verilator/src/V3Order.cpp
Geza Lore dea0e6793f Simplify V3SenTree.h. No functional change intended.
- Remove unused headers
- Simplify container functors
- SenTreeFinder need not be a Visitor
- Update comments

Line coverage should now be 100%
2020-06-06 17:30:32 +01:00

2034 lines
90 KiB
C++

// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
// DESCRIPTION: Verilator: Block code ordering
//
// Code available from: https://verilator.org
//
//*************************************************************************
//
// Copyright 2003-2020 by Wilson Snyder. This program is free software; you
// can redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//*************************************************************************
// V3Order's Transformations:
//
// Compute near optimal scheduling of always/wire statements
// Make a graph of the entire netlist
//
// Add master "*INPUTS*" vertex.
// For inputs on top level
// Add vertex for each input var.
// Add edge INPUTS->var_vertex
//
// For seq logic
// Add logic_sensitive_vertex for this list of SenItems
// Add edge for each sensitive_var->logic_sensitive_vertex
// For AssignPre's
// Add vertex for this logic
// Add edge logic_sensitive_vertex->logic_vertex
// Add edge logic_consumed_var_PREVAR->logic_vertex
// Add edge logic_vertex->logic_generated_var (same as if comb)
// Add edge logic_vertex->generated_var_PREORDER
// Cutable dependency to attempt to order dlyed
// assignments to avoid saving state, thus we prefer
// a <= b ... As the opposite order would
// b <= c ... require the old value of b.
// For Logic
// Add vertex for this logic
// Add edge logic_sensitive_vertex->logic_vertex
// Add edge logic_generated_var_PREORDER->logic_vertex
// This ensures the AssignPre gets scheduled before this logic
// Add edge logic_vertex->consumed_var_PREVAR
// Add edge logic_vertex->consumed_var_POSTVAR
// Add edge logic_vertex->logic_generated_var (same as if comb)
// For AssignPost's
// Add vertex for this logic
// Add edge logic_sensitive_vertex->logic_vertex
// Add edge logic_consumed_var->logic_vertex (same as if comb)
// Add edge logic_vertex->logic_generated_var (same as if comb)
//
// For comb logic
// For comb logic
// Add vertex for this logic
// Add edge logic_consumed_var->logic_vertex
// Add edge logic_vertex->logic_generated_var
// Mark it cutable, as circular logic may require
// the generated signal to become a primary input again.
//
//
//
// Rank the graph starting at INPUTS (see V3Graph)
//
// Visit the graph's logic vertices in ranked order
// For all logic vertices with all inputs already ordered
// Make ordered block for this module
// For all ^^ in same domain
// Move logic to ordered activation
// When we have no more choices, we move to the next module
// and make a new block. Add that new activation block to the list of calls to make.
//
//*************************************************************************
#include "config_build.h"
#include "verilatedos.h"
#include "V3Ast.h"
#include "V3Const.h"
#include "V3EmitCBase.h"
#include "V3EmitV.h"
#include "V3File.h"
#include "V3Global.h"
#include "V3Graph.h"
#include "V3GraphStream.h"
#include "V3List.h"
#include "V3Partition.h"
#include "V3PartitionGraph.h"
#include "V3SenTree.h"
#include "V3SplitVar.h"
#include "V3Stats.h"
#include "V3Order.h"
#include "V3OrderGraph.h"
#include <algorithm>
#include <deque>
#include <iomanip>
#include <map>
#include <memory>
#include <sstream>
#include <vector>
#include VL_INCLUDE_UNORDERED_MAP
#include VL_INCLUDE_UNORDERED_SET
static bool domainsExclusive(const AstSenTree* fromp, const AstSenTree* top);
//######################################################################
// Functions for above graph classes
void OrderGraph::loopsVertexCb(V3GraphVertex* vertexp) {
if (debug()) cout << "-Info-Loop: " << vertexp << " " << endl;
if (OrderLogicVertex* vvertexp = dynamic_cast<OrderLogicVertex*>(vertexp)) {
std::cerr << vvertexp->nodep()->fileline()->warnOther()
<< " Example path: " << vvertexp->nodep()->typeName() << endl;
}
if (OrderVarVertex* vvertexp = dynamic_cast<OrderVarVertex*>(vertexp)) {
std::cerr << vvertexp->varScp()->fileline()->warnOther()
<< " Example path: " << vvertexp->varScp()->prettyName() << endl;
}
}
//######################################################################
class OrderMoveDomScope {
// Information stored for each unique loop, domain & scope trifecta
public:
V3ListEnt<OrderMoveDomScope*> m_readyDomScopeE; // List of next ready dom scope
V3List<OrderMoveVertex*> m_readyVertices; // Ready vertices with same domain & scope
private:
bool m_onReadyList; // True if DomScope is already on list of ready dom/scopes
const AstSenTree* m_domainp; // Domain all vertices belong to
const AstScope* m_scopep; // Scope all vertices belong to
typedef std::pair<const AstSenTree*, const AstScope*> DomScopeKey;
typedef std::map<DomScopeKey, OrderMoveDomScope*> DomScopeMap;
static DomScopeMap s_dsMap; // Structure registered for each dom/scope pairing
public:
OrderMoveDomScope(const AstSenTree* domainp, const AstScope* scopep)
: m_onReadyList(false)
, m_domainp(domainp)
, m_scopep(scopep) {}
OrderMoveDomScope* readyDomScopeNextp() const { return m_readyDomScopeE.nextp(); }
const AstSenTree* domainp() const { return m_domainp; }
const AstScope* scopep() const { return m_scopep; }
void ready(OrderVisitor* ovp); // Check the domScope is on ready list, add if not
void movedVertex(
OrderVisitor* ovp,
OrderMoveVertex* vertexp); // Mark one vertex as finished, remove from ready list if done
// STATIC MEMBERS (for lookup)
static void clear() {
for (DomScopeMap::iterator it = s_dsMap.begin(); it != s_dsMap.end(); ++it) {
delete it->second;
}
s_dsMap.clear();
}
V3List<OrderMoveVertex*>& readyVertices() { return m_readyVertices; }
static OrderMoveDomScope* findCreate(const AstSenTree* domainp, const AstScope* scopep) {
const DomScopeKey key = make_pair(domainp, scopep);
DomScopeMap::iterator iter = s_dsMap.find(key);
if (iter != s_dsMap.end()) {
return iter->second;
} else {
OrderMoveDomScope* domScopep = new OrderMoveDomScope(domainp, scopep);
s_dsMap.insert(make_pair(key, domScopep));
return domScopep;
}
}
string name() const {
return (string("MDS:") + " d=" + cvtToHex(domainp()) + " s=" + cvtToHex(scopep()));
}
};
OrderMoveDomScope::DomScopeMap OrderMoveDomScope::s_dsMap;
inline std::ostream& operator<<(std::ostream& lhs, const OrderMoveDomScope& rhs) {
lhs << rhs.name();
return lhs;
}
//######################################################################
// Order information stored under each AstNode::user1p()...
// Types of vertex we can create
enum WhichVertex { WV_STD, WV_PRE, WV_PORD, WV_POST, WV_SETL, WV_MAX };
class OrderUser {
// Stored in AstVarScope::user1p, a list of all the various vertices
// that can exist for one given variable
private:
OrderVarVertex* m_vertexp[WV_MAX]; // Vertex of each type (if non NULL)
public:
// METHODS
OrderVarVertex* newVarUserVertex(V3Graph* graphp, AstScope* scopep, AstVarScope* varscp,
WhichVertex type, bool* createdp = NULL) {
UASSERT_OBJ(type < WV_MAX, varscp, "Bad case");
OrderVarVertex* vertexp = m_vertexp[type];
if (!vertexp) {
UINFO(6, "New vertex " << varscp << endl);
if (createdp) *createdp = true;
switch (type) {
case WV_STD: vertexp = new OrderVarStdVertex(graphp, scopep, varscp); break;
case WV_PRE: vertexp = new OrderVarPreVertex(graphp, scopep, varscp); break;
case WV_PORD: vertexp = new OrderVarPordVertex(graphp, scopep, varscp); break;
case WV_POST: vertexp = new OrderVarPostVertex(graphp, scopep, varscp); break;
case WV_SETL: vertexp = new OrderVarSettleVertex(graphp, scopep, varscp); break;
default: varscp->v3fatalSrc("Bad case");
}
m_vertexp[type] = vertexp;
} else {
if (createdp) *createdp = false;
}
return vertexp;
}
public:
// CONSTRUCTORS
OrderUser() {
for (int i = 0; i < WV_MAX; i++) m_vertexp[i] = NULL;
}
~OrderUser() {}
};
//######################################################################
// Comparator classes
//! Comparator for width of associated variable
struct OrderVarWidthCmp {
bool operator()(OrderVarStdVertex* vsv1p, OrderVarStdVertex* vsv2p) {
return vsv1p->varScp()->varp()->width() > vsv2p->varScp()->varp()->width();
}
};
//! Comparator for fanout of vertex
struct OrderVarFanoutCmp {
bool operator()(OrderVarStdVertex* vsv1p, OrderVarStdVertex* vsv2p) {
return vsv1p->fanout() > vsv2p->fanout();
}
};
//######################################################################
// The class is used for propagating the clocker attribute for further
// avoiding marking clock signals as circular.
// Transformation:
// while (newClockerMarked)
// check all assignments
// if RHS is marked as clocker:
// mark LHS as clocker as well.
// newClockerMarked = true;
//
// In addition it also check whether clock and data signals are mixed, and
// produce a CLKDATA warning if so.
//
class OrderClkMarkVisitor : public AstNVisitor {
private:
bool m_hasClk; // flag indicating whether there is clock signal on rhs
bool m_inClocked; // Currently inside a sequential block
bool m_newClkMarked; // Flag for deciding whether a new run is needed
bool m_inAss; // Currently inside of a assignment
int m_childClkWidth; // If in hasClk, width of clock signal in child
int m_rightClkWidth; // Clk width on the RHS
// METHODS
VL_DEBUG_FUNC; // Declare debug()
virtual void visit(AstNodeAssign* nodep) VL_OVERRIDE {
m_hasClk = false;
if (AstVarRef* varrefp = VN_CAST(nodep->rhsp(), VarRef)) {
this->visit(varrefp);
m_rightClkWidth = varrefp->width();
if (varrefp->varp()->attrClocker() == VVarAttrClocker::CLOCKER_YES) {
if (m_inClocked) {
varrefp->v3warn(
CLKDATA, "Clock used as data (on rhs of assignment) in sequential block "
<< varrefp->prettyNameQ() << endl);
} else {
m_hasClk = true;
UINFO(5, "node is already marked as clocker " << varrefp << endl);
}
}
} else {
m_inAss = true;
m_childClkWidth = 0;
iterateAndNextNull(nodep->rhsp());
m_rightClkWidth = m_childClkWidth;
m_inAss = false;
}
// do the marking
if (m_hasClk) {
if (nodep->lhsp()->width() > m_rightClkWidth) {
nodep->v3warn(CLKDATA, "Clock is assigned to part of data signal " << nodep->lhsp()
<< endl);
UINFO(4, "CLKDATA: lhs with width " << nodep->lhsp()->width() << endl);
UINFO(4, " but rhs clock with width " << m_rightClkWidth << endl);
return; // skip the marking
}
const AstVarRef* lhsp = VN_CAST(nodep->lhsp(), VarRef);
if (lhsp && (lhsp->varp()->attrClocker() == VVarAttrClocker::CLOCKER_UNKNOWN)) {
lhsp->varp()->attrClocker(VVarAttrClocker::CLOCKER_YES); // mark as clocker
m_newClkMarked = true; // enable a further run since new clocker is marked
UINFO(5, "node is newly marked as clocker by assignment " << lhsp << endl);
}
}
}
virtual void visit(AstVarRef* nodep) VL_OVERRIDE {
if (m_inAss && nodep->varp()->attrClocker() == VVarAttrClocker::CLOCKER_YES) {
if (m_inClocked) {
nodep->v3warn(CLKDATA,
"Clock used as data (on rhs of assignment) in sequential block "
<< nodep->prettyNameQ());
} else {
m_hasClk = true;
m_childClkWidth = nodep->width(); // Pass up
UINFO(5, "node is already marked as clocker " << nodep << endl);
}
}
}
virtual void visit(AstConcat* nodep) VL_OVERRIDE {
if (m_inAss) {
iterateAndNextNull(nodep->lhsp());
int lw = m_childClkWidth;
iterateAndNextNull(nodep->rhsp());
int rw = m_childClkWidth;
m_childClkWidth = lw + rw; // Pass up
}
}
virtual void visit(AstNodeSel* nodep) VL_OVERRIDE {
if (m_inAss) {
iterateChildren(nodep);
// Pass up result width
if (m_childClkWidth > nodep->width()) m_childClkWidth = nodep->width();
}
}
virtual void visit(AstSel* nodep) VL_OVERRIDE {
if (m_inAss) {
iterateChildren(nodep);
if (m_childClkWidth > nodep->width()) m_childClkWidth = nodep->width();
}
}
virtual void visit(AstReplicate* nodep) VL_OVERRIDE {
if (m_inAss) {
iterateChildren(nodep);
if (VN_IS(nodep->rhsp(), Const)) {
m_childClkWidth = m_childClkWidth * VN_CAST(nodep->rhsp(), Const)->toUInt();
} else {
m_childClkWidth = nodep->width(); // can not check in this case.
}
}
}
virtual void visit(AstActive* nodep) VL_OVERRIDE {
m_inClocked = nodep->hasClocked();
iterateChildren(nodep);
m_inClocked = false;
}
virtual void visit(AstNode* nodep) VL_OVERRIDE { iterateChildren(nodep); }
public:
// CONSTRUCTORS
explicit OrderClkMarkVisitor(AstNode* nodep) {
m_hasClk = false;
m_inClocked = false;
m_inAss = false;
m_childClkWidth = 0;
m_rightClkWidth = 0;
do {
m_newClkMarked = false;
iterate(nodep);
} while (m_newClkMarked);
}
virtual ~OrderClkMarkVisitor() {}
};
//######################################################################
// The class checks if the assignment generates a clock.
class OrderClkAssVisitor : public AstNVisitor {
private:
bool m_clkAss; // There is signals marked as clocker in the assignment
// METHODS
VL_DEBUG_FUNC; // Declare debug()
virtual void visit(AstNodeAssign* nodep) VL_OVERRIDE {
if (const AstVarRef* varrefp = VN_CAST(nodep->lhsp(), VarRef)) {
if (varrefp->varp()->attrClocker() == VVarAttrClocker::CLOCKER_YES) {
m_clkAss = true;
UINFO(6, "node was marked as clocker " << varrefp << endl);
}
}
iterateChildren(nodep->rhsp());
}
virtual void visit(AstVarRef*) VL_OVERRIDE {
// Previous versions checked attrClocker() here, but this breaks
// the updated t_clocker VCD test.
// If reenable this visitor note AstNodeMath short circuit below
}
virtual void visit(AstNodeMath*) VL_OVERRIDE {} // Accelerate
virtual void visit(AstNode* nodep) VL_OVERRIDE { iterateChildren(nodep); }
public:
// CONSTRUCTORS
explicit OrderClkAssVisitor(AstNode* nodep) {
m_clkAss = false;
iterate(nodep);
}
virtual ~OrderClkAssVisitor() {}
// METHODS
bool isClkAss() { return m_clkAss; }
};
//######################################################################
// ProcessMoveBuildGraph
template <class T_MoveVertex> class ProcessMoveBuildGraph {
// ProcessMoveBuildGraph takes as input the fine-grained graph of
// OrderLogicVertex, OrderVarVertex, etc; this is 'm_graph' in
// OrderVisitor. It produces a slightly coarsened graph to drive the
// code scheduling.
//
// * For the serial code scheduler, the new graph contains
// nodes of type OrderMoveVertex.
//
// * For the threaded code scheduler, the new graph contains
// nodes of type MTaskMoveVertex.
//
// * The difference in output type is abstracted away by the
// 'T_MoveVertex' template parameter; ProcessMoveBuildGraph otherwise
// works the same way for both cases.
// TYPES
typedef std::pair<const V3GraphVertex*, const AstSenTree*> VxDomPair;
// Maps an (original graph vertex, domain) pair to a T_MoveVertex
// Not vl_unordered_map, because std::pair doesn't provide std::hash
typedef std::map<VxDomPair, T_MoveVertex*> Var2Move;
typedef vl_unordered_map<const OrderLogicVertex*, T_MoveVertex*> Logic2Move;
public:
class MoveVertexMaker {
public:
// Clients of ProcessMoveBuildGraph must supply MoveVertexMaker
// which creates new T_MoveVertex's. Each new vertex wraps lvertexp
// (which may be NULL.)
virtual T_MoveVertex* makeVertexp( //
OrderLogicVertex* lvertexp, const OrderEitherVertex* varVertexp,
const AstScope* scopep, const AstSenTree* domainp)
= 0;
virtual void freeVertexp(T_MoveVertex* freeMep) = 0;
};
private:
// MEMBERS
const V3Graph* m_graphp; // Input graph of OrderLogicVertex's etc
V3Graph* m_outGraphp; // Output graph of T_MoveVertex's
MoveVertexMaker* m_vxMakerp; // Factory class for T_MoveVertex's
Logic2Move m_logic2move; // Map Logic to Vertex
Var2Move m_var2move; // Map Vars to Vertex
public:
// CONSTRUCTORS
ProcessMoveBuildGraph(const V3Graph* logicGraphp, // Input graph of OrderLogicVertex etc.
V3Graph* outGraphp, // Output graph of T_MoveVertex's
MoveVertexMaker* vxMakerp)
: m_graphp(logicGraphp)
, m_outGraphp(outGraphp)
, m_vxMakerp(vxMakerp) {}
virtual ~ProcessMoveBuildGraph() {}
// METHODS
void build() {
// How this works:
// - Create a T_MoveVertex for each OrderLogicVertex.
// - Following each OrderLogicVertex, search forward in the context of
// its domain...
// * If we encounter another OrderLogicVertex in non-exclusive
// domain, make the T_MoveVertex->T_MoveVertex edge.
// * If we encounter an OrderVarVertex, make a Vertex for the
// (OrderVarVertex, domain) pair and continue to search
// forward in the context of the same domain. Unless we
// already created that pair, in which case, we've already
// done the forward search, so stop.
// For each logic node, make a T_MoveVertex
for (V3GraphVertex* itp = m_graphp->verticesBeginp(); itp; itp = itp->verticesNextp()) {
if (OrderLogicVertex* lvertexp = dynamic_cast<OrderLogicVertex*>(itp)) {
T_MoveVertex* moveVxp = m_vxMakerp->makeVertexp(lvertexp, NULL, lvertexp->scopep(),
lvertexp->domainp());
if (moveVxp) {
// Cross link so we can find it later
m_logic2move[lvertexp] = moveVxp;
}
}
}
// Build edges between logic vertices
for (V3GraphVertex* itp = m_graphp->verticesBeginp(); itp; itp = itp->verticesNextp()) {
if (OrderLogicVertex* lvertexp = dynamic_cast<OrderLogicVertex*>(itp)) {
T_MoveVertex* moveVxp = m_logic2move[lvertexp];
if (moveVxp) { iterate(moveVxp, lvertexp, lvertexp->domainp()); }
}
}
}
private:
// Return true if moveVxp has downstream dependencies
bool iterate(T_MoveVertex* moveVxp, const V3GraphVertex* origVxp, const AstSenTree* domainp) {
bool madeDeps = false;
// Search forward from given original vertex, making new edges from
// moveVxp forward
for (V3GraphEdge* edgep = origVxp->outBeginp(); edgep; edgep = edgep->outNextp()) {
if (edgep->weight() == 0) { // Was cut
continue;
}
int weight = edgep->weight();
if (const OrderLogicVertex* toLVertexp
= dynamic_cast<const OrderLogicVertex*>(edgep->top())) {
// Do not construct dependencies across exclusive domains.
if (domainsExclusive(domainp, toLVertexp->domainp())) continue;
// Path from vertexp to a logic vertex; new edge.
// Note we use the last edge's weight, not some function of
// multiple edges
new OrderEdge(m_outGraphp, moveVxp, m_logic2move[toLVertexp], weight);
madeDeps = true;
} else {
// This is an OrderVarVertex or other vertex representing
// data. (Could be var, settle, or input type vertex.)
const V3GraphVertex* nonLogicVxp = edgep->top();
VxDomPair key(nonLogicVxp, domainp);
if (!m_var2move[key]) {
const OrderEitherVertex* eithp
= dynamic_cast<const OrderEitherVertex*>(nonLogicVxp);
T_MoveVertex* newMoveVxp
= m_vxMakerp->makeVertexp(NULL, eithp, eithp->scopep(), domainp);
m_var2move[key] = newMoveVxp;
// Find downstream logics that depend on (var, domain)
if (!iterate(newMoveVxp, edgep->top(), domainp)) {
// No downstream dependencies, so remove this
// intermediate vertex.
m_var2move[key] = NULL;
m_vxMakerp->freeVertexp(newMoveVxp);
continue;
}
}
// Create incoming edge, from previous logic that writes
// this var, to the Vertex representing the (var,domain)
new OrderEdge(m_outGraphp, moveVxp, m_var2move[key], weight);
madeDeps = true;
}
}
return madeDeps;
}
VL_UNCOPYABLE(ProcessMoveBuildGraph);
};
//######################################################################
// OrderMoveVertexMaker and related
class OrderMoveVertexMaker : public ProcessMoveBuildGraph<OrderMoveVertex>::MoveVertexMaker {
// MEMBERS
V3Graph* m_pomGraphp;
V3List<OrderMoveVertex*>* m_pomWaitingp;
public:
// CONSTRUCTORS
OrderMoveVertexMaker(V3Graph* pomGraphp, V3List<OrderMoveVertex*>* pomWaitingp)
: m_pomGraphp(pomGraphp)
, m_pomWaitingp(pomWaitingp) {}
// METHODS
OrderMoveVertex* makeVertexp(OrderLogicVertex* lvertexp, const OrderEitherVertex*,
const AstScope* scopep, const AstSenTree* domainp) {
OrderMoveVertex* resultp = new OrderMoveVertex(m_pomGraphp, lvertexp);
resultp->domScopep(OrderMoveDomScope::findCreate(domainp, scopep));
resultp->m_pomWaitingE.pushBack(*m_pomWaitingp, resultp);
return resultp;
}
void freeVertexp(OrderMoveVertex* freeMep) {
freeMep->m_pomWaitingE.unlink(*m_pomWaitingp, freeMep);
freeMep->unlinkDelete(m_pomGraphp);
}
private:
VL_UNCOPYABLE(OrderMoveVertexMaker);
};
class OrderMTaskMoveVertexMaker : public ProcessMoveBuildGraph<MTaskMoveVertex>::MoveVertexMaker {
V3Graph* m_pomGraphp;
public:
explicit OrderMTaskMoveVertexMaker(V3Graph* pomGraphp)
: m_pomGraphp(pomGraphp) {}
MTaskMoveVertex* makeVertexp(OrderLogicVertex* lvertexp, const OrderEitherVertex* varVertexp,
const AstScope* scopep, const AstSenTree* domainp) {
// Exclude initial/settle logic from the mtasks graph.
// We'll output time-zero logic separately.
if (domainp->hasInitial() || domainp->hasSettle()) return NULL;
return new MTaskMoveVertex(m_pomGraphp, lvertexp, varVertexp, scopep, domainp);
}
void freeVertexp(MTaskMoveVertex* freeMep) { freeMep->unlinkDelete(m_pomGraphp); }
private:
VL_UNCOPYABLE(OrderMTaskMoveVertexMaker);
};
class OrderVerticesByDomainThenScope {
PartPtrIdMap m_ids;
public:
virtual bool operator()(const V3GraphVertex* lhsp, const V3GraphVertex* rhsp) const {
const MTaskMoveVertex* l_vxp = dynamic_cast<const MTaskMoveVertex*>(lhsp);
const MTaskMoveVertex* r_vxp = dynamic_cast<const MTaskMoveVertex*>(rhsp);
vluint64_t l_id = m_ids.findId(l_vxp->domainp());
vluint64_t r_id = m_ids.findId(r_vxp->domainp());
if (l_id < r_id) return true;
if (l_id > r_id) return false;
l_id = m_ids.findId(l_vxp->scopep());
r_id = m_ids.findId(r_vxp->scopep());
return l_id < r_id;
}
};
class MTaskVxIdLessThan {
public:
MTaskVxIdLessThan() {}
virtual ~MTaskVxIdLessThan() {}
// Sort vertex's, which must be AbstractMTask's, into a deterministic
// order by comparing their serial IDs.
virtual bool operator()(const V3GraphVertex* lhsp, const V3GraphVertex* rhsp) const {
const AbstractMTask* lmtaskp = dynamic_cast<const AbstractLogicMTask*>(lhsp);
const AbstractMTask* rmtaskp = dynamic_cast<const AbstractLogicMTask*>(rhsp);
return lmtaskp->id() < rmtaskp->id();
}
};
//######################################################################
// Order class functions
class OrderVisitor : public AstNVisitor {
private:
// NODE STATE
// Forming graph:
// Entire Netlist:
// AstVarScope::user1p -> OrderUser* for usage var
// {statement}Node::user1p-> AstModule* statement is under
// USER4 Cleared on each Logic stmt
// AstVarScope::user4() -> VarUsage(gen/con/both). Where already encountered signal
// Ordering (user3/4/5 cleared between forming and ordering)
// AstScope::user1p() -> AstNodeModule*. Module this scope is under
// AstNodeModule::user3() -> Number of routines created
// Each call to V3Const::constify
// AstNode::user4() Used by V3Const::constify, called below
AstUser1InUse m_inuser1;
AstUser2InUse m_inuser2;
AstUser3InUse m_inuser3;
// AstUser4InUse m_inuser4; // Used only when building tree, so below
// STATE
OrderGraph m_graph; // Scoreboard of var usages/dependencies
SenTreeFinder m_finder; // Find global sentree's and add them
AstSenTree* m_comboDomainp; // Combo activation tree
AstSenTree* m_deleteDomainp; // Delete this from tree
OrderInputsVertex* m_inputsVxp; // Top level vertex all inputs point from
OrderLogicVertex* m_logicVxp; // Current statement being tracked, NULL=ignored
AstTopScope* m_topScopep; // Current top scope being processed
AstScope* m_scopetopp; // Scope under TOPSCOPE
AstNodeModule* m_modp; // Current module
AstScope* m_scopep; // Current scope being processed
AstActive* m_activep; // Current activation block
bool m_inSenTree; // Underneath AstSenItem; any varrefs are clocks
bool m_inClocked; // Underneath clocked block
bool m_inClkAss; // Underneath AstAssign
bool m_inPre; // Underneath AstAssignPre
bool m_inPost; // Underneath AstAssignPost
OrderLogicVertex* m_activeSenVxp; // Sensitivity vertex
std::deque<OrderUser*> m_orderUserps; // All created OrderUser's for later deletion.
// STATE... for inside process
AstCFunc* m_pomNewFuncp; // Current function being created
int m_pomNewStmts; // Statements in function being created
V3Graph m_pomGraph; // Graph of logic elements to move
V3List<OrderMoveVertex*> m_pomWaiting; // List of nodes needing inputs to become ready
protected:
friend class OrderMoveDomScope;
V3List<OrderMoveDomScope*> m_pomReadyDomScope; // List of ready domain/scope pairs, by loopId
std::vector<OrderVarStdVertex*> m_unoptflatVars; // Vector of variables in UNOPTFLAT loop
private:
// STATS
VDouble0 m_statCut[OrderVEdgeType::_ENUM_END]; // Count of each edge type cut
// TYPES
enum VarUsage { VU_NONE = 0, VU_CON = 1, VU_GEN = 2 };
// METHODS
VL_DEBUG_FUNC; // Declare debug()
void iterateNewStmt(AstNode* nodep) {
if (m_scopep) {
UINFO(4, " STMT " << nodep << endl);
// VV***** We reset user4p()
AstNode::user4ClearTree();
UASSERT_OBJ(m_activep && m_activep->sensesp(), nodep, "NULL");
// If inside combo logic, ignore the domain, we'll assign one based on interconnect
AstSenTree* startDomainp = m_activep->sensesp();
if (startDomainp->hasCombo()) startDomainp = NULL;
m_logicVxp = new OrderLogicVertex(&m_graph, m_scopep, startDomainp, nodep);
if (m_activeSenVxp) {
// If in a clocked activation, add a link from the sensitivity to this block
// Add edge logic_sensitive_vertex->logic_vertex
new OrderEdge(&m_graph, m_activeSenVxp, m_logicVxp, WEIGHT_NORMAL);
}
nodep->user1p(m_modp);
iterateChildren(nodep);
m_logicVxp = NULL;
}
}
OrderVarVertex* newVarUserVertex(AstVarScope* varscp, WhichVertex type,
bool* createdp = NULL) {
if (!varscp->user1p()) {
OrderUser* newup = new OrderUser();
m_orderUserps.push_back(newup);
varscp->user1p(newup);
}
OrderUser* up = reinterpret_cast<OrderUser*>(varscp->user1p());
OrderVarVertex* varVxp = up->newVarUserVertex(&m_graph, m_scopep, varscp, type, createdp);
return varVxp;
}
void process();
void processCircular();
typedef std::deque<OrderEitherVertex*> VertexVec;
void processInputs();
void processInputsInIterate(OrderEitherVertex* vertexp, VertexVec& todoVec);
void processInputsOutIterate(OrderEitherVertex* vertexp, VertexVec& todoVec);
void processSensitive();
void processDomains();
void processDomainsIterate(OrderEitherVertex* vertexp);
void processEdgeReport();
// processMove* routines schedule serial execution
void processMove();
void processMoveClear();
void processMoveBuildGraph();
void processMovePrepReady();
void processMoveReadyOne(OrderMoveVertex* vertexp);
void processMoveDoneOne(OrderMoveVertex* vertexp);
void processMoveOne(OrderMoveVertex* vertexp, OrderMoveDomScope* domScopep, int level);
AstActive* processMoveOneLogic(const OrderLogicVertex* lvertexp, AstCFunc*& newFuncpr,
int& newStmtsr);
// processMTask* routines schedule threaded execution
struct MTaskState {
typedef std::list<const OrderLogicVertex*> Logics;
AstMTaskBody* m_mtaskBodyp;
Logics m_logics;
ExecMTask* m_execMTaskp;
MTaskState()
: m_mtaskBodyp(NULL)
, m_execMTaskp(NULL) {}
};
void processMTasks();
typedef enum { LOGIC_INITIAL, LOGIC_SETTLE } InitialLogicE;
void processMTasksInitial(InitialLogicE logic_type);
string cfuncName(AstNodeModule* modp, AstSenTree* domainp, AstScope* scopep,
AstNode* forWhatp) {
modp->user3Inc();
int funcnum = modp->user3();
string name = (domainp->hasCombo()
? "_combo"
: (domainp->hasInitial()
? "_initial"
: (domainp->hasSettle()
? "_settle"
: (domainp->isMulti() ? "_multiclk" : "_sequent"))));
name = name + "__" + scopep->nameDotless() + "__" + cvtToStr(funcnum);
if (v3Global.opt.profCFuncs()) {
name += "__PROF__" + forWhatp->fileline()->profileFuncname();
}
return name;
}
void nodeMarkCircular(OrderVarVertex* vertexp, OrderEdge* edgep) {
AstVarScope* nodep = vertexp->varScp();
OrderLogicVertex* fromLVtxp = NULL;
OrderLogicVertex* toLVtxp = NULL;
if (edgep) {
fromLVtxp = dynamic_cast<OrderLogicVertex*>(edgep->fromp());
toLVtxp = dynamic_cast<OrderLogicVertex*>(edgep->top());
}
//
if ((fromLVtxp && VN_IS(fromLVtxp->nodep(), Initial))
|| (toLVtxp && VN_IS(toLVtxp->nodep(), Initial))) {
// IEEE does not specify ordering between initial blocks, so we
// can do whatever we want. We especially do not want to
// evaluate multiple times, so do not mark the edge circular
} else {
nodep->circular(true);
++m_statCut[vertexp->type()];
if (edgep) ++m_statCut[edgep->type()];
//
if (vertexp->isClock()) {
// Seems obvious; no warning yet
// nodep->v3warn(GENCLK, "Signal unoptimizable: Generated clock:
// "<<nodep->prettyNameQ());
} else if (nodep->varp()->isSigPublic()) {
nodep->v3warn(UNOPT,
"Signal unoptimizable: Feedback to public clock or circular logic: "
<< nodep->prettyNameQ());
if (!nodep->fileline()->warnIsOff(V3ErrorCode::UNOPT)
&& !nodep->fileline()->lastWarnWaived()) {
nodep->fileline()->modifyWarnOff(V3ErrorCode::UNOPT,
true); // Complain just once
// Give the user an example.
bool tempWeight = (edgep && edgep->weight() == 0);
// Else the below loop detect can't see the loop
if (tempWeight) edgep->weight(1);
// Calls OrderGraph::loopsVertexCb
m_graph.reportLoops(&OrderEdge::followComboConnected, vertexp);
if (tempWeight) edgep->weight(0);
}
} else {
// We don't use UNOPT, as there are lots of V2 places where
// it was needed, that aren't any more
// First v3warn not inside warnIsOff so we can see the suppressions with --debug
nodep->v3warn(UNOPTFLAT,
"Signal unoptimizable: Feedback to clock or circular logic: "
<< nodep->prettyNameQ());
if (!nodep->fileline()->warnIsOff(V3ErrorCode::UNOPTFLAT)
&& !nodep->fileline()->lastWarnWaived()) {
nodep->fileline()->modifyWarnOff(V3ErrorCode::UNOPTFLAT,
true); // Complain just once
// Give the user an example.
bool tempWeight = (edgep && edgep->weight() == 0);
// Else the below loop detect can't see the loop
if (tempWeight) edgep->weight(1);
// Calls OrderGraph::loopsVertexCb
m_graph.reportLoops(&OrderEdge::followComboConnected, vertexp);
if (tempWeight) edgep->weight(0);
if (v3Global.opt.reportUnoptflat()) {
// Report candidate variables for splitting
reportLoopVars(vertexp);
// Do a subgraph for the UNOPTFLAT loop
OrderGraph loopGraph;
m_graph.subtreeLoops(&OrderEdge::followComboConnected, vertexp,
&loopGraph);
loopGraph.dumpDotFilePrefixedAlways("unoptflat");
}
}
}
}
}
//! Find all variables in an UNOPTFLAT loop
//!
//! Ignore vars that are 1-bit wide and don't worry about generated
//! variables (PRE and POST vars, __Vdly__, __Vcellin__ and __VCellout).
//! What remains are candidates for splitting to break loops.
//!
//! node->user3 is used to mark if we have done a particular variable.
//! vertex->user is used to mark if we have seen this vertex before.
//!
//! @todo We could be cleverer in the future and consider just
//! the width that is generated/consumed.
void reportLoopVars(OrderVarVertex* vertexp) {
m_graph.userClearVertices();
AstNode::user3ClearTree();
m_unoptflatVars.clear();
reportLoopVarsIterate(vertexp, vertexp->color());
AstNode::user3ClearTree();
m_graph.userClearVertices();
// May be very large vector, so only report the "most important"
// elements. Up to 10 of the widest
std::cerr << V3Error::warnMore() << "... Widest candidate vars to split:" << endl;
std::stable_sort(m_unoptflatVars.begin(), m_unoptflatVars.end(), OrderVarWidthCmp());
vl_unordered_set<const AstVar*> canSplitList;
int lim = m_unoptflatVars.size() < 10 ? m_unoptflatVars.size() : 10;
for (int i = 0; i < lim; i++) {
OrderVarStdVertex* vsvertexp = m_unoptflatVars[i];
AstVar* varp = vsvertexp->varScp()->varp();
const bool canSplit = V3SplitVar::canSplitVar(varp);
std::cerr << V3Error::warnMore() << " " << varp->fileline() << " "
<< varp->prettyName() << std::dec << ", width " << varp->width()
<< ", fanout " << vsvertexp->fanout();
if (canSplit) {
std::cerr << ", can split_var";
canSplitList.insert(varp);
}
std::cerr << std::endl;
}
// Up to 10 of the most fanned out
std::cerr << V3Error::warnMore() << "... Most fanned out candidate vars to split:" << endl;
std::stable_sort(m_unoptflatVars.begin(), m_unoptflatVars.end(), OrderVarFanoutCmp());
lim = m_unoptflatVars.size() < 10 ? m_unoptflatVars.size() : 10;
for (int i = 0; i < lim; i++) {
OrderVarStdVertex* vsvertexp = m_unoptflatVars[i];
AstVar* varp = vsvertexp->varScp()->varp();
const bool canSplit = V3SplitVar::canSplitVar(varp);
std::cerr << V3Error::warnMore() << " " << varp->fileline() << " "
<< varp->prettyName() << ", width " << std::dec << varp->width()
<< ", fanout " << vsvertexp->fanout();
if (canSplit) {
std::cerr << ", can split_var";
canSplitList.insert(varp);
}
std::cerr << endl;
}
if (!canSplitList.empty()) {
std::cerr << V3Error::warnMore()
<< "... Suggest add /*verilator split_var*/ to appropriate variables above."
<< std::endl;
}
V3Stats::addStat("Order, SplitVar, candidates", canSplitList.size());
m_unoptflatVars.clear();
}
void reportLoopVarsIterate(V3GraphVertex* vertexp, uint32_t color) {
if (vertexp->user()) return; // Already done
vertexp->user(1);
if (OrderVarStdVertex* vsvertexp = dynamic_cast<OrderVarStdVertex*>(vertexp)) {
// Only reporting on standard variable vertices
AstVar* varp = vsvertexp->varScp()->varp();
if (!varp->user3()) {
string name = varp->prettyName();
if ((varp->width() != 1) && (name.find("__Vdly") == string::npos)
&& (name.find("__Vcell") == string::npos)) {
// Variable to report on and not yet done
m_unoptflatVars.push_back(vsvertexp);
}
varp->user3Inc();
}
}
// Iterate through all the to and from vertices of the same color
for (V3GraphEdge* edgep = vertexp->outBeginp(); edgep; edgep = edgep->outNextp()) {
if (edgep->top()->color() == color) reportLoopVarsIterate(edgep->top(), color);
}
for (V3GraphEdge* edgep = vertexp->inBeginp(); edgep; edgep = edgep->inNextp()) {
if (edgep->fromp()->color() == color) reportLoopVarsIterate(edgep->fromp(), color);
}
}
// VISITORS
virtual void visit(AstNetlist* nodep) VL_OVERRIDE {
{
AstUser4InUse m_inuser4; // Used only when building tree, so below
iterateChildren(nodep);
}
// We're finished, complete the topscopes
if (m_topScopep) {
process();
m_topScopep = NULL;
}
}
virtual void visit(AstTopScope* nodep) VL_OVERRIDE {
// Process the last thing we're finishing
UASSERT_OBJ(!m_topScopep, nodep, "Only one topscope should ever be created");
UINFO(2, " Loading tree...\n");
// VV***** We reset userp()
AstNode::user1ClearTree();
AstNode::user3ClearTree();
m_graph.clear();
m_activep = NULL;
m_topScopep = nodep;
m_scopetopp = nodep->scopep();
// Find global SenTrees
m_finder.init(m_topScopep);
// ProcessDomainsIterate will use these when it needs to move
// something to a combodomain. This saves a ton of find() operations.
AstSenTree* combp
= new AstSenTree(nodep->fileline(), // Gets cloned() so ok if goes out of scope
new AstSenItem(nodep->fileline(), AstSenItem::Combo()));
m_comboDomainp = m_finder.getSenTree(combp);
pushDeletep(combp); // Cleanup when done
// Fake AstSenTree we set domainp to indicate needs deletion
m_deleteDomainp = new AstSenTree(nodep->fileline(),
new AstSenItem(nodep->fileline(), AstSenItem::Settle()));
pushDeletep(m_deleteDomainp); // Cleanup when done
UINFO(5, " DeleteDomain = " << m_deleteDomainp << endl);
// Base vertices
m_activeSenVxp = NULL;
m_inputsVxp = new OrderInputsVertex(&m_graph, NULL);
//
iterateChildren(nodep);
// Done topscope, erase extra user information
// user1p passed to next process() operation
AstNode::user3ClearTree();
AstNode::user4ClearTree();
}
virtual void visit(AstNodeModule* nodep) VL_OVERRIDE {
AstNodeModule* origModp = m_modp;
{
m_modp = nodep;
iterateChildren(nodep);
}
m_modp = origModp;
}
virtual void visit(AstClass*) VL_OVERRIDE {}
virtual void visit(AstScope* nodep) VL_OVERRIDE {
UINFO(4, " SCOPE " << nodep << endl);
m_scopep = nodep;
m_logicVxp = NULL;
m_activeSenVxp = NULL;
nodep->user1p(m_modp);
// Iterate
iterateChildren(nodep);
m_scopep = NULL;
}
virtual void visit(AstActive* nodep) VL_OVERRIDE {
// Create required activation blocks and add to module
UINFO(4, " ACTIVE " << nodep << endl);
m_activep = nodep;
m_activeSenVxp = NULL;
m_inClocked = nodep->hasClocked();
// Grab the sensitivity list
UASSERT_OBJ(!nodep->sensesStorep(), nodep,
"Senses should have been activeTop'ed to be global!");
iterate(nodep->sensesp());
// Collect statements under it
iterateChildren(nodep);
m_activep = NULL;
m_activeSenVxp = NULL;
m_inClocked = false;
}
virtual void visit(AstVarScope* nodep) VL_OVERRIDE {
// Create links to all input signals
UASSERT_OBJ(m_modp, nodep, "Scope not under module");
if (m_modp->isTop() && nodep->varp()->isNonOutput()) {
OrderVarVertex* varVxp = newVarUserVertex(nodep, WV_STD);
new OrderEdge(&m_graph, m_inputsVxp, varVxp, WEIGHT_INPUT);
}
}
virtual void visit(AstNodeVarRef* nodep) VL_OVERRIDE {
if (m_scopep) {
AstVarScope* varscp = nodep->varScopep();
UASSERT_OBJ(varscp, nodep, "Var didn't get varscoped in V3Scope.cpp");
if (m_inSenTree) {
// Add CLOCK dependency... This is a root of the tree we'll trace
UASSERT_OBJ(!nodep->lvalue(), nodep, "How can a sensitivity be setting a var?");
OrderVarVertex* varVxp = newVarUserVertex(varscp, WV_STD);
varVxp->isClock(true);
new OrderEdge(&m_graph, varVxp, m_activeSenVxp, WEIGHT_MEDIUM);
} else {
UASSERT_OBJ(m_logicVxp, nodep, "Var ref not under a logic block");
// What new directions is this used
// We don't want to add extra edges if the logic block has many usages of same var
bool gen = false;
bool con = false;
if (nodep->lvalue()) {
gen = !(varscp->user4() & VU_GEN);
} else {
con = !(varscp->user4() & VU_CON);
if ((varscp->user4() & VU_GEN) && !m_inClocked) {
// Dangerous assumption:
// If a variable is used in the same activation which defines it first,
// consider it something like:
// foo = 1
// foo = foo + 1
// and still optimize. This is the rule verilog-mode assumes for /*AS*/
// Note this will break though:
// if (sometimes) foo = 1
// foo = foo + 1
con = false;
}
if (varscp->varp()->attrClockEn() && !m_inPre && !m_inPost && !m_inClocked) {
// clock_enable attribute: user's worrying about it for us
con = false;
}
if (m_inClkAss
&& (varscp->varp()->attrClocker() != VVarAttrClocker::CLOCKER_YES)) {
con = false;
UINFO(4, "nodep used as clock_enable " << varscp << " in "
<< m_logicVxp->nodep() << endl);
}
}
if (gen) varscp->user4(varscp->user4() | VU_GEN);
if (con) varscp->user4(varscp->user4() | VU_CON);
// Add edges
if (!m_inClocked || m_inPost) {
// Combo logic
{ // not settle and (combo or inPost)
if (gen) {
// Add edge logic_vertex->logic_generated_var
OrderVarVertex* varVxp = newVarUserVertex(varscp, WV_STD);
if (m_inPost) {
new OrderPostCutEdge(&m_graph, m_logicVxp, varVxp);
// Mark the vertex. Used to control marking
// internal clocks circular, which must only
// happen if they are generated by delayed
// assignment.
UINFO(5,
" Found delayed assignment (post) " << varVxp << endl);
varVxp->isDelayed(true);
} else {
// If the lhs is a clocker, avoid marking that as circular by
// putting a hard edge instead of normal cuttable
if (varscp->varp()->attrClocker()
== VVarAttrClocker::CLOCKER_YES) {
new OrderEdge(&m_graph, m_logicVxp, varVxp, WEIGHT_NORMAL);
} else {
new OrderComboCutEdge(&m_graph, m_logicVxp, varVxp);
}
}
// For m_inPost:
// Add edge consumed_var_POST->logic_vertex
// This prevents a consumer of the "early" value to be scheduled
// after we've changed to the next-cycle value
// ALWAYS do it:
// There maybe a wire a=b; between the two blocks
OrderVarVertex* postVxp = newVarUserVertex(varscp, WV_POST);
new OrderEdge(&m_graph, postVxp, m_logicVxp, WEIGHT_POST);
}
if (con) {
// Add edge logic_consumed_var->logic_vertex
OrderVarVertex* varVxp = newVarUserVertex(varscp, WV_STD);
new OrderEdge(&m_graph, varVxp, m_logicVxp, WEIGHT_MEDIUM);
}
}
} else if (m_inPre) {
// AstAssignPre logic
if (gen) {
// Add edge logic_vertex->generated_var_PREORDER
OrderVarVertex* ordVxp = newVarUserVertex(varscp, WV_PORD);
new OrderEdge(&m_graph, m_logicVxp, ordVxp, WEIGHT_NORMAL);
// Add edge logic_vertex->logic_generated_var (same as if comb)
OrderVarVertex* varVxp = newVarUserVertex(varscp, WV_STD);
new OrderEdge(&m_graph, m_logicVxp, varVxp, WEIGHT_NORMAL);
}
if (con) {
// Add edge logic_consumed_var_PREVAR->logic_vertex
// This one is cutable (vs the producer) as there's
// only one of these, but many producers
OrderVarVertex* preVxp = newVarUserVertex(varscp, WV_PRE);
new OrderPreCutEdge(&m_graph, preVxp, m_logicVxp);
}
} else {
// Seq logic
if (gen) {
// Add edge logic_generated_var_PREORDER->logic_vertex
OrderVarVertex* ordVxp = newVarUserVertex(varscp, WV_PORD);
new OrderEdge(&m_graph, ordVxp, m_logicVxp, WEIGHT_NORMAL);
// Add edge logic_vertex->logic_generated_var (same as if comb)
OrderVarVertex* varVxp = newVarUserVertex(varscp, WV_STD);
new OrderEdge(&m_graph, m_logicVxp, varVxp, WEIGHT_NORMAL);
}
if (con) {
// Add edge logic_vertex->consumed_var_PREVAR
// Generation of 'pre' because we want to indicate
// it should be before AstAssignPre
OrderVarVertex* preVxp = newVarUserVertex(varscp, WV_PRE);
new OrderEdge(&m_graph, m_logicVxp, preVxp, WEIGHT_NORMAL);
// Add edge logic_vertex->consumed_var_POST
OrderVarVertex* postVxp = newVarUserVertex(varscp, WV_POST);
new OrderEdge(&m_graph, m_logicVxp, postVxp, WEIGHT_POST);
}
}
}
}
}
virtual void visit(AstSenTree* nodep) VL_OVERRIDE {
// Having a node derived from the sentree isn't required for
// correctness, it merely makes the graph better connected
// and improves graph algorithmic performance
if (m_scopep) { // Else TOPSCOPE's SENTREE list
m_inSenTree = true;
if (nodep->hasClocked()) {
if (!m_activeSenVxp) {
m_activeSenVxp = new OrderLogicVertex(&m_graph, m_scopep, nodep, m_activep);
}
iterateChildren(nodep);
}
m_inSenTree = false;
}
}
virtual void visit(AstAlwaysPost* nodep) VL_OVERRIDE {
m_inPost = true;
iterateNewStmt(nodep);
m_inPost = false;
}
virtual void visit(AstAlways* nodep) VL_OVERRIDE { iterateNewStmt(nodep); }
virtual void visit(AstAlwaysPublic* nodep) VL_OVERRIDE { iterateNewStmt(nodep); }
virtual void visit(AstAssignAlias* nodep) VL_OVERRIDE { iterateNewStmt(nodep); }
virtual void visit(AstAssignW* nodep) VL_OVERRIDE {
OrderClkAssVisitor visitor(nodep);
m_inClkAss = visitor.isClkAss();
iterateNewStmt(nodep);
m_inClkAss = false;
}
virtual void visit(AstAssignPre* nodep) VL_OVERRIDE {
OrderClkAssVisitor visitor(nodep);
m_inClkAss = visitor.isClkAss();
m_inPre = true;
iterateNewStmt(nodep);
m_inPre = false;
m_inClkAss = false;
}
virtual void visit(AstAssignPost* nodep) VL_OVERRIDE {
OrderClkAssVisitor visitor(nodep);
m_inClkAss = visitor.isClkAss();
m_inPost = true;
iterateNewStmt(nodep);
m_inPost = false;
m_inClkAss = false;
}
virtual void visit(AstCoverToggle* nodep) VL_OVERRIDE { iterateNewStmt(nodep); }
virtual void visit(AstInitial* nodep) VL_OVERRIDE {
// We use initials to setup parameters and static consts's which may be referenced
// in user initial blocks. So use ordering to sort them all out.
iterateNewStmt(nodep);
}
virtual void visit(AstCFunc*) VL_OVERRIDE {
// Ignore for now
// We should detect what variables are set in the function, and make
// settlement code for them, then set a global flag, so we call "settle"
// on the next evaluation loop.
}
//--------------------
virtual void visit(AstNode* nodep) VL_OVERRIDE { iterateChildren(nodep); }
public:
// CONSTRUCTORS
OrderVisitor() {
m_topScopep = NULL;
m_scopetopp = NULL;
m_modp = NULL;
m_scopep = NULL;
m_activep = NULL;
m_inSenTree = false;
m_inClocked = false;
m_inClkAss = false;
m_inPre = m_inPost = false;
m_comboDomainp = NULL;
m_deleteDomainp = NULL;
m_inputsVxp = NULL;
m_activeSenVxp = NULL;
m_logicVxp = NULL;
m_pomNewFuncp = NULL;
m_pomNewStmts = 0;
if (debug()) m_graph.debug(5); // 3 is default if global debug; we want acyc debugging
}
virtual ~OrderVisitor() {
// Stats
for (int type = 0; type < OrderVEdgeType::_ENUM_END; type++) {
double count = double(m_statCut[type]);
if (count != 0.0) {
V3Stats::addStat(string("Order, cut, ") + OrderVEdgeType(type).ascii(), count);
}
}
// Destruction
for (std::deque<OrderUser*>::iterator it = m_orderUserps.begin();
it != m_orderUserps.end(); ++it) {
delete *it;
}
m_graph.debug(V3Error::debugDefault());
}
void main(AstNode* nodep) { iterate(nodep); }
};
//######################################################################
// General utilities
static bool domainsExclusive(const AstSenTree* fromp, const AstSenTree* top) {
// Return 'true' if we can prove that both 'from' and 'to' cannot both
// be active on the same eval pass, or false if we can't prove this.
//
// This detects the case of 'always @(posedge clk)'
// and 'always @(negedge clk)' being exclusive. It also detects
// that initial/settle blocks and post-initial blocks are exclusive.
//
// Are there any other cases we need to handle? Maybe not,
// because these are not exclusive:
// always @(posedge A or posedge B)
// always @(negedge A)
//
// ... unless you know more about A and B, which sounds hard.
bool toInitial = top->hasInitial() || top->hasSettle();
bool fromInitial = fromp->hasInitial() || fromp->hasSettle();
if (toInitial != fromInitial) return true;
const AstSenItem* fromSenListp = VN_CAST(fromp->sensesp(), SenItem);
const AstSenItem* toSenListp = VN_CAST(top->sensesp(), SenItem);
// If clk gating is ever reenabled, we may need to update this to handle
// AstSenGate also.
UASSERT_OBJ(fromSenListp, fromp, "sensitivity list item is not an AstSenItem");
UASSERT_OBJ(toSenListp, top, "sensitivity list item is not an AstSenItem");
if (fromSenListp->nextp()) return false;
if (toSenListp->nextp()) return false;
const AstNodeVarRef* fromVarrefp = fromSenListp->varrefp();
const AstNodeVarRef* toVarrefp = toSenListp->varrefp();
if (!fromVarrefp || !toVarrefp) return false;
// We know nothing about the relationship between different clocks here,
// so give up on proving anything.
if (fromVarrefp->varScopep() != toVarrefp->varScopep()) return false;
return fromSenListp->edgeType().exclusiveEdge(toSenListp->edgeType());
}
//######################################################################
// OrderMoveDomScope methods
// Check the domScope is on ready list, add if not
inline void OrderMoveDomScope::ready(OrderVisitor* ovp) {
if (!m_onReadyList) {
m_onReadyList = true;
m_readyDomScopeE.pushBack(ovp->m_pomReadyDomScope, this);
}
}
// Mark one vertex as finished, remove from ready list if done
inline void OrderMoveDomScope::movedVertex(OrderVisitor* ovp, OrderMoveVertex* vertexp) {
UASSERT_OBJ(m_onReadyList, vertexp,
"Moving vertex from ready when nothing was on que as ready.");
if (m_readyVertices.empty()) { // Else more work to get to later
m_onReadyList = false;
m_readyDomScopeE.unlink(ovp->m_pomReadyDomScope, this);
}
}
//######################################################################
// OrderVisitor - Clock propagation
void OrderVisitor::processInputs() {
m_graph.userClearVertices(); // Vertex::user() // 1 if input recursed, 2 if marked as input,
// 3 if out-edges recursed
// Start at input vertex, process from input-to-output order
VertexVec todoVec; // List of newly-input marked vectors we need to process
todoVec.push_front(m_inputsVxp);
m_inputsVxp->isFromInput(true); // By definition
while (!todoVec.empty()) {
OrderEitherVertex* vertexp = todoVec.back();
todoVec.pop_back();
processInputsOutIterate(vertexp, todoVec);
}
}
void OrderVisitor::processInputsInIterate(OrderEitherVertex* vertexp, VertexVec& todoVec) {
// Propagate PrimaryIn through simple assignments
if (vertexp->user()) return; // Already processed
if (false && debug() >= 9) {
UINFO(9, " InIIter " << vertexp << endl);
if (OrderLogicVertex* vvertexp = dynamic_cast<OrderLogicVertex*>(vertexp)) {
vvertexp->nodep()->dumpTree(cout, "- TT: ");
}
}
vertexp->user(1); // Processing
// First handle all inputs to this vertex, in most cases they'll be already processed earlier
// Also, determine if this vertex is an input
int inonly = 1; // 0=no, 1=maybe, 2=yes until a no
for (V3GraphEdge* edgep = vertexp->inBeginp(); edgep; edgep = edgep->inNextp()) {
OrderEitherVertex* frVertexp = static_cast<OrderEitherVertex*>(edgep->fromp());
processInputsInIterate(frVertexp, todoVec);
if (frVertexp->isFromInput()) {
if (inonly == 1) inonly = 2;
} else if (dynamic_cast<OrderVarPostVertex*>(frVertexp)) {
// Ignore post assignments, just for ordering
} else {
// UINFO(9, " InItStopDueTo " << frVertexp << endl);
inonly = 0;
break;
}
}
if (inonly == 2
&& vertexp->user() < 2) { // Set it. Note may have already been set earlier, too
UINFO(9, " Input reassignment: " << vertexp << endl);
vertexp->isFromInput(true);
vertexp->user(2); // 2 means on list
// Can't work on out-edges of a node we know is an input immediately,
// as it might visit other nodes before their input state is resolved.
// So push to list and work on it later when all in-edges known resolved
todoVec.push_back(vertexp);
}
// UINFO(9, " InIdone " << vertexp << endl);
}
void OrderVisitor::processInputsOutIterate(OrderEitherVertex* vertexp, VertexVec& todoVec) {
if (vertexp->user() == 3) return; // Already out processed
// UINFO(9, " InOIter " << vertexp << endl);
// First make sure input path is fully recursed
processInputsInIterate(vertexp, todoVec);
// Propagate PrimaryIn through simple assignments
UASSERT_OBJ(vertexp->isFromInput(), vertexp,
"processInputsOutIterate only for input marked vertexes");
vertexp->user(3); // out-edges processed
{
// Propagate PrimaryIn through simple assignments, following target of vertex
for (V3GraphEdge* edgep = vertexp->outBeginp(); edgep; edgep = edgep->outNextp()) {
OrderEitherVertex* toVertexp = static_cast<OrderEitherVertex*>(edgep->top());
if (OrderVarStdVertex* vvertexp = dynamic_cast<OrderVarStdVertex*>(toVertexp)) {
processInputsInIterate(vvertexp, todoVec);
}
if (OrderLogicVertex* vvertexp = dynamic_cast<OrderLogicVertex*>(toVertexp)) {
if (VN_IS(vvertexp->nodep(), NodeAssign)) {
processInputsInIterate(vvertexp, todoVec);
}
}
}
}
}
//######################################################################
// OrderVisitor - Circular detection
void OrderVisitor::processCircular() {
// Take broken edges and add circular flags
// The change detect code will use this to force changedets
for (V3GraphVertex* itp = m_graph.verticesBeginp(); itp; itp = itp->verticesNextp()) {
if (OrderVarStdVertex* vvertexp = dynamic_cast<OrderVarStdVertex*>(itp)) {
if (vvertexp->isClock() && !vvertexp->isFromInput()) {
// If a clock is generated internally, we need to do another
// loop through the entire evaluation. This fixes races; see
// t_clk_dpulse test.
//
// This all seems to hinge on how the clock is generated. If
// it is generated by delayed assignment, we need the loop. If
// it is combinatorial, we do not (and indeed it will break
// other tests such as t_gated_clk_1.
if (!v3Global.opt.orderClockDly()) {
UINFO(5, "Circular Clock, no-order-clock-delay " << vvertexp << endl);
nodeMarkCircular(vvertexp, NULL);
} else if (vvertexp->isDelayed()) {
UINFO(5, "Circular Clock, delayed " << vvertexp << endl);
nodeMarkCircular(vvertexp, NULL);
} else {
UINFO(5, "Circular Clock, not delayed " << vvertexp << endl);
}
}
// Also mark any cut edges
for (V3GraphEdge* edgep = vvertexp->outBeginp(); edgep; edgep = edgep->outNextp()) {
if (edgep->weight() == 0) { // was cut
OrderEdge* oedgep = dynamic_cast<OrderEdge*>(edgep);
UASSERT_OBJ(oedgep, vvertexp->varScp(), "Cutable edge not of proper type");
UINFO(6, " CutCircularO: " << vvertexp->name() << endl);
nodeMarkCircular(vvertexp, oedgep);
}
}
for (V3GraphEdge* edgep = vvertexp->inBeginp(); edgep; edgep = edgep->inNextp()) {
if (edgep->weight() == 0) { // was cut
OrderEdge* oedgep = dynamic_cast<OrderEdge*>(edgep);
UASSERT_OBJ(oedgep, vvertexp->varScp(), "Cutable edge not of proper type");
UINFO(6, " CutCircularI: " << vvertexp->name() << endl);
nodeMarkCircular(vvertexp, oedgep);
}
}
}
}
}
void OrderVisitor::processSensitive() {
// Sc sensitives are required on all inputs that go to a combo
// block. (Not inputs that go only to clocked blocks.)
for (V3GraphVertex* itp = m_graph.verticesBeginp(); itp; itp = itp->verticesNextp()) {
if (OrderVarStdVertex* vvertexp = dynamic_cast<OrderVarStdVertex*>(itp)) {
if (vvertexp->varScp()->varp()->isNonOutput()) {
// UINFO(0, " scsen " << vvertexp << endl);
for (V3GraphEdge* edgep = vvertexp->outBeginp(); edgep;
edgep = edgep->outNextp()) {
if (OrderEitherVertex* toVertexp
= dynamic_cast<OrderEitherVertex*>(edgep->top())) {
if (edgep->weight() && toVertexp->domainp()) {
// UINFO(0, " " << toVertexp->domainp() << endl);
if (toVertexp->domainp()->hasCombo()) {
vvertexp->varScp()->varp()->scSensitive(true);
}
}
}
}
}
}
}
}
void OrderVisitor::processDomains() {
for (V3GraphVertex* itp = m_graph.verticesBeginp(); itp; itp = itp->verticesNextp()) {
OrderEitherVertex* vertexp = dynamic_cast<OrderEitherVertex*>(itp);
UASSERT(vertexp, "Null or vertex not derived from EitherVertex");
processDomainsIterate(vertexp);
}
}
void OrderVisitor::processDomainsIterate(OrderEitherVertex* vertexp) {
// The graph routines have already sorted the vertexes and edges into best->worst order
// Assign clock domains to each signal.
// Sequential logic is forced into the same sequential domain.
// Combo logic may be pushed into a seq domain if all its inputs are the same domain,
// else, if all inputs are from flops, it's end-of-sequential code
// else, it's full combo code
if (vertexp->domainp()) return; // Already processed, or sequential logic
UINFO(5, " pdi: " << vertexp << endl);
OrderVarVertex* vvertexp = dynamic_cast<OrderVarVertex*>(vertexp);
AstSenTree* domainp = NULL;
UASSERT(m_comboDomainp, "not preset");
if (vvertexp && vvertexp->varScp()->varp()->isNonOutput()) domainp = m_comboDomainp;
if (vvertexp && vvertexp->varScp()->isCircular()) domainp = m_comboDomainp;
if (!domainp) {
for (V3GraphEdge* edgep = vertexp->inBeginp(); edgep; edgep = edgep->inNextp()) {
OrderEitherVertex* fromVertexp = static_cast<OrderEitherVertex*>(edgep->fromp());
if (edgep->weight() && fromVertexp->domainMatters()) {
UINFO(9, " from d=" << cvtToHex(fromVertexp->domainp()) << " " << fromVertexp
<< endl);
if (!domainp // First input to this vertex
|| domainp->hasSettle() // or, we can ignore being in the settle domain
|| domainp->hasInitial()) {
domainp = fromVertexp->domainp();
} else if (domainp->hasCombo()) {
// Once in combo, keep in combo; already as severe as we can get
} else if (fromVertexp->domainp()->hasCombo()) {
// Any combo input means this vertex must remain combo
domainp = m_comboDomainp;
} else if (fromVertexp->domainp()->hasSettle()
|| fromVertexp->domainp()->hasInitial()) {
// Ignore that we have a constant (initial) input
} else if (domainp != fromVertexp->domainp()) {
// Make a domain that merges the two domains
bool ddebug = debug() >= 9;
if (ddebug) { // LCOV_EXCL_START
cout << endl;
UINFO(0, " conflicting domain " << fromVertexp << endl);
UINFO(0, " dorig=" << domainp << endl);
domainp->dumpTree(cout);
UINFO(0, " d2 =" << fromVertexp->domainp() << endl);
fromVertexp->domainp()->dumpTree(cout);
} // LCOV_EXCL_STOP
AstSenTree* newtreep = domainp->cloneTree(false);
AstNodeSenItem* newtree2p = fromVertexp->domainp()->sensesp()->cloneTree(true);
UASSERT_OBJ(newtree2p, fromVertexp->domainp(),
"No senitem found under clocked domain");
newtreep->addSensesp(newtree2p);
newtree2p = NULL; // Below edit may replace it
V3Const::constifyExpensiveEdit(newtreep); // Remove duplicates
newtreep->multi(true); // Comment that it was made from 2 clock domains
domainp = m_finder.getSenTree(newtreep);
if (ddebug) { // LCOV_EXCL_START
UINFO(0, " dnew =" << newtreep << endl);
newtreep->dumpTree(cout);
UINFO(0, " find =" << domainp << endl);
domainp->dumpTree(cout);
cout << endl;
} // LCOV_EXCL_STOP
VL_DO_DANGLING(newtreep->deleteTree(), newtreep);
}
}
} // next input edgep
// Default the domain
// This is a node which has only constant inputs, or is otherwise indeterminate.
// It should have already been copied into the settle domain. Presumably it has
// inputs which we never trigger, or nothing it's sensitive to, so we can rip it out.
if (!domainp && vertexp->scopep()) domainp = m_deleteDomainp;
}
//
vertexp->domainp(domainp);
if (vertexp->domainp()) {
UINFO(5, " done d=" << cvtToHex(vertexp->domainp())
<< (vertexp->domainp()->hasCombo() ? " [COMB]" : "")
<< (vertexp->domainp()->isMulti() ? " [MULT]" : "") << " "
<< vertexp << endl);
}
}
//######################################################################
// OrderVisitor - Move graph construction
void OrderVisitor::processEdgeReport() {
// Make report of all signal names and what clock edges they have
string filename = v3Global.debugFilename("order_edges.txt");
const vl_unique_ptr<std::ofstream> logp(V3File::new_ofstream(filename));
if (logp->fail()) v3fatal("Can't write " << filename);
// Testing emitter: V3EmitV::verilogForTree(v3Global.rootp(), *logp);
std::deque<string> report;
for (V3GraphVertex* itp = m_graph.verticesBeginp(); itp; itp = itp->verticesNextp()) {
if (OrderVarVertex* vvertexp = dynamic_cast<OrderVarVertex*>(itp)) {
string name(vvertexp->varScp()->prettyName());
if (dynamic_cast<OrderVarPreVertex*>(itp)) {
name += " {PRE}";
} else if (dynamic_cast<OrderVarPostVertex*>(itp)) {
name += " {POST}";
} else if (dynamic_cast<OrderVarPordVertex*>(itp)) {
name += " {PORD}";
} else if (dynamic_cast<OrderVarSettleVertex*>(itp)) {
name += " {STL}";
}
std::ostringstream os;
os.setf(std::ios::left);
os << " " << cvtToHex(vvertexp->varScp()) << " " << std::setw(50) << name << " ";
AstSenTree* sentreep = vvertexp->domainp();
if (sentreep) V3EmitV::verilogForTree(sentreep, os);
report.push_back(os.str());
}
}
*logp << "Signals and their clock domains:" << endl;
stable_sort(report.begin(), report.end());
for (std::deque<string>::iterator it = report.begin(); it != report.end(); ++it) {
*logp << (*it) << endl;
}
}
void OrderVisitor::processMoveClear() {
OrderMoveDomScope::clear();
m_pomWaiting.reset();
m_pomReadyDomScope.reset();
m_pomGraph.clear();
}
void OrderVisitor::processMoveBuildGraph() {
// Build graph of only vertices
UINFO(5, " MoveBuildGraph\n");
processMoveClear();
m_pomGraph
.userClearVertices(); // Vertex::user->OrderMoveVertex*, last edge added or NULL=none
OrderMoveVertexMaker createOrderMoveVertex(&m_pomGraph, &m_pomWaiting);
ProcessMoveBuildGraph<OrderMoveVertex> serialPMBG(&m_graph, &m_pomGraph,
&createOrderMoveVertex);
serialPMBG.build();
}
//######################################################################
// OrderVisitor - Moving
void OrderVisitor::processMove() {
// The graph routines have already sorted the vertexes and edges into best->worst order
// Make a new waiting graph with only OrderLogicVertex's
// (Order is preserved in the recreation so the sorting is preserved)
// Move any node with all inputs ready to a "ready" graph mapped by domain and then scope
// While waiting graph ! empty (and also known: something in ready graph)
// For all scopes in domain of top ready vertex
// For all vertexes in domain&scope of top ready vertex
// Make ordered activation block for this module
// Add that new activation to the list of calls to make.
// Move logic to ordered active
// Any children that have all inputs now ready move from waiting->ready graph
// (This may add nodes the for loop directly above needs to detext)
processMovePrepReady();
// New domain... another loop
UINFO(5, " MoveIterate\n");
while (!m_pomReadyDomScope.empty()) {
// Start with top node on ready list's domain & scope
OrderMoveDomScope* domScopep = m_pomReadyDomScope.begin();
OrderMoveVertex* topVertexp = domScopep->readyVertices().begin(); // lintok-begin-on-ref
UASSERT(topVertexp, "domScope on ready list without any nodes ready under it");
// Work on all scopes ready inside this domain
while (domScopep) {
UINFO(6, " MoveDomain l=" << domScopep->domainp() << endl);
// Process all nodes ready under same domain & scope
m_pomNewFuncp = NULL;
while (OrderMoveVertex* vertexp
= domScopep->readyVertices().begin()) { // lintok-begin-on-ref
processMoveOne(vertexp, domScopep, 1);
}
// Done with scope/domain pair, pick new scope under same domain, or NULL if none left
OrderMoveDomScope* domScopeNextp = NULL;
for (OrderMoveDomScope* huntp = m_pomReadyDomScope.begin(); huntp;
huntp = huntp->readyDomScopeNextp()) {
if (huntp->domainp() == domScopep->domainp()) {
domScopeNextp = huntp;
break;
}
}
domScopep = domScopeNextp;
}
}
UASSERT(m_pomWaiting.empty(),
"Didn't converge; nodes waiting, none ready, perhaps some input activations lost.");
// Cleanup memory
processMoveClear();
}
void OrderVisitor::processMovePrepReady() {
// Make list of ready nodes
UINFO(5, " MovePrepReady\n");
for (OrderMoveVertex* vertexp = m_pomWaiting.begin(); vertexp;) {
OrderMoveVertex* nextp = vertexp->pomWaitingNextp();
if (vertexp->isWait() && vertexp->inEmpty()) { processMoveReadyOne(vertexp); }
vertexp = nextp;
}
}
void OrderVisitor::processMoveReadyOne(OrderMoveVertex* vertexp) {
// Recursive!
// Move one node from waiting to ready list
vertexp->setReady();
// Remove node from waiting list
vertexp->m_pomWaitingE.unlink(m_pomWaiting, vertexp);
if (vertexp->logicp()) {
// Add to ready list (indexed by domain and scope)
vertexp->m_readyVerticesE.pushBack(vertexp->domScopep()->m_readyVertices, vertexp);
vertexp->domScopep()->ready(this);
} else {
// vertexp represents a non-logic vertex.
// Recurse to mark its following neighbors ready.
processMoveDoneOne(vertexp);
}
}
void OrderVisitor::processMoveDoneOne(OrderMoveVertex* vertexp) {
// Move one node from ready to completion
vertexp->setMoved();
// Unlink from ready lists
if (vertexp->logicp()) {
vertexp->m_readyVerticesE.unlink(vertexp->domScopep()->m_readyVertices, vertexp);
vertexp->domScopep()->movedVertex(this, vertexp);
}
// Don't need to add it to another list, as we're done with it
// Mark our outputs as one closer to ready
for (V3GraphEdge *edgep = vertexp->outBeginp(), *nextp; edgep; edgep = nextp) {
nextp = edgep->outNextp();
OrderMoveVertex* toVertexp = static_cast<OrderMoveVertex*>(edgep->top());
UINFO(9, " Clear to " << (toVertexp->inEmpty() ? "[EMP] " : " ") << toVertexp
<< endl);
// Delete this edge
VL_DO_DANGLING(edgep->unlinkDelete(), edgep);
if (toVertexp->inEmpty()) {
// If destination node now has all inputs resolved; recurse to move that vertex
// This is thus depth first (before width) which keeps the
// resulting executable's d-cache happy.
processMoveReadyOne(toVertexp);
}
}
}
void OrderVisitor::processMoveOne(OrderMoveVertex* vertexp, OrderMoveDomScope* domScopep,
int level) {
UASSERT_OBJ(vertexp->domScopep() == domScopep, vertexp, "Domain mismatch; list misbuilt?");
const OrderLogicVertex* lvertexp = vertexp->logicp();
const AstScope* scopep = lvertexp->scopep();
UINFO(5, " POSmove l" << std::setw(3) << level << " d=" << cvtToHex(lvertexp->domainp())
<< " s=" << cvtToHex(scopep) << " " << lvertexp << endl);
AstActive* newActivep
= processMoveOneLogic(lvertexp, m_pomNewFuncp /*ref*/, m_pomNewStmts /*ref*/);
if (newActivep) m_scopetopp->addActivep(newActivep);
processMoveDoneOne(vertexp);
}
AstActive* OrderVisitor::processMoveOneLogic(const OrderLogicVertex* lvertexp,
AstCFunc*& newFuncpr, int& newStmtsr) {
AstActive* activep = NULL;
AstScope* scopep = lvertexp->scopep();
AstSenTree* domainp = lvertexp->domainp();
AstNode* nodep = lvertexp->nodep();
AstNodeModule* modp = VN_CAST(scopep->user1p(), NodeModule); // Stashed by visitor func
UASSERT(modp, "NULL");
if (VN_IS(nodep, SenTree)) {
// Just ignore sensitivities, we'll deal with them when we move statements that need them
} else { // Normal logic
// Make or borrow a CFunc to contain the new statements
if (v3Global.opt.profCFuncs()
|| (v3Global.opt.outputSplitCFuncs()
&& v3Global.opt.outputSplitCFuncs() < newStmtsr)) {
// Put every statement into a unique function to ease profiling or reduce function size
newFuncpr = NULL;
}
if (!newFuncpr && domainp != m_deleteDomainp) {
string name = cfuncName(modp, domainp, scopep, nodep);
newFuncpr = new AstCFunc(nodep->fileline(), name, scopep);
newFuncpr->argTypes(EmitCBaseVisitor::symClassVar());
newFuncpr->symProlog(true);
newStmtsr = 0;
if (domainp->hasInitial() || domainp->hasSettle()) newFuncpr->slow(true);
scopep->addActivep(newFuncpr);
// Where will we be adding the call?
activep = new AstActive(nodep->fileline(), name, domainp);
// Add a top call to it
AstCCall* callp = new AstCCall(nodep->fileline(), newFuncpr);
callp->argTypes("vlSymsp");
activep->addStmtsp(callp);
UINFO(6, " New " << newFuncpr << endl);
}
// Move the logic to the function we're creating
nodep->unlinkFrBack();
if (domainp == m_deleteDomainp) {
UINFO(4, " Ordering deleting pre-settled " << nodep << endl);
VL_DO_DANGLING(pushDeletep(nodep), nodep);
} else {
newFuncpr->addStmtsp(nodep);
if (v3Global.opt.outputSplitCFuncs()) {
// Add in the number of nodes we're adding
EmitCBaseCounterVisitor visitor(nodep);
newStmtsr += visitor.count();
}
}
}
return activep;
}
void OrderVisitor::processMTasksInitial(InitialLogicE logic_type) {
// Emit initial/settle logic. Initial blocks won't be part of the
// mtask partition, aren't eligible for parallelism.
//
int initStmts = 0;
AstCFunc* initCFunc = NULL;
AstScope* lastScopep = NULL;
for (V3GraphVertex* initVxp = m_graph.verticesBeginp(); initVxp;
initVxp = initVxp->verticesNextp()) {
OrderLogicVertex* initp = dynamic_cast<OrderLogicVertex*>(initVxp);
if (!initp) continue;
if ((logic_type == LOGIC_INITIAL) && !initp->domainp()->hasInitial()) continue;
if ((logic_type == LOGIC_SETTLE) && !initp->domainp()->hasSettle()) continue;
if (initp->scopep() != lastScopep) {
// Start new cfunc, don't let the cfunc cross scopes
initCFunc = NULL;
lastScopep = initp->scopep();
}
AstActive* newActivep = processMoveOneLogic(initp, initCFunc /*ref*/, initStmts /*ref*/);
if (newActivep) m_scopetopp->addActivep(newActivep);
}
}
void OrderVisitor::processMTasks() {
// For nondeterminism debug:
V3Partition::hashGraphDebug(&m_graph, "V3Order's m_graph");
processMTasksInitial(LOGIC_INITIAL);
processMTasksInitial(LOGIC_SETTLE);
// We already produced a graph of every var, input, logic, and settle
// block and all dependencies; this is 'm_graph'.
//
// Now, starting from m_graph, make a slightly-coarsened graph representing
// only logic, and discarding edges we know we can ignore.
// This is quite similar to the 'm_pomGraph' of the serial code gen:
V3Graph logicGraph;
OrderMTaskMoveVertexMaker create_mtask_vertex(&logicGraph);
ProcessMoveBuildGraph<MTaskMoveVertex> mtask_pmbg(&m_graph, &logicGraph, &create_mtask_vertex);
mtask_pmbg.build();
// Needed? We do this for m_pomGraph in serial mode, so do it here too:
logicGraph.removeRedundantEdges(&V3GraphEdge::followAlwaysTrue);
// Partition logicGraph into LogicMTask's. The partitioner will annotate
// each vertex in logicGraph with a 'color' which is really an mtask ID
// in this context.
V3Partition partitioner(&logicGraph);
V3Graph mtasks;
partitioner.go(&mtasks);
vl_unordered_map<unsigned /*mtask id*/, MTaskState> mtaskStates;
// Iterate through the entire logicGraph. For each logic node,
// attach it to a per-MTask ordered list of logic nodes.
// This is the order we'll execute logic nodes within the MTask.
//
// MTasks may span scopes and domains, so sort by both here:
GraphStream<OrderVerticesByDomainThenScope> emit_logic(&logicGraph);
const V3GraphVertex* moveVxp;
while ((moveVxp = emit_logic.nextp())) {
const MTaskMoveVertex* movep = dynamic_cast<const MTaskMoveVertex*>(moveVxp);
unsigned mtaskId = movep->color();
UASSERT(mtaskId > 0, "Every MTaskMoveVertex should have an mtask assignment >0");
if (movep->logicp()) {
// Add this logic to the per-mtask order
mtaskStates[mtaskId].m_logics.push_back(movep->logicp());
// Since we happen to be iterating over every logic node,
// take this opportunity to annotate each AstVar with the id's
// of mtasks that consume it and produce it. We'll use this
// information in V3EmitC when we lay out var's in memory.
const OrderLogicVertex* logicp = movep->logicp();
for (const V3GraphEdge* edgep = logicp->inBeginp(); edgep; edgep = edgep->inNextp()) {
const OrderVarVertex* pre_varp
= dynamic_cast<const OrderVarVertex*>(edgep->fromp());
if (!pre_varp) continue;
AstVar* varp = pre_varp->varScp()->varp();
// varp depends on logicp, so logicp produces varp,
// and vice-versa below
varp->addProducingMTaskId(mtaskId);
}
for (const V3GraphEdge* edgep = logicp->outBeginp(); edgep;
edgep = edgep->outNextp()) {
const OrderVarVertex* post_varp
= dynamic_cast<const OrderVarVertex*>(edgep->top());
if (!post_varp) continue;
AstVar* varp = post_varp->varScp()->varp();
varp->addConsumingMTaskId(mtaskId);
}
// TODO? We ignore IO vars here, so those will have empty mtask
// signatures. But we could also give those mtask signatures.
}
}
// Create the AstExecGraph node which represents the execution
// of the MTask graph.
FileLine* rootFlp = v3Global.rootp()->fileline();
AstExecGraph* execGraphp = new AstExecGraph(rootFlp);
m_scopetopp->addActivep(execGraphp);
v3Global.rootp()->execGraphp(execGraphp);
// Create CFuncs and bodies for each MTask.
GraphStream<MTaskVxIdLessThan> emit_mtasks(&mtasks);
const V3GraphVertex* mtaskVxp;
while ((mtaskVxp = emit_mtasks.nextp())) {
const AbstractLogicMTask* mtaskp = dynamic_cast<const AbstractLogicMTask*>(mtaskVxp);
// Create a body for this mtask
AstMTaskBody* bodyp = new AstMTaskBody(rootFlp);
MTaskState& state = mtaskStates[mtaskp->id()];
state.m_mtaskBodyp = bodyp;
// Create leaf CFunc's to run this mtask's logic,
// and create a set of AstActive's to call those CFuncs.
// Add the AstActive's into the AstMTaskBody.
const AstSenTree* last_domainp = NULL;
AstCFunc* leafCFuncp = NULL;
int leafStmts = 0;
for (MTaskState::Logics::iterator it = state.m_logics.begin(); it != state.m_logics.end();
++it) {
const OrderLogicVertex* logicp = *it;
if (logicp->domainp() != last_domainp) {
// Start a new leaf function.
leafCFuncp = NULL;
}
last_domainp = logicp->domainp();
AstActive* newActivep
= processMoveOneLogic(logicp, leafCFuncp /*ref*/, leafStmts /*ref*/);
if (newActivep) bodyp->addStmtsp(newActivep);
}
// Translate the LogicMTask graph into the corresponding ExecMTask
// graph, which will outlive V3Order and persist for the remainder
// of verilator's processing.
// - The LogicMTask graph points to MTaskMoveVertex's
// and OrderLogicVertex's which are ephemeral to V3Order.
// - The ExecMTask graph and the AstMTaskBody's produced here
// persist until code generation time.
state.m_execMTaskp = new ExecMTask(execGraphp->mutableDepGraphp(), bodyp, mtaskp->id());
// Cross-link each ExecMTask and MTaskBody
// Q: Why even have two objects?
// A: One is an AstNode, the other is a GraphVertex,
// to combine them would involve multiple inheritance...
state.m_mtaskBodyp->execMTaskp(state.m_execMTaskp);
for (V3GraphEdge* inp = mtaskp->inBeginp(); inp; inp = inp->inNextp()) {
const V3GraphVertex* fromVxp = inp->fromp();
const AbstractLogicMTask* fromp = dynamic_cast<const AbstractLogicMTask*>(fromVxp);
MTaskState& fromState = mtaskStates[fromp->id()];
new V3GraphEdge(execGraphp->mutableDepGraphp(), fromState.m_execMTaskp,
state.m_execMTaskp, 1);
}
execGraphp->addMTaskBody(bodyp);
}
}
//######################################################################
// OrderVisitor - Top processing
void OrderVisitor::process() {
// Dump data
m_graph.dumpDotFilePrefixed("orderg_pre");
// Break cycles. Each strongly connected subgraph (including cutable
// edges) will have its own color, and corresponds to a loop in the
// original graph. However the new graph will be acyclic (the removed
// edges are actually still there, just with weight 0).
UINFO(2, " Acyclic & Order...\n");
m_graph.acyclic(&V3GraphEdge::followAlwaysTrue);
m_graph.dumpDotFilePrefixed("orderg_acyc");
// Assign ranks so we know what to follow
// Then, sort vertices and edges by that ordering
m_graph.order();
m_graph.dumpDotFilePrefixed("orderg_order");
// This finds everything that can be traced from an input (which by
// definition are the source clocks). After this any vertex which was
// traced has isFromInput() true.
UINFO(2, " Process Clocks...\n");
processInputs(); // must be before processCircular
UINFO(2, " Process Circulars...\n");
processCircular(); // must be before processDomains
// Assign logic vertices to new domains
UINFO(2, " Domains...\n");
processDomains();
m_graph.dumpDotFilePrefixed("orderg_domain");
if (debug() && v3Global.opt.dumpTree()) processEdgeReport();
if (!v3Global.opt.mtasks()) {
UINFO(2, " Construct Move Graph...\n");
processMoveBuildGraph();
if (debug() >= 4)
m_pomGraph.dumpDotFilePrefixed(
"ordermv_start"); // Different prefix (ordermv) as it's not the same graph
m_pomGraph.removeRedundantEdges(&V3GraphEdge::followAlwaysTrue);
if (debug() >= 4) m_pomGraph.dumpDotFilePrefixed("ordermv_simpl");
UINFO(2, " Move...\n");
processMove();
} else {
UINFO(2, " Set up mtasks...\n");
processMTasks();
}
// Any SC inputs feeding a combo domain must be marked, so we can make them sc_sensitive
UINFO(2, " Sensitive...\n");
processSensitive(); // must be after processDomains
// Dump data
m_graph.dumpDotFilePrefixed("orderg_done");
if (false && debug()) {
string dfilename = v3Global.opt.makeDir() + "/" + v3Global.opt.prefix() + "_INT_order";
const vl_unique_ptr<std::ofstream> logp(V3File::new_ofstream(dfilename));
if (logp->fail()) v3fatal("Can't write " << dfilename);
m_graph.dump(*logp);
}
}
//######################################################################
// Order class functions
void V3Order::orderAll(AstNetlist* nodep) {
UINFO(2, __FUNCTION__ << ": " << endl);
{
OrderClkMarkVisitor markVisitor(nodep);
OrderVisitor visitor;
visitor.main(nodep);
} // Destruct before checking
V3Global::dumpCheckGlobalTree("order", 0, v3Global.opt.dumpTreeLevel(__FILE__) >= 3);
}