mirror of
https://github.com/verilator/verilator.git
synced 2025-01-19 12:54:02 +00:00
.. | ||
hooks | ||
Dockerfile | ||
README.rst | ||
verilator-docker | ||
verilator-wrap.sh |
.. Copyright 2003-2024 by Wilson Snyder. .. SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0 Verilator Executable Docker Container ===================================== The Verilator Executable Docker Container allows you to run Verilator easily as a docker image, e.g.: :: docker run -ti verilator/verilator:latest --version This will install the container, run the latest Verilator and print Verilator's version. Containers are automatically built for all released versions, so you may easily compare results across versions, e.g.: :: docker run -ti verilator/verilator:4.030 --version Verilator needs to read and write files on the local system. To simplify this process, use the ``verilator-docker`` convenience script. This script takes the version number, and all remaining arguments are passed through to Verilator. e.g.: :: ./verilator-docker 4.030 --version or :: ./verilator-docker 4.030 --cc test.v If you prefer not to use ``verilator-docker`` you must give the container access to your files as a volume with appropriate user rights. For example to Verilate test.v: :: docker run -ti -v ${PWD}:/work --user $(id -u):$(id -g) verilator/verilator:latest --cc test.v This method can only access files below the current directory. An alternative is setup the volume ``-workdir``. You can also work in the container by setting the entrypoint (don't forget to mount a volume if you want your work persistent): :: docker run -ti --entrypoint /bin/bash verilator/verilator:latest You can also use the container to build Verilator at a specific commit: :: docker build --build-arg SOURCE_COMMIT=<commit> . Internals --------- The Dockerfile builds Verilator and removes the tree when completed to reduce the image size. The entrypoint is a wrapper script (``verilator-wrap.sh``). That script 1. calls Verilator, and 2. copies the Verilated runtime files to the ``obj_dir`` or the ``-Mdir`` respectively. This allows the user to have the files to they may later build the C++ output with the matching runtime files. The wrapper also patches the Verilated Makefile accordingly. A hook is also defined and run by Docker Hub via automated builds.