VL_CONCAT_WQQ(int obits, int lbits, int rbits, WDataOutP owp, QData ld,
QData rd) VL_MT_SAFE {
VL_SET_WQ(owp, rd);
for (int i = VL_WQ_WORDS_E; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
_vl_insert_WQ(obits, owp, ld, rbits + lbits - 1, rbits);
return owp;
}
static inline WDataOutP VL_CONCAT_WWQ(int obits, int lbits, int rbits, WDataOutP owp, WDataInP lwp,
QData rd) VL_MT_SAFE {
VL_SET_WQ(owp, rd);
for (int i = VL_WQ_WORDS_E; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
_vl_insert_WW(obits, owp, lwp, rbits + lbits - 1, rbits);
return owp;
}
static inline WDataOutP VL_CONCAT_WQW(int obits, int lbits, int rbits, WDataOutP owp, QData ld,
WDataInP rwp) VL_MT_SAFE {
for (int i = 0; i < VL_WORDS_I(rbits); ++i) owp[i] = rwp[i];
for (int i = VL_WORDS_I(rbits); i < VL_WORDS_I(obits); ++i) owp[i] = 0;
_vl_insert_WQ(obits, owp, ld, rbits + lbits - 1, rbits);
return owp;
}
static inline WDataOutP VL_CONCAT_WWW(int obits, int lbits, int rbits, WDataOutP owp, WDataInP lwp,
WDataInP rwp) VL_MT_SAFE {
for (int i = 0; i < VL_WORDS_I(rbits); ++i) owp[i] = rwp[i];
for (int i = VL_WORDS_I(rbits); i < VL_WORDS_I(obits); ++i) owp[i] = 0;
_vl_insert_WW(obits, owp, lwp, rbits + lbits - 1, rbits);
return owp;
}
//===================================================================
// Shifts
// Static shift, used by internal functions
// The output is the same as the input - it overlaps!
static inline void _vl_shiftl_inplace_w(int obits, WDataOutP iowp,
IData rd /*1 or 4*/) VL_MT_SAFE {
int words = VL_WORDS_I(obits);
EData linsmask = VL_MASK_E(rd);
for (int i = words - 1; i >= 1; --i) {
iowp[i]
= ((iowp[i] << rd) & ~linsmask) | ((iowp[i - 1] >> (VL_EDATASIZE - rd)) & linsmask);
}
iowp[0] = ((iowp[0] << rd) & ~linsmask);
iowp[VL_WORDS_I(obits) - 1] &= VL_MASK_E(obits);
}
// EMIT_RULE: VL_SHIFTL: oclean=lclean; rclean==clean;
// Important: Unlike most other funcs, the shift might well be a computed
// expression. Thus consider this when optimizing. (And perhaps have 2 funcs?)
static inline WDataOutP VL_SHIFTL_WWI(int obits, int, int, WDataOutP owp, WDataInP lwp,
IData rd) VL_MT_SAFE {
int word_shift = VL_BITWORD_E(rd);
int bit_shift = VL_BITBIT_E(rd);
if (rd >= static_cast<IData>(obits)) { // rd may be huge with MSB set
for (int i = 0; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
} else if (bit_shift == 0) { // Aligned word shift (<<0,<<32,<<64 etc)
for (int i = 0; i < word_shift; ++i) owp[i] = 0;
for (int i = word_shift; i < VL_WORDS_I(obits); ++i) owp[i] = lwp[i - word_shift];
} else {
for (int i = 0; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
_vl_insert_WW(obits, owp, lwp, obits - 1, rd);
}
return owp;
}
static inline WDataOutP VL_SHIFTL_WWW(int obits, int lbits, int rbits, WDataOutP owp, WDataInP lwp,
WDataInP rwp) VL_MT_SAFE {
for (int i = 1; i < VL_WORDS_I(rbits); ++i) {
if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more
return VL_ZERO_W(obits, owp);
}
}
return VL_SHIFTL_WWI(obits, lbits, 32, owp, lwp, rwp[0]);
}
static inline WDataOutP VL_SHIFTL_WWQ(int obits, int lbits, int rbits, WDataOutP owp, WDataInP lwp,
QData rd) VL_MT_SAFE {
WData rwp[VL_WQ_WORDS_E];
VL_SET_WQ(rwp, rd);
return VL_SHIFTL_WWW(obits, lbits, rbits, owp, lwp, rwp);
}
static inline IData VL_SHIFTL_IIW(int obits, int, int rbits, IData lhs, WDataInP rwp) VL_MT_SAFE {
for (int i = 1; i < VL_WORDS_I(rbits); ++i) {
if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more
return 0;
}
}
return VL_CLEAN_II(obits, obits, lhs << rwp[0]);
}
static inline IData VL_SHIFTL_IIQ(int obits, int lbits, int rbits, IData lhs,
QData rhs) VL_MT_SAFE {
if (VL_UNLIKELY(rhs >= VL_IDATASIZE)) return 0;
return VL_CLEAN_II(obits, obits, lhs << rhs);
}
static inline QData VL_SHIFTL_QQW(int obits, int, int rbits, QData lhs, WDataInP rwp) VL_MT_SAFE {
for (int i = 1; i < VL_WORDS_I(rbits); ++i) {
if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more
return 0;
}
}
// Above checks rwp[1]==0 so not needed in below shift
return VL_CLEAN_QQ(obits, obits, lhs << (static_cast<QData>(rwp[0])));
}
static inline QData VL_SHIFTL_QQQ(int obits, int lbits, int rbits, QData lhs,
QData rhs) VL_MT_SAFE {
if (VL_UNLIKELY(rhs >= VL_QUADSIZE)) return 0;
return VL_CLEAN_QQ(obits, obits, lhs << rhs);
}
// EMIT_RULE: VL_SHIFTR: oclean=lclean; rclean==clean;
// Important: Unlike most other funcs, the shift might well be a computed
// expression. Thus consider this when optimizing. (And perhaps have 2 funcs?)
static inline WDataOutP VL_SHIFTR_WWI(int obits, int, int, WDataOutP owp, WDataInP lwp,
IData rd) VL_MT_SAFE {
int word_shift = VL_BITWORD_E(rd); // Maybe 0
int bit_shift = VL_BITBIT_E(rd);
if (rd >= static_cast<IData>(obits)) { // rd may be huge with MSB set
for (int i = 0; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
} else if (bit_shift == 0) { // Aligned word shift (>>0,>>32,>>64 etc)
int copy_words = (VL_WORDS_I(obits) - word_shift);
for (int i = 0; i < copy_words; ++i) owp[i] = lwp[i + word_shift];
for (int i = copy_words; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
} else {
int loffset = rd & VL_SIZEBITS_E;
int nbitsonright = VL_EDATASIZE - loffset; // bits that end up in lword (know loffset!=0)
// Middle words
int words = VL_WORDS_I(obits - rd);
for (int i = 0; i < words; ++i) {
owp[i] = lwp[i + word_shift] >> loffset;
int upperword = i + word_shift + 1;
if (upperword < VL_WORDS_I(obits)) owp[i] |= lwp[upperword] << nbitsonright;
}
for (int i = words; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
}
return owp;
}
static inline WDataOutP VL_SHIFTR_WWW(int obits, int lbits, int rbits, WDataOutP owp, WDataInP lwp,
WDataInP rwp) VL_MT_SAFE {
for (int i = 1; i < VL_WORDS_I(rbits); ++i) {
if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more
return VL_ZERO_W(obits, owp);
}
}
return VL_SHIFTR_WWI(obits, lbits, 32, owp, lwp, rwp[0]);
}
static inline WDataOutP VL_SHIFTR_WWQ(int obits, int lbits, int rbits, WDataOutP owp, WDataInP lwp,
QData rd) VL_MT_SAFE {
WData rwp[VL_WQ_WORDS_E];
VL_SET_WQ(rwp, rd);
return VL_SHIFTR_WWW(obits, lbits, rbits, owp, lwp, rwp);
}
static inline IData VL_SHIFTR_IIW(int obits, int, int rbits, IData lhs, WDataInP rwp) VL_MT_SAFE {
for (int i = 1; i < VL_WORDS_I(rbits); ++i) {
if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more
return 0;
}
}
return VL_CLEAN_II(obits, obits, lhs >> rwp[0]);
}
static inline QData VL_SHIFTR_QQW(int obits, int, int rbits, QData lhs, WDataInP rwp) VL_MT_SAFE {
for (int i = 1; i < VL_WORDS_I(rbits); ++i) {
if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more
return 0;
}
}
// Above checks rwp[1]==0 so not needed in below shift
return VL_CLEAN_QQ(obits, obits, lhs >> (static_cast<QData>(rwp[0])));
}
static inline IData VL_SHIFTR_IIQ(int obits, int, int rbits, IData lhs, QData rhs) VL_MT_SAFE {
if (VL_UNLIKELY(rhs >= VL_IDATASIZE)) return 0;
return VL_CLEAN_QQ(obits, obits, lhs >> rhs);
}
static inline QData VL_SHIFTR_QQQ(int obits, int, int rbits, QData lhs, QData rhs) VL_MT_SAFE {
if (VL_UNLIKELY(rhs >= VL_QUADSIZE)) return 0;
return VL_CLEAN_QQ(obits, obits, lhs >> rhs);
}
// EMIT_RULE: VL_SHIFTRS: oclean=false; lclean=clean, rclean==clean;
static inline IData VL_SHIFTRS_III(int obits, int lbits, int, IData lhs, IData rhs) VL_PURE {
// Note the C standard does not specify the >> operator as a arithmetic shift!
// IEEE says signed if output signed, but bit position from lbits;
// must use lbits for sign; lbits might != obits,
// an EXTEND(SHIFTRS(...)) can became a SHIFTRS(...) within same 32/64 bit word length
IData sign = -(lhs >> (lbits - 1)); // ffff_ffff if negative
IData signext = ~(VL_MASK_I(lbits) >> rhs); // One with bits where we've shifted "past"
return (lhs >> rhs) | (sign & VL_CLEAN_II(obits, obits, signext));
}
static inline QData VL_SHIFTRS_QQI(int obits, int lbits, int, QData lhs, IData rhs) VL_PURE {
QData sign = -(lhs >> (lbits - 1));
QData signext = ~(VL_MASK_Q(lbits) >> rhs);
return (lhs >> rhs) | (sign & VL_CLEAN_QQ(obits, obits, signext));
}
static inline IData VL_SHIFTRS_IQI(int obits, int lbits, int rbits, QData lhs, IData rhs) VL_PURE {
return static_cast<IData>(VL_SHIFTRS_QQI(obits, lbits, rbits, lhs, rhs));
}
static inline WDataOutP VL_SHIFTRS_WWI(int obits, int lbits, int, WDataOutP owp, WDataInP lwp,
IData rd) VL_MT_SAFE {
int word_shift = VL_BITWORD_E(rd);
int bit_shift = VL_BITBIT_E(rd);
int lmsw = VL_WORDS_I(obits) - 1;
EData sign = VL_SIGNONES_E(lbits, lwp[lmsw]);
if (rd >= static_cast<IData>(obits)) { // Shifting past end, sign in all of lbits
for (int i = 0; i <= lmsw; ++i) owp[i] = sign;
owp[lmsw] &= VL_MASK_E(lbits);
} else if (bit_shift == 0) { // Aligned word shift (>>0,>>32,>>64 etc)
int copy_words = (VL_WORDS_I(obits) - word_shift);
for (int i = 0; i < copy_words; ++i) owp[i] = lwp[i + word_shift];
if (copy_words >= 0) owp[copy_words - 1] |= ~VL_MASK_E(obits) & sign;
for (int i = copy_words; i < VL_WORDS_I(obits); ++i) owp[i] = sign;
owp[lmsw] &= VL_MASK_E(lbits);
} else {
int loffset = rd & VL_SIZEBITS_E;
int nbitsonright = VL_EDATASIZE - loffset; // bits that end up in lword (know loffset!=0)
// Middle words
int words = VL_WORDS_I(obits - rd);
for (int i = 0; i < words; ++i) {
owp[i] = lwp[i + word_shift] >> loffset;
int upperword = i + word_shift + 1;
if (upperword < VL_WORDS_I(obits)) owp[i] |= lwp[upperword] << nbitsonright;
}
if (words) owp[words - 1] |= sign & ~VL_MASK_E(obits - loffset);
for (int i = words; i < VL_WORDS_I(obits); ++i) owp[i] = sign;
owp[lmsw] &= VL_MASK_E(lbits);
}
return owp;
}
static inline WDataOutP VL_SHIFTRS_WWW(int obits, int lbits, int rbits, WDataOutP owp,
WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
EData overshift = 0; // Huge shift 1>>32 or more
for (int i = 1; i < VL_WORDS_I(rbits); ++i) overshift |= rwp[i];
if (VL_UNLIKELY(overshift || rwp[0] >= obits)) {
int lmsw = VL_WORDS_I(obits) - 1;
EData sign = VL_SIGNONES_E(lbits, lwp[lmsw]);
for (int j = 0; j <= lmsw; ++j) owp[j] = sign;
owp[lmsw] &= VL_MASK_E(lbits);
return owp;
}
return VL_SHIFTRS_WWI(obits, lbits, 32, owp, lwp, rwp[0]);
}
static inline WDataOutP VL_SHIFTRS_WWQ(int obits, int lbits, int rbits, WDataOutP owp,
WDataInP lwp, QData rd) VL_MT_SAFE {
WData rwp[VL_WQ_WORDS_E];
VL_SET_WQ(rwp, rd);
return VL_SHIFTRS_WWW(obits, lbits, rbits, owp, lwp, rwp);
}
static inline IData VL_SHIFTRS_IIW(int obits, int lbits, int rbits, IData lhs,
WDataInP rwp) VL_MT_SAFE {
EData overshift = 0; // Huge shift 1>>32 or more
for (int i = 1; i < VL_WORDS_I(rbits); ++i) overshift |= rwp[i];
if (VL_UNLIKELY(overshift || rwp[0] >= obits)) {
IData sign = -(lhs >> (lbits - 1)); // ffff_ffff if negative
return VL_CLEAN_II(obits, obits, sign);
}
return VL_SHIFTRS_III(obits, lbits, 32, lhs, rwp[0]);
}
static inline QData VL_SHIFTRS_QQW(int obits, int lbits, int rbits, QData lhs,
WDataInP rwp) VL_MT_SAFE {
EData overshift = 0; // Huge shift 1>>32 or more
for (int i = 1; i < VL_WORDS_I(rbits); ++i) overshift |= rwp[i];
if (VL_UNLIKELY(overshift || rwp[0] >= obits)) {
QData sign = -(lhs >> (lbits - 1)); // ffff_ffff if negative
return VL_CLEAN_QQ(obits, obits, sign);
}
return VL_SHIFTRS_QQI(obits, lbits, 32, lhs, rwp[0]);
}
static inline IData VL_SHIFTRS_IIQ(int obits, int lbits, int rbits, IData lhs,
QData rhs) VL_MT_SAFE {
WData rwp[VL_WQ_WORDS_E];
VL_SET_WQ(rwp, rhs);
return VL_SHIFTRS_IIW(obits, lbits, rbits, lhs, rwp);
}
static inline QData VL_SHIFTRS_QQQ(int obits, int lbits, int rbits, QData lhs, QData rhs) VL_PURE {
WData rwp[VL_WQ_WORDS_E];
VL_SET_WQ(rwp, rhs);
return VL_SHIFTRS_QQW(obits, lbits, rbits, lhs, rwp);
}
//===================================================================
// Bit selection
// EMIT_RULE: VL_BITSEL: oclean=dirty; rclean==clean;
#define VL_BITSEL_IIII(obits, lbits, rbits, zbits, lhs, rhs) ((lhs) >> (rhs))
#define VL_BITSEL_QIII(obits, lbits, rbits, zbits, lhs, rhs) ((lhs) >> (rhs))
#define VL_BITSEL_QQII(obits, lbits, rbits, zbits, lhs, rhs) ((lhs) >> (rhs))
#define VL_BITSEL_IQII(obits, lbits, rbits, zbits, lhs, rhs) (static_cast<IData>((lhs) >> (rhs)))
static inline IData VL_BITSEL_IWII(int, int lbits, int, int, WDataInP lwp, IData rd) VL_MT_SAFE {
int word = VL_BITWORD_E(rd);
if (VL_UNLIKELY(rd > static_cast<IData>(lbits))) {
return ~0; // Spec says you can go outside the range of a array. Don't coredump if so.
// We return all 1's as that's more likely to find bugs (?) than 0's.
} else {
return (lwp[word] >> VL_BITBIT_E(rd));
}
}
// EMIT_RULE: VL_RANGE: oclean=lclean; out=dirty
// <msb> & <lsb> MUST BE CLEAN (currently constant)
#define VL_SEL_IIII(obits, lbits, rbits, tbits, lhs, lsb, width) ((lhs) >> (lsb))
#define VL_SEL_QQII(obits, lbits, rbits, tbits, lhs, lsb, width) ((lhs) >> (lsb))
#define VL_SEL_IQII(obits, lbits, rbits, tbits, lhs, lsb, width) \
(static_cast<IData>((lhs) >> (lsb)))
static inline IData VL_SEL_IWII(int, int lbits, int, int, WDataInP lwp, IData lsb,
IData width) VL_MT_SAFE {
int msb = lsb + width - 1;
if (VL_UNLIKELY(msb >= lbits)) {
return ~0; // Spec says you can go outside the range of a array. Don't coredump if so.
} else if (VL_BITWORD_E(msb) == VL_BITWORD_E(static_cast<int>(lsb))) {
return VL_BITRSHIFT_W(lwp, lsb);
} else {
// 32 bit extraction may span two words
int nbitsfromlow = VL_EDATASIZE - VL_BITBIT_E(lsb); // bits that come from low word
return ((lwp[VL_BITWORD_E(msb)] << nbitsfromlow) | VL_BITRSHIFT_W(lwp, lsb));
}
}
static inline QData VL_SEL_QWII(int, int lbits, int, int, WDataInP lwp, IData lsb,
IData width) VL_MT_SAFE {
int msb = lsb + width - 1;
if (VL_UNLIKELY(msb > lbits)) {
return ~0; // Spec says you can go outside the range of a array. Don't coredump if so.
} else if (VL_BITWORD_E(msb) == VL_BITWORD_E(static_cast<int>(lsb))) {
return VL_BITRSHIFT_W(lwp, lsb);
} else if (VL_BITWORD_E(msb) == 1 + VL_BITWORD_E(static_cast<int>(lsb))) {
int nbitsfromlow = VL_EDATASIZE - VL_BITBIT_E(lsb);
QData hi = (lwp[VL_BITWORD_E(msb)]);
QData lo = VL_BITRSHIFT_W(lwp, lsb);
return (hi << nbitsfromlow) | lo;
} else {
// 64 bit extraction may span three words
int nbitsfromlow = VL_EDATASIZE - VL_BITBIT_E(lsb);
QData hi = (lwp[VL_BITWORD_E(msb)]);
QData mid = (lwp[VL_BITWORD_E(lsb) + 1]);
QData lo = VL_BITRSHIFT_W(lwp, lsb);
return (hi << (nbitsfromlow + VL_EDATASIZE)) | (mid << nbitsfromlow) | lo;
}
}
static inline WDataOutP VL_SEL_WWII(int obits, int lbits, int, int, WDataOutP owp, WDataInP lwp,
IData lsb, IData width) VL_MT_SAFE {
int msb = lsb + width - 1;
int word_shift = VL_BITWORD_E(lsb);
if (VL_UNLIKELY(msb > lbits)) { // Outside bounds,
for (int i = 0; i < VL_WORDS_I(obits) - 1; ++i) owp[i] = ~0;
owp[VL_WORDS_I(obits) - 1] = VL_MASK_E(obits);
} else if (VL_BITBIT_E(lsb) == 0) {
// Just a word extract
for (int i = 0; i < VL_WORDS_I(obits); ++i) owp[i] = lwp[i + word_shift];
} else {
// Not a _vl_insert because the bits come from any bit number and goto bit 0
int loffset = lsb & VL_SIZEBITS_E;
int nbitsfromlow = VL_EDATASIZE - loffset; // bits that end up in lword (know loffset!=0)
// Middle words
int words = VL_WORDS_I(msb - lsb + 1);
for (int i = 0; i < words; ++i) {
owp[i] = lwp[i + word_shift] >> loffset;
int upperword = i + word_shift + 1;
if (upperword <= static_cast<int>(VL_BITWORD_E(msb))) {
owp[i] |= lwp[upperword] << nbitsfromlow;
}
}
for (int i = words; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
}
return owp;
}
//======================================================================
// Math needing insert/select
// Return QData from double (numeric)
// EMIT_RULE: VL_RTOIROUND_Q_D: oclean=dirty; lclean==clean/real
static inline QData VL_RTOIROUND_Q_D(int, double lhs) VL_PURE {
// IEEE format: [63]=sign [62:52]=exp+1023 [51:0]=mantissa
// This does not need to support subnormals as they are sub-integral
lhs = VL_ROUND(lhs);
if (lhs == 0.0) return 0;
QData q = VL_CVT_Q_D(lhs);
int lsb = static_cast<int>((q >> 52ULL) & VL_MASK_Q(11)) - 1023 - 52;
vluint64_t mantissa = (q & VL_MASK_Q(52)) | (1ULL << 52);
vluint64_t out = 0;
if (lsb < 0) {
out = mantissa >> -lsb;
} else if (lsb < 64) {
out = mantissa << lsb;
}
if (lhs < 0) out = -out;
return out;
}
static inline IData VL_RTOIROUND_I_D(int bits, double lhs) VL_PURE {
return static_cast<IData>(VL_RTOIROUND_Q_D(bits, lhs));
}
static inline WDataOutP VL_RTOIROUND_W_D(int obits, WDataOutP owp, double lhs) VL_PURE {
// IEEE format: [63]=sign [62:52]=exp+1023 [51:0]=mantissa
// This does not need to support subnormals as they are sub-integral
lhs = VL_ROUND(lhs);
VL_ZERO_W(obits, owp);
if (lhs == 0.0) return owp;
QData q = VL_CVT_Q_D(lhs);
int lsb = static_cast<int>((q >> 52ULL) & VL_MASK_Q(11)) - 1023 - 52;
vluint64_t mantissa = (q & VL_MASK_Q(52)) | (1ULL << 52);
if (lsb < 0) {
VL_SET_WQ(owp, mantissa >> -lsb);
} else if (lsb < obits) {
_vl_insert_WQ(obits, owp, mantissa, lsb + 52, lsb);
}
if (lhs < 0) VL_NEGATE_INPLACE_W(VL_WORDS_I(obits), owp);
return owp;
}
//======================================================================
// Range assignments
// EMIT_RULE: VL_ASSIGNRANGE: rclean=dirty;
static inline void VL_ASSIGNSEL_IIII(int rbits, int obits, int lsb, CData& lhsr,
IData rhs) VL_PURE {
_vl_insert_II(obits, lhsr, rhs, lsb + obits - 1, lsb, rbits);
}
static inline void VL_ASSIGNSEL_IIII(int rbits, int obits, int lsb, SData& lhsr,
IData rhs) VL_PURE {
_vl_insert_II(obits, lhsr, rhs, lsb + obits - 1, lsb, rbits);
}
static inline void VL_ASSIGNSEL_IIII(int rbits, int obits, int lsb, IData& lhsr,
IData rhs) VL_PURE {
_vl_insert_II(obits, lhsr, rhs, lsb + obits - 1, lsb, rbits);
}
static inline void VL_ASSIGNSEL_QIII(int rbits, int obits, int lsb, QData& lhsr,
IData rhs) VL_PURE {
_vl_insert_QQ(obits, lhsr, rhs, lsb + obits - 1, lsb, rbits);
}
static inline void VL_ASSIGNSEL_QQII(int rbits, int obits, int lsb, QData& lhsr,
QData rhs) VL_PURE {
_vl_insert_QQ(obits, lhsr, rhs, lsb + obits - 1, lsb, rbits);
}
static inline void VL_ASSIGNSEL_QIIQ(int rbits, int obits, int lsb, QData& lhsr,
QData rhs) VL_PURE {
_vl_insert_QQ(obits, lhsr, rhs, lsb + obits - 1, lsb, rbits);
}
// static inline void VL_ASSIGNSEL_IIIW(int obits, int lsb, IData& lhsr, WDataInP rwp) VL_MT_SAFE {
// Illegal, as lhs width >= rhs width
static inline void VL_ASSIGNSEL_WIII(int rbits, int obits, int lsb, WDataOutP owp,
IData rhs) VL_MT_SAFE {
_vl_insert_WI(obits, owp, rhs, lsb + obits - 1, lsb, rbits);
}
static inline void VL_ASSIGNSEL_WIIQ(int rbits, int obits, int lsb, WDataOutP owp,
QData rhs) VL_MT_SAFE {
_vl_insert_WQ(obits, owp, rhs, lsb + obits - 1, lsb, rbits);
}
static inline void VL_ASSIGNSEL_WIIW(int rbits, int obits, int lsb, WDataOutP owp,
WDataInP rwp) VL_MT_SAFE {
_vl_insert_WW(obits, owp, rwp, lsb + obits - 1, lsb, rbits);
}
//======================================================================
// Triops
static inline WDataOutP VL_COND_WIWW(int obits, int, int, int, WDataOutP owp, int cond,
WDataInP w1p, WDataInP w2p) VL_MT_SAFE {
int words = VL_WORDS_I(obits);
for (int i = 0; i < words; ++i) owp[i] = cond ? w1p[i] : w2p[i];
return owp;
}
//======================================================================
// Constification
// VL_CONST_W_#X(int obits, WDataOutP owp, IData data0, .... IData data(#-1))
// Sets wide vector words to specified constant words.
// These macros are used when o might represent more words then are given as constants,
// hence all upper words must be zeroed.
// If changing the number of functions here, also change EMITCINLINES_NUM_CONSTW
#define VL_C_END_(obits, wordsSet) \
for (int i = (wordsSet); i < VL_WORDS_I(obits); ++i) o[i] = 0; \
return o
// clang-format off
static inline WDataOutP VL_CONST_W_1X(int obits, WDataOutP o, EData d0) VL_MT_SAFE {
o[0] = d0;
VL_C_END_(obits, 1);
}
static inline WDataOutP VL_CONST_W_2X(int obits, WDataOutP o, EData d1, EData d0) VL_MT_SAFE {
o[0] = d0; o[1] = d1;
VL_C_END_(obits, 2);
}
static inline WDataOutP VL_CONST_W_3X(int obits, WDataOutP o, EData d2, EData d1,
EData d0) VL_MT_SAFE {
o[0] = d0; o[1] = d1; o[2] = d2;
VL_C_END_(obits,3);
}
static inline WDataOutP VL_CONST_W_4X(int obits, WDataOutP o,
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3;
VL_C_END_(obits,4);
}
static inline WDataOutP VL_CONST_W_5X(int obits, WDataOutP o,
EData d4,
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3;
o[4] = d4;
VL_C_END_(obits,5);
}
static inline WDataOutP VL_CONST_W_6X(int obits, WDataOutP o,
EData d5, EData d4,
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3;
o[4] = d4; o[5] = d5;
VL_C_END_(obits,6);
}
static inline WDataOutP VL_CONST_W_7X(int obits, WDataOutP o,
EData d6, EData d5, EData d4,
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3;
o[4] = d4; o[5] = d5; o[6] = d6;
VL_C_END_(obits,7);
}
static inline WDataOutP VL_CONST_W_8X(int obits, WDataOutP o,
EData d7, EData d6, EData d5, EData d4,
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3;
o[4] = d4; o[5] = d5; o[6] = d6; o[7] = d7;
VL_C_END_(obits,8);
}
//
static inline WDataOutP VL_CONSTHI_W_1X(int obits, int lsb, WDataOutP obase,
EData d0) VL_MT_SAFE {
WDataOutP o = obase + VL_WORDS_I(lsb);
o[0] = d0;
VL_C_END_(obits, VL_WORDS_I(lsb) + 1);
}
static inline WDataOutP VL_CONSTHI_W_2X(int obits, int lsb, WDataOutP obase,
EData d1, EData d0) VL_MT_SAFE {
WDataOutP o = obase + VL_WORDS_I(lsb);
o[0] = d0; o[1] = d1;
VL_C_END_(obits, VL_WORDS_I(lsb) + 2);
}
static inline WDataOutP VL_CONSTHI_W_3X(int obits, int lsb, WDataOutP obase,
EData d2, EData d1, EData d0) VL_MT_SAFE {
WDataOutP o = obase + VL_WORDS_I(lsb);
o[0] = d0; o[1] = d1; o[2] = d2;
VL_C_END_(obits, VL_WORDS_I(lsb) + 3);
}
static inline WDataOutP VL_CONSTHI_W_4X(int obits, int lsb, WDataOutP obase,
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
WDataOutP o = obase + VL_WORDS_I(lsb);
o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3;
VL_C_END_(obits, VL_WORDS_I(lsb) + 4);
}
static inline WDataOutP VL_CONSTHI_W_5X(int obits, int lsb, WDataOutP obase,
EData d4,
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
WDataOutP o = obase + VL_WORDS_I(lsb);
o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3;
o[4] = d4;
VL_C_END_(obits, VL_WORDS_I(lsb) + 5);
}
static inline WDataOutP VL_CONSTHI_W_6X(int obits, int lsb, WDataOutP obase,
EData d5, EData d4,
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
WDataOutP o = obase + VL_WORDS_I(lsb);
o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3;
o[4] = d4; o[5] = d5;
VL_C_END_(obits, VL_WORDS_I(lsb) + 6);
}
static inline WDataOutP VL_CONSTHI_W_7X(int obits, int lsb, WDataOutP obase,
EData d6, EData d5, EData d4,
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
WDataOutP o = obase + VL_WORDS_I(lsb);
o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3;
o[4] = d4; o[5] = d5; o[6] = d6;
VL_C_END_(obits, VL_WORDS_I(lsb) + 7);
}
static inline WDataOutP VL_CONSTHI_W_8X(int obits, int lsb, WDataOutP obase,
EData d7, EData d6, EData d5, EData d4,
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
WDataOutP o = obase + VL_WORDS_I(lsb);
o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3;
o[4] = d4; o[5] = d5; o[6] = d6; o[7] = d7;
VL_C_END_(obits, VL_WORDS_I(lsb) + 8);
}
#undef VL_C_END_
// Partial constant, lower words of vector wider than 8*32, starting at bit number lsb
static inline void VL_CONSTLO_W_8X(int lsb, WDataOutP obase,
EData d7, EData d6, EData d5, EData d4,
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
WDataOutP o = obase + VL_WORDS_I(lsb);
o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3; o[4] = d4; o[5] = d5; o[6] = d6; o[7] = d7;
}
// clang-format on
//======================================================================
#endif // Guard