verilator/include/verilated_vpi.h
2015-06-04 19:37:03 -04:00

1474 lines
54 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
//
// Copyright 2009-2015 by Wilson Snyder. This program is free software; you can
// redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License.
// Version 2.0.
//
// Verilator is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
//=========================================================================
///
/// \file
/// \brief Verilator: VPI implementation code
///
/// This file must be compiled and linked against all objects
/// created from Verilator or called by Verilator that use the VPI.
///
/// Code available from: http://www.veripool.org/verilator
///
//=========================================================================
#ifndef CHPI_VERILATED_VPI_H
#define CHPI_VERILATED_VPI_H 1
#include "verilated.h"
#include "verilated_syms.h"
//======================================================================
// From IEEE 1800-2009 annex K
#include "vltstd/vpi_user.h"
//======================================================================
// Internal macros
#define _VL_VPI_INTERNAL VerilatedVpi::error_info()->setMessage(vpiInternal)->setMessage
#define _VL_VPI_SYSTEM VerilatedVpi::error_info()->setMessage(vpiSystem )->setMessage
#define _VL_VPI_ERROR VerilatedVpi::error_info()->setMessage(vpiError )->setMessage
#define _VL_VPI_WARNING VerilatedVpi::error_info()->setMessage(vpiWarning )->setMessage
#define _VL_VPI_NOTICE VerilatedVpi::error_info()->setMessage(vpiNotice )->setMessage
#define _VL_VPI_ERROR_RESET VerilatedVpi::error_info()->resetError
// Not supported yet
#define _VL_VPI_UNIMP() \
_VL_VPI_ERROR(__FILE__,__LINE__,Verilated::catName("Unsupported VPI function: ",VL_FUNC));
//======================================================================
// Implementation
#include <set>
#include <list>
#include <map>
#define VL_DEBUG_IF_PLI VL_DEBUG_IF
#define VL_VPI_LINE_SIZE 8192
// Base VPI handled object
class VerilatedVpio {
// MEM MANGLEMENT
static vluint8_t* s_freeHead;
public:
// CONSTRUCTORS
VerilatedVpio() {}
virtual ~VerilatedVpio() {}
inline static void* operator new(size_t size) {
// We new and delete tons of vpi structures, so keep them around
// To simplify our free list, we use a size large enough for all derived types
// We reserve word zero for the next pointer, as that's safer in case a
// dangling reference to the original remains around.
static size_t chunk = 96;
if (VL_UNLIKELY(size>chunk)) vl_fatal(__FILE__,__LINE__,"", "increase chunk");
if (VL_LIKELY(s_freeHead)) {
vluint8_t* newp = s_freeHead;
s_freeHead = *((vluint8_t**)newp);
return newp+8;
} else {
// +8: 8 bytes for next
vluint8_t* newp = (vluint8_t*)(::operator new(chunk+8));
return newp+8;
}
}
inline static void operator delete(void* obj, size_t size) {
vluint8_t* oldp = ((vluint8_t*)obj)-8;
*((void**)oldp) = s_freeHead;
s_freeHead = oldp;
}
// MEMBERS
static inline VerilatedVpio* castp(vpiHandle h) { return dynamic_cast<VerilatedVpio*>((VerilatedVpio*)h); }
inline vpiHandle castVpiHandle() { return (vpiHandle)(this); }
// ACCESSORS
virtual const char* name() { return "<null>"; }
virtual const char* fullname() { return "<null>"; }
virtual const char* defname() { return "<null>"; }
virtual const vluint32_t type() { return 0; }
virtual const vluint32_t size() const { return 0; }
virtual const VerilatedRange* rangep() const { return NULL; }
virtual vpiHandle dovpi_scan() { return 0; }
};
typedef PLI_INT32 (*VerilatedPliCb)(struct t_cb_data *);
class VerilatedVpioCb : public VerilatedVpio {
t_cb_data m_cbData;
s_vpi_value m_value;
QData m_time;
public:
// cppcheck-suppress uninitVar // m_value
VerilatedVpioCb(const t_cb_data* cbDatap, QData time)
: m_cbData(*cbDatap), m_time(time) {
m_value.format = cbDatap->value ? cbDatap->value->format : vpiSuppressVal;
m_cbData.value = &m_value;
}
virtual ~VerilatedVpioCb() {}
static inline VerilatedVpioCb* castp(vpiHandle h) { return dynamic_cast<VerilatedVpioCb*>((VerilatedVpio*)h); }
virtual const vluint32_t type() { return vpiCallback; }
vluint32_t reason() const { return m_cbData.reason; }
VerilatedPliCb cb_rtnp() const { return m_cbData.cb_rtn; }
t_cb_data* cb_datap() { return &(m_cbData); }
QData time() const { return m_time; }
};
class VerilatedVpioConst : public VerilatedVpio {
vlsint32_t m_num;
public:
VerilatedVpioConst(vlsint32_t num) : m_num(num) {}
virtual ~VerilatedVpioConst() {}
static inline VerilatedVpioConst* castp(vpiHandle h) { return dynamic_cast<VerilatedVpioConst*>((VerilatedVpio*)h); }
virtual const vluint32_t type() { return vpiUndefined; }
vlsint32_t num() const { return m_num; }
};
class VerilatedVpioRange : public VerilatedVpio {
const VerilatedRange* m_range;
vlsint32_t m_iteration;
public:
VerilatedVpioRange(const VerilatedRange* range) : m_range(range), m_iteration(0) {}
virtual ~VerilatedVpioRange() {}
static inline VerilatedVpioRange* castp(vpiHandle h) { return dynamic_cast<VerilatedVpioRange*>((VerilatedVpio*)h); }
virtual const vluint32_t type() { return vpiRange; }
virtual const vluint32_t size() const { return m_range->elements(); }
virtual const VerilatedRange* rangep() const { return m_range; }
int iteration() const { return m_iteration; }
void iterationInc() { ++m_iteration; }
virtual vpiHandle dovpi_scan() {
if (!iteration()) {
VerilatedVpioRange* nextp = new VerilatedVpioRange(*this);
nextp->iterationInc();
return ((nextp)->castVpiHandle());
} else {
return 0; // End of list - only one deep
}
}
};
class VerilatedVpioScope : public VerilatedVpio {
const VerilatedScope* m_scopep;
public:
VerilatedVpioScope(const VerilatedScope* scopep)
: m_scopep(scopep) {}
virtual ~VerilatedVpioScope() {}
static inline VerilatedVpioScope* castp(vpiHandle h) { return dynamic_cast<VerilatedVpioScope*>((VerilatedVpio*)h); }
virtual const vluint32_t type() { return vpiScope; }
const VerilatedScope* scopep() const { return m_scopep; }
virtual const char* name() { return m_scopep->name(); }
virtual const char* fullname() { return m_scopep->name(); }
};
class VerilatedVpioVar : public VerilatedVpio {
const VerilatedVar* m_varp;
const VerilatedScope* m_scopep;
vluint8_t* m_prevDatap; // Previous value of data, for cbValueChange
union {
vluint8_t u8[4];
vluint32_t u32;
} m_mask; // memoized variable mask
vluint32_t m_entSize; // memoized variable size
protected:
void* m_varDatap; // varp()->datap() adjusted for array entries
vlsint32_t m_index;
const VerilatedRange& get_range() const {
// Determine number of dimensions and return outermost
return (m_varp->dims()>1) ? m_varp->array() : m_varp->range();
}
public:
VerilatedVpioVar(const VerilatedVar* varp, const VerilatedScope* scopep)
: m_varp(varp), m_scopep(scopep), m_index(0) {
m_prevDatap = NULL;
m_mask.u32 = VL_MASK_I(varp->range().elements());
m_entSize = varp->entSize();
m_varDatap = varp->datap();
}
virtual ~VerilatedVpioVar() {
if (m_prevDatap) { delete [] m_prevDatap; m_prevDatap = NULL; }
}
static inline VerilatedVpioVar* castp(vpiHandle h) { return dynamic_cast<VerilatedVpioVar*>((VerilatedVpio*)h); }
const VerilatedVar* varp() const { return m_varp; }
const VerilatedScope* scopep() const { return m_scopep; }
vluint32_t mask() const { return m_mask.u32; }
vluint8_t mask_byte(int idx) { return m_mask.u8[idx & 3]; }
vluint32_t entSize() const { return m_entSize; }
const vluint32_t index() { return m_index; }
virtual const vluint32_t type() {
if (varp()->vldir() != vpiNoDirection) return vpiPort;
return (varp()->dims()>1) ? vpiMemory : vpiReg; /* but might be wire, logic */
}
virtual const vluint32_t size() const { return get_range().elements(); }
virtual const VerilatedRange* rangep() const { return &get_range(); }
virtual const char* name() { return m_varp->name(); }
virtual const char* fullname() {
VL_STATIC_OR_THREAD string out;
out = string(m_scopep->name())+"."+name();
return out.c_str();
}
void* prevDatap() const { return m_prevDatap; }
void* varDatap() const { return m_varDatap; }
void createPrevDatap() {
if (VL_UNLIKELY(!m_prevDatap)) {
m_prevDatap = new vluint8_t [entSize()];
memcpy(prevDatap(), varp()->datap(), entSize());
}
}
};
class VerilatedVpioMemoryWord : public VerilatedVpioVar {
public:
VerilatedVpioMemoryWord(const VerilatedVar* varp, const VerilatedScope* scopep,
vlsint32_t index, int offset)
: VerilatedVpioVar(varp, scopep) {
m_index = index;
m_varDatap = ((vluint8_t*)varp->datap()) + entSize()*offset;
}
virtual ~VerilatedVpioMemoryWord() {}
static inline VerilatedVpioMemoryWord* castp(vpiHandle h) { return dynamic_cast<VerilatedVpioMemoryWord*>((VerilatedVpio*)h); }
virtual const vluint32_t type() { return vpiMemoryWord; }
virtual const vluint32_t size() const { return varp()->range().elements(); }
virtual const VerilatedRange* rangep() const { return &(varp()->range()); }
virtual const char* fullname() {
VL_STATIC_OR_THREAD string out;
char num[20]; sprintf(num,"%d",m_index);
out = string(scopep()->name())+"."+name()+"["+num+"]";
return out.c_str();
}
};
class VerilatedVpioVarIter : public VerilatedVpio {
const VerilatedScope* m_scopep;
VerilatedVarNameMap::iterator m_it;
bool m_started;
public:
VerilatedVpioVarIter(const VerilatedScope* scopep)
: m_scopep(scopep), m_started(false) { }
virtual ~VerilatedVpioVarIter() {}
static inline VerilatedVpioVarIter* castp(vpiHandle h) { return dynamic_cast<VerilatedVpioVarIter*>((VerilatedVpio*)h); }
virtual const vluint32_t type() { return vpiIterator; }
virtual vpiHandle dovpi_scan() {
if (VL_LIKELY(m_scopep->varsp())) {
VerilatedVarNameMap* varsp = m_scopep->varsp();
if (VL_UNLIKELY(!m_started)) { m_it = varsp->begin(); m_started=true; }
else if (VL_UNLIKELY(m_it == varsp->end())) return 0;
else ++m_it;
if (m_it == varsp->end()) return 0;
return ((new VerilatedVpioVar(&(m_it->second), m_scopep))
->castVpiHandle());
} else {
return 0; // End of list - only one deep
}
}
};
class VerilatedVpioMemoryWordIter : public VerilatedVpio {
const vpiHandle m_handle;
const VerilatedVar* m_varp;
vlsint32_t m_iteration;
vlsint32_t m_direction;
bool m_done;
public:
VerilatedVpioMemoryWordIter(const vpiHandle handle, const VerilatedVar* varp)
: m_handle(handle), m_varp(varp), m_iteration(varp->array().right()), m_direction(VL_LIKELY(varp->array().left()>varp->array().right())?1:-1), m_done(false) { }
virtual ~VerilatedVpioMemoryWordIter() {}
static inline VerilatedVpioMemoryWordIter* castp(vpiHandle h) { return dynamic_cast<VerilatedVpioMemoryWordIter*>((VerilatedVpio*)h); }
virtual const vluint32_t type() { return vpiIterator; }
void iterationInc() { if (!(m_done = (m_iteration == m_varp->array().left()))) m_iteration+=m_direction; }
virtual vpiHandle dovpi_scan() {
vpiHandle result;
if (m_done) return 0;
result = vpi_handle_by_index(m_handle, m_iteration);
iterationInc();
return result;
}
};
//======================================================================
struct VerilatedVpiTimedCbsCmp {
/// Ordering sets keyed by time, then callback descriptor
bool operator() (const pair<QData,VerilatedVpioCb*>& a,
const pair<QData,VerilatedVpioCb*>& b) const {
if (a.first < b.first) return 1;
if (a.first > b.first) return 0;
return a.second < b.second;
}
};
class VerilatedVpiError;
class VerilatedVpi {
enum { CB_ENUM_MAX_VALUE = cbAtEndOfSimTime+1 }; // Maxium callback reason
typedef list<VerilatedVpioCb*> VpioCbList;
typedef set<pair<QData,VerilatedVpioCb*>,VerilatedVpiTimedCbsCmp > VpioTimedCbs;
struct product_info {
PLI_BYTE8* product;
PLI_BYTE8* version;
};
VpioCbList m_cbObjLists[CB_ENUM_MAX_VALUE]; // Callbacks for each supported reason
VpioTimedCbs m_timedCbs; // Time based callbacks
VerilatedVpiError* m_errorInfop; // Container for vpi error info
static VerilatedVpi s_s; // Singleton
public:
VerilatedVpi() { m_errorInfop=NULL; }
~VerilatedVpi() {}
static void cbReasonAdd(VerilatedVpioCb* vop) {
if (vop->reason() == cbValueChange) {
if (VerilatedVpioVar* varop = VerilatedVpioVar::castp(vop->cb_datap()->obj)) {
varop->createPrevDatap();
}
}
if (VL_UNLIKELY(vop->reason() >= CB_ENUM_MAX_VALUE)) vl_fatal(__FILE__,__LINE__,"", "vpi bb reason too large");
s_s.m_cbObjLists[vop->reason()].push_back(vop);
}
static void cbTimedAdd(VerilatedVpioCb* vop) {
s_s.m_timedCbs.insert(make_pair(vop->time(), vop));
}
static void cbReasonRemove(VerilatedVpioCb* cbp) {
VpioCbList& cbObjList = s_s.m_cbObjLists[cbp->reason()];
// We do not remove it now as we may be iterating the list,
// instead set to NULL and will cleanup later
for (VpioCbList::iterator it=cbObjList.begin(); it!=cbObjList.end(); ++it) {
if (*it == cbp) *it = NULL;
}
}
static void cbTimedRemove(VerilatedVpioCb* cbp) {
VpioTimedCbs::iterator it=s_s.m_timedCbs.find(make_pair(cbp->time(),cbp));
if (VL_LIKELY(it != s_s.m_timedCbs.end())) {
s_s.m_timedCbs.erase(it);
}
}
static void callTimedCbs() {
QData time = VL_TIME_Q();
for (VpioTimedCbs::iterator it=s_s.m_timedCbs.begin(); it!=s_s.m_timedCbs.end(); ) {
if (VL_UNLIKELY(it->first <= time)) {
VerilatedVpioCb* vop = it->second;
++it; // iterator may be deleted by callback
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: timed_callback %p\n",vop););
(vop->cb_rtnp()) (vop->cb_datap());
}
else { ++it; }
}
}
static QData cbNextDeadline() {
VpioTimedCbs::iterator it=s_s.m_timedCbs.begin();
if (VL_LIKELY(it!=s_s.m_timedCbs.end())) {
return it->first;
} else {
return ~VL_ULL(0); // maxquad
}
}
static void callCbs(vluint32_t reason) {
VpioCbList& cbObjList = s_s.m_cbObjLists[reason];
for (VpioCbList::iterator it=cbObjList.begin(); it!=cbObjList.end();) {
if (VL_UNLIKELY(!*it)) { // Deleted earlier, cleanup
it = cbObjList.erase(it);
continue;
}
VerilatedVpioCb* vop = *it++;
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: reason_callback %d %p\n",reason,vop););
(vop->cb_rtnp()) (vop->cb_datap());
}
}
static void callValueCbs() {
VpioCbList& cbObjList = s_s.m_cbObjLists[cbValueChange];
set<VerilatedVpioVar*> update; // set of objects to update after callbacks
for (VpioCbList::iterator it=cbObjList.begin(); it!=cbObjList.end();) {
if (VL_UNLIKELY(!*it)) { // Deleted earlier, cleanup
it = cbObjList.erase(it);
continue;
}
VerilatedVpioCb* vop = *it++;
if (VerilatedVpioVar* varop = VerilatedVpioVar::castp(vop->cb_datap()->obj)) {
void* newDatap = varop->varDatap();
void* prevDatap = varop->prevDatap(); // Was malloced when we added the callback
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: value_test %s v[0]=%d/%d %p %p\n",
varop->fullname(), *((CData*)newDatap), *((CData*)prevDatap),
newDatap, prevDatap););
if (memcmp(prevDatap, newDatap, varop->entSize())) {
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: value_callback %p %s v[0]=%d\n",
vop,varop->fullname(), *((CData*)newDatap)););
update.insert(varop);
vpi_get_value(vop->cb_datap()->obj, vop->cb_datap()->value);
(vop->cb_rtnp()) (vop->cb_datap());
}
}
}
for (set<VerilatedVpioVar*>::iterator it=update.begin(); it!=update.end(); ++it) {
memcpy((*it)->prevDatap(), (*it)->varDatap(), (*it)->entSize());
}
}
static VerilatedVpiError* error_info(); // getter for vpi error info
};
#define _VL_VPI_ERROR_SET \
do { \
va_list args; \
va_start(args, message); \
VL_VSNPRINTF(m_buff, sizeof(m_buff), message.c_str(), args); \
va_end(args); \
} while (0)
class VerilatedVpiError {
//// Container for vpi error info
t_vpi_error_info m_errorInfo;
bool m_flag;
char m_buff[VL_VPI_LINE_SIZE];
void setError(PLI_BYTE8 *message, PLI_BYTE8 *code, PLI_BYTE8 *file, PLI_INT32 line) {
m_errorInfo.message = message;
m_errorInfo.file = file;
m_errorInfo.line = line;
m_errorInfo.code = code;
do_callbacks();
}
void do_callbacks() {
if (getError()->level >= vpiError && Verilated::fatalOnVpiError()) {
// Stop on vpi error/unsupported
vpi_unsupported();
}
// We need to run above code first because in the case that the callback executes further vpi
// functions we will loose the error as it will be overwritten.
VerilatedVpi::callCbs(cbPLIError);
}
public:
VerilatedVpiError() : m_flag(false) {
m_buff[0] = '\0';
m_errorInfo.product = (PLI_BYTE8*)Verilated::productName();
}
~VerilatedVpiError() {}
VerilatedVpiError* setMessage(PLI_INT32 level) {
m_flag=true;
m_errorInfo.level = level;
return this;
}
void setMessage(string file, PLI_INT32 line, string message, ...) {
static VL_THREAD string filehold;
_VL_VPI_ERROR_SET;
m_errorInfo.state = vpiPLI;
filehold = file;
setError((PLI_BYTE8*)m_buff, NULL, (PLI_BYTE8*)filehold.c_str(), line);
}
p_vpi_error_info getError() {
if (m_flag) return &m_errorInfo;
return NULL;
}
void resetError() {
m_flag=false;
}
static void vpi_unsupported() {
// Not supported yet
p_vpi_error_info error_info_p = VerilatedVpi::error_info()->getError();
if (error_info_p) {
vl_fatal(error_info_p->file, error_info_p->line, "", error_info_p->message);
return;
}
vl_fatal(__FILE__, __LINE__, "", "vpi_unsupported called without error info set");
}
static const char* strFromVpiVal(PLI_INT32 vpiVal);
static const char* strFromVpiObjType(PLI_INT32 vpiVal);
static const char* strFromVpiMethod(PLI_INT32 vpiVal);
static const char* strFromVpiCallbackReason(PLI_INT32 vpiVal);
static const char* strFromVpiProp(PLI_INT32 vpiVal);
};
VerilatedVpiError* VerilatedVpi::error_info() {
if (s_s.m_errorInfop == NULL) {
s_s.m_errorInfop = new VerilatedVpiError();
}
return s_s.m_errorInfop;
}
// callback related
vpiHandle vpi_register_cb(p_cb_data cb_data_p) {
_VL_VPI_ERROR_RESET(); // reset vpi error status
if (VL_UNLIKELY(!cb_data_p)) {
_VL_VPI_WARNING(__FILE__, __LINE__, "%s : callback data pointer is null", VL_FUNC);
return NULL;
}
switch (cb_data_p->reason) {
case cbAfterDelay: {
QData time = 0;
if (cb_data_p->time) time = _VL_SET_QII(cb_data_p->time->high, cb_data_p->time->low);
VerilatedVpioCb* vop = new VerilatedVpioCb(cb_data_p, VL_TIME_Q()+time);
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_register_cb %d %p delay=%" VL_PRI64 "d\n",cb_data_p->reason,vop,time););
VerilatedVpi::cbTimedAdd(vop);
return vop->castVpiHandle();
}
case cbReadWriteSynch: // FALLTHRU // Supported via vlt_main.cpp
case cbReadOnlySynch: // FALLTHRU // Supported via vlt_main.cpp
case cbNextSimTime: // FALLTHRU // Supported via vlt_main.cpp
case cbStartOfSimulation: // FALLTHRU // Supported via vlt_main.cpp
case cbEndOfSimulation: // FALLTHRU // Supported via vlt_main.cpp
case cbValueChange: // FALLTHRU // Supported via vlt_main.cpp
case cbPLIError: // FALLTHRU // NOP, but need to return handle, so make object
case cbEnterInteractive: // FALLTHRU // NOP, but need to return handle, so make object
case cbExitInteractive: // FALLTHRU // NOP, but need to return handle, so make object
case cbInteractiveScopeChange: { // FALLTHRU // NOP, but need to return handle, so make object
VerilatedVpioCb* vop = new VerilatedVpioCb(cb_data_p, 0);
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_register_cb %d %p\n",cb_data_p->reason,vop););
VerilatedVpi::cbReasonAdd(vop);
return vop->castVpiHandle();
}
default:
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: Unsupported callback type %s",
VL_FUNC, VerilatedVpiError::strFromVpiCallbackReason(cb_data_p->reason));
return NULL;
};
}
PLI_INT32 vpi_remove_cb(vpiHandle object) {
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_remove_cb %p\n",object););
VerilatedVpioCb* vop = VerilatedVpioCb::castp(object);
_VL_VPI_ERROR_RESET(); // reset vpi error status
if (VL_UNLIKELY(!vop)) return 0;
if (vop->cb_datap()->reason == cbAfterDelay) {
VerilatedVpi::cbTimedRemove(vop);
} else {
VerilatedVpi::cbReasonRemove(vop);
}
return 1;
}
void vpi_get_cb_info(vpiHandle object, p_cb_data cb_data_p) {
_VL_VPI_UNIMP(); return;
}
vpiHandle vpi_register_systf(p_vpi_systf_data systf_data_p) {
_VL_VPI_UNIMP(); return 0;
}
void vpi_get_systf_info(vpiHandle object, p_vpi_systf_data systf_data_p) {
_VL_VPI_UNIMP(); return;
}
// for obtaining handles
vpiHandle vpi_handle_by_name(PLI_BYTE8* namep, vpiHandle scope) {
_VL_VPI_ERROR_RESET(); // reset vpi error status
if (VL_UNLIKELY(!namep)) return NULL;
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_handle_by_name %s %p\n",namep,scope););
VerilatedVpioScope* voScopep = VerilatedVpioScope::castp(scope);
const VerilatedVar* varp;
const VerilatedScope* scopep;
string scopeAndName = namep;
if (voScopep) {
scopeAndName = string(voScopep->fullname()) + "." + namep;
namep = (PLI_BYTE8*)scopeAndName.c_str();
}
{
// This doesn't yet follow the hierarchy in the proper way
scopep = Verilated::scopeFind(namep);
if (scopep) { // Whole thing found as a scope
return (new VerilatedVpioScope(scopep))->castVpiHandle();
}
const char* baseNamep = scopeAndName.c_str();
string scopename;
const char* dotp = strrchr(namep, '.');
if (VL_LIKELY(dotp)) {
baseNamep = dotp+1;
scopename = string(namep,dotp-namep);
}
scopep = Verilated::scopeFind(scopename.c_str());
if (!scopep) return NULL;
varp = scopep->varFind(baseNamep);
}
if (!varp) return NULL;
return (new VerilatedVpioVar(varp, scopep))->castVpiHandle();
}
vpiHandle vpi_handle_by_index(vpiHandle object, PLI_INT32 indx) {
// Used to get array entries
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_handle_by_index %p %d\n",object, indx););
VerilatedVpioVar* varop = VerilatedVpioVar::castp(object);
_VL_VPI_ERROR_RESET(); // reset vpi error status
if (VL_LIKELY(varop)) {
if (varop->varp()->dims()<2) return 0;
if (VL_LIKELY(varop->varp()->array().left() >= varop->varp()->array().right())) {
if (VL_UNLIKELY(indx > varop->varp()->array().left() || indx < varop->varp()->array().right())) return 0;
return (new VerilatedVpioMemoryWord(varop->varp(), varop->scopep(), indx,
indx - varop->varp()->array().right()))
->castVpiHandle();
} else {
if (VL_UNLIKELY(indx < varop->varp()->array().left() || indx > varop->varp()->array().right())) return 0;
return (new VerilatedVpioMemoryWord(varop->varp(), varop->scopep(), indx,
indx - varop->varp()->array().left()))
->castVpiHandle();
}
} else {
_VL_VPI_INTERNAL(__FILE__, __LINE__, "%s : can't resolve handle", VL_FUNC);
return 0;
}
}
// for traversing relationships
vpiHandle vpi_handle(PLI_INT32 type, vpiHandle object) {
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_handle %d %p\n",type,object););
_VL_VPI_ERROR_RESET(); // reset vpi error status
switch (type) {
case vpiLeftRange: {
VerilatedVpioVar* vop = VerilatedVpioVar::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
if (VL_UNLIKELY(!vop->rangep())) return 0;
return (new VerilatedVpioConst(vop->rangep()->left()))->castVpiHandle();
}
case vpiRightRange: {
VerilatedVpioVar* vop = VerilatedVpioVar::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
if (VL_UNLIKELY(!vop->rangep())) return 0;
return (new VerilatedVpioConst(vop->rangep()->right()))->castVpiHandle();
}
case vpiIndex: {
VerilatedVpioVar* vop = VerilatedVpioVar::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
return (new VerilatedVpioConst(vop->index()))->castVpiHandle();
}
case vpiScope: {
VerilatedVpioVar* vop = VerilatedVpioVar::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
return (new VerilatedVpioScope(vop->scopep()))->castVpiHandle();
}
case vpiParent: {
VerilatedVpioMemoryWord* vop = VerilatedVpioMemoryWord::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
return (new VerilatedVpioVar(vop->varp(), vop->scopep()))->castVpiHandle();
}
default:
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: Unsupported type %s, nothing will be returned",
VL_FUNC, VerilatedVpiError::strFromVpiMethod(type));
return 0;
}
}
vpiHandle vpi_handle_multi(PLI_INT32 type, vpiHandle refHandle1, vpiHandle refHandle2, ... ) {
_VL_VPI_UNIMP(); return 0;
}
vpiHandle vpi_iterate(PLI_INT32 type, vpiHandle object) {
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_iterate %d %p\n",type,object););
_VL_VPI_ERROR_RESET(); // reset vpi error status
switch (type) {
case vpiMemoryWord: {
VerilatedVpioVar* vop = VerilatedVpioVar::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
if (vop->varp()->dims() < 2) return 0;
if (vop->varp()->dims() > 2) {
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: %s, object %s has unsupported number of indices (%d)",
VL_FUNC, VerilatedVpiError::strFromVpiMethod(type), vop->fullname() , vop->varp()->dims());
}
return (new VerilatedVpioMemoryWordIter(object, vop->varp()))->castVpiHandle();
}
case vpiRange: {
VerilatedVpioVar* vop = VerilatedVpioVar::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
if (vop->varp()->dims() < 2) return 0;
// Unsupported is multidim list
if (vop->varp()->dims() > 2) {
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: %s, object %s has unsupported number of indices (%d)",
VL_FUNC, VerilatedVpiError::strFromVpiMethod(type), vop->fullname() , vop->varp()->dims());
}
return ((new VerilatedVpioRange(vop->rangep()))->castVpiHandle());
}
case vpiReg: {
VerilatedVpioScope* vop = VerilatedVpioScope::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
return ((new VerilatedVpioVarIter(vop->scopep()))
->castVpiHandle());
}
default:
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: Unsupported type %s, nothing will be returned",
VL_FUNC, VerilatedVpiError::strFromVpiObjType(type));
return 0;
}
}
vpiHandle vpi_scan(vpiHandle object) {
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_scan %p\n",object););
_VL_VPI_ERROR_RESET(); // reset vpi error status
VerilatedVpio* vop = VerilatedVpio::castp(object);
if (VL_UNLIKELY(!vop)) return NULL;
return vop->dovpi_scan();
}
// for processing properties
PLI_INT32 vpi_get(PLI_INT32 property, vpiHandle object) {
// Leave this in the header file - in many cases the compiler can constant propagate "object"
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_get %d %p\n",property,object););
_VL_VPI_ERROR_RESET(); // reset vpi error status
switch (property) {
case vpiTimePrecision: {
return VL_TIME_PRECISION;
}
case vpiType: {
VerilatedVpio* vop = VerilatedVpioVar::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
return vop->type();
}
case vpiDirection: {
// By forthought, the directions already are vpi enumerated
VerilatedVpioVar* vop = VerilatedVpioVar::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
return vop->varp()->vldir();
}
case vpiScalar: // FALLTHRU
case vpiVector: {
VerilatedVpioVar* vop = VerilatedVpioVar::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
return (property==vpiVector)^(vop->varp()->dims()==0);
}
case vpiSize: {
VerilatedVpioVar* vop = VerilatedVpioVar::castp(object);
if (VL_UNLIKELY(!vop)) return 0;
return vop->size();
}
default:
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: Unsupported type %s, nothing will be returned",
VL_FUNC, VerilatedVpiError::strFromVpiProp(property));
return 0;
}
}
PLI_INT64 vpi_get64(PLI_INT32 property, vpiHandle object) {
_VL_VPI_UNIMP();
return 0;
}
PLI_BYTE8 *vpi_get_str(PLI_INT32 property, vpiHandle object) {
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_get_str %d %p\n",property,object););
VerilatedVpio* vop = VerilatedVpio::castp(object);
_VL_VPI_ERROR_RESET(); // reset vpi error status
if (VL_UNLIKELY(!vop)) return NULL;
switch (property) {
case vpiName: {
return (PLI_BYTE8*)vop->name();
}
case vpiFullName: {
return (PLI_BYTE8*)vop->fullname();
}
case vpiDefName: {
return (PLI_BYTE8*)vop->defname();
}
default:
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: Unsupported type %s, nothing will be returned",
VL_FUNC, VerilatedVpiError::strFromVpiProp(property));
return 0;
}
}
// delay processing
void vpi_get_delays(vpiHandle object, p_vpi_delay delay_p) {
_VL_VPI_UNIMP();
return;
}
void vpi_put_delays(vpiHandle object, p_vpi_delay delay_p) {
_VL_VPI_UNIMP();
return;
}
// value processing
void vpi_get_value(vpiHandle object, p_vpi_value value_p) {
static VL_THREAD char outStr[1+VL_MULS_MAX_WORDS*32]; // Maximum required size is for binary string, one byte per bit plus null termination
// cppcheck-suppress variableScope
static VL_THREAD int outStrSz = sizeof(outStr)-1;
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_get_value %p\n",object););
_VL_VPI_ERROR_RESET(); // reset vpi error status
if (VL_UNLIKELY(!value_p)) return;
if (VerilatedVpioVar* vop = VerilatedVpioVar::castp(object)) {
// We used to presume vpiValue.format = vpiIntVal or if single bit vpiScalarVal
// This may cause backward compatability issues with older code.
if (value_p->format == vpiVectorVal) {
// Vector pointer must come from our memory pool
// It only needs to persist until the next vpi_get_value
static VL_THREAD t_vpi_vecval out[VL_MULS_MAX_WORDS*2];
value_p->value.vector = out;
switch (vop->varp()->vltype()) {
case VLVT_UINT8:
out[0].aval = *((CData*)(vop->varDatap()));
out[0].bval = 0;
return;
case VLVT_UINT16:
out[0].aval = *((SData*)(vop->varDatap()));
out[0].bval = 0;
return;
case VLVT_UINT32:
out[0].aval = *((IData*)(vop->varDatap()));
out[0].bval = 0;
return;
case VLVT_WDATA: {
int words = VL_WORDS_I(vop->varp()->range().elements());
if (VL_UNLIKELY(words >= VL_MULS_MAX_WORDS)) {
vl_fatal(__FILE__,__LINE__,"", "vpi_get_value with more than VL_MULS_MAX_WORDS; increase and recompile");
}
WDataInP datap = ((IData*)(vop->varDatap()));
for (int i=0; i<words; i++) {
out[i].aval = datap[i];
out[i].bval = 0;
}
return;
}
case VLVT_UINT64: {
QData data = *((QData*)(vop->varDatap()));
out[1].aval = (IData)(data>>VL_ULL(32));
out[1].bval = 0;
out[0].aval = (IData)(data);
out[0].bval = 0;
return;
}
default: {
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
return;
}
}
} else if (value_p->format == vpiBinStrVal) {
value_p->value.str = outStr;
switch (vop->varp()->vltype()) {
case VLVT_UINT8 :
case VLVT_UINT16:
case VLVT_UINT32:
case VLVT_UINT64:
case VLVT_WDATA: {
int bits = vop->varp()->range().elements();
CData* datap = ((CData*)(vop->varDatap()));
int i;
if (bits > outStrSz) {
// limit maximum size of output to size of buffer to prevent overrun.
bits = outStrSz;
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: Truncating string value of %s for %s as buffer size (%d, VL_MULS_MAX_WORDS=%d) is less than required (%d)",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname(), outStrSz, VL_MULS_MAX_WORDS, bits);
}
for (i=0; i<bits; i++) {
char val = (datap[i>>3]>>(i&7))&1;
outStr[bits-i-1] = val?'1':'0';
}
outStr[i]=0; // NULL terminate
return;
}
default:
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
return;
}
} else if (value_p->format == vpiOctStrVal) {
value_p->value.str = outStr;
switch (vop->varp()->vltype()) {
case VLVT_UINT8 :
case VLVT_UINT16:
case VLVT_UINT32:
case VLVT_UINT64:
case VLVT_WDATA: {
int chars = (vop->varp()->range().elements()+2)/3;
int bytes = VL_BYTES_I(vop->varp()->range().elements());
CData* datap = ((CData*)(vop->varDatap()));
int i;
if (chars > outStrSz) {
// limit maximum size of output to size of buffer to prevent overrun.
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: Truncating string value of %s for %s as buffer size (%d, VL_MULS_MAX_WORDS=%d) is less than required (%d)",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname(), outStrSz, VL_MULS_MAX_WORDS, chars);
chars = outStrSz;
}
for (i=0; i<chars; i++) {
div_t idx = div(i*3, 8);
int val = datap[idx.quot];
if ((idx.quot+1)<bytes) {
// if the next byte is valid or that in
// for when the required 3 bits straddle adjacent bytes
val |= datap[idx.quot+1]<<8;
}
// align so least significant 3 bits represent octal char
val >>= idx.rem;
if (i==(chars-1)) {
// most signifcant char, mask off non existant bits when vector
// size is not a multiple of 3
unsigned int rem = vop->varp()->range().elements() % 3;
if (rem) {
// generate bit mask & zero non existant bits
val &= (1<<rem)-1;
}
}
outStr[chars-i-1] = '0' + (val&7);
}
outStr[i]=0; // NULL terminate
return;
}
default:
strcpy(outStr, "0");
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
return;
}
} else if (value_p->format == vpiDecStrVal) {
value_p->value.str = outStr;
switch (vop->varp()->vltype()) {
// outStrSz does not include NULL termination so add one
case VLVT_UINT8 : snprintf(outStr, outStrSz+1, "%hhu", (unsigned char )*((CData*)(vop->varDatap()))); return;
case VLVT_UINT16: snprintf(outStr, outStrSz+1, "%hu", (unsigned short)*((SData*)(vop->varDatap()))); return;
case VLVT_UINT32: snprintf(outStr, outStrSz+1, "%u", (unsigned int )*((IData*)(vop->varDatap()))); return;
case VLVT_UINT64: snprintf(outStr, outStrSz+1, "%llu", (unsigned long long)*((QData*)(vop->varDatap()))); return;
default:
strcpy(outStr, "-1");
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s, maximum limit is 64 bits",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
return;
}
} else if (value_p->format == vpiHexStrVal) {
value_p->value.str = outStr;
switch (vop->varp()->vltype()) {
case VLVT_UINT8 :
case VLVT_UINT16:
case VLVT_UINT32:
case VLVT_UINT64:
case VLVT_WDATA: {
int chars = (vop->varp()->range().elements()+3)>>2;
CData* datap = ((CData*)(vop->varDatap()));
int i;
if (chars > outStrSz) {
// limit maximum size of output to size of buffer to prevent overrun.
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: Truncating string value of %s for %s as buffer size (%d, VL_MULS_MAX_WORDS=%d) is less than required (%d)",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname(), outStrSz, VL_MULS_MAX_WORDS, chars);
chars = outStrSz;
}
for (i=0; i<chars; i++) {
char val = (datap[i>>1]>>((i&1)<<2))&15;
static char hex[] = "0123456789abcdef";
if (i==(chars-1)) {
// most signifcant char, mask off non existant bits when vector
// size is not a multiple of 4
unsigned int rem = vop->varp()->range().elements() & 3;
if (rem) {
// generate bit mask & zero non existant bits
val &= (1<<rem)-1;
}
}
outStr[chars-i-1] = hex[static_cast<int>(val)];
}
outStr[i]=0; // NULL terminate
return;
}
default:
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
return;
}
} else if (value_p->format == vpiStringVal) {
value_p->value.str = outStr;
switch (vop->varp()->vltype()) {
case VLVT_UINT8 :
case VLVT_UINT16:
case VLVT_UINT32:
case VLVT_UINT64:
case VLVT_WDATA: {
int bytes = VL_BYTES_I(vop->varp()->range().elements());
CData* datap = ((CData*)(vop->varDatap()));
int i;
if (bytes > outStrSz) {
// limit maximum size of output to size of buffer to prevent overrun.
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: Truncating string value of %s for %s as buffer size (%d, VL_MULS_MAX_WORDS=%d) is less than required (%d)",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format),
vop->fullname(), outStrSz, VL_MULS_MAX_WORDS, bytes);
bytes = outStrSz;
}
for (i=0; i<bytes; i++) {
char val = datap[bytes-i-1];
// other simulators replace [leading?] zero chars with spaces, replicate here.
outStr[i] = val?val:' ';
}
outStr[i]=0; // NULL terminate
return;
}
default:
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
return;
}
} else if (value_p->format == vpiIntVal) {
switch (vop->varp()->vltype()) {
case VLVT_UINT8:
value_p->value.integer = *((CData*)(vop->varDatap()));
return;
case VLVT_UINT16:
value_p->value.integer = *((SData*)(vop->varDatap()));
return;
case VLVT_UINT32:
value_p->value.integer = *((IData*)(vop->varDatap()));
return;
case VLVT_WDATA:
case VLVT_UINT64:
// Not legal
value_p->value.integer = 0;
default:
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
return;
}
} else if (value_p->format == vpiSuppressVal) {
return;
}
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) as requested for %s",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
return;
}
else if (VerilatedVpioConst* vop = VerilatedVpioConst::castp(object)) {
if (value_p->format == vpiIntVal) {
value_p->value.integer = vop->num();
return;
}
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
return;
}
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format %s",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format));
}
vpiHandle vpi_put_value(vpiHandle object, p_vpi_value value_p,
p_vpi_time time_p, PLI_INT32 flags) {
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_put_value %p %p\n",object, value_p););
_VL_VPI_ERROR_RESET(); // reset vpi error status
if (VL_UNLIKELY(!value_p)) {
_VL_VPI_WARNING(__FILE__, __LINE__, "Ignoring vpi_put_value with NULL value pointer");
return 0;
}
if (VerilatedVpioVar* vop = VerilatedVpioVar::castp(object)) {
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_put_value name=%s fmt=%d vali=%d\n",
vop->fullname(), value_p->format, value_p->value.integer);
VL_PRINTF("-vltVpi: varp=%p putatp=%p\n",
vop->varp()->datap(), vop->varDatap()););
if (VL_UNLIKELY(!vop->varp()->isPublicRW())) {
_VL_VPI_WARNING(__FILE__, __LINE__, "Ignoring vpi_put_value to signal marked read-only, use public_flat_rw instead: ", vop->fullname());
return 0;
}
if (value_p->format == vpiVectorVal) {
if (VL_UNLIKELY(!value_p->value.vector)) return NULL;
switch (vop->varp()->vltype()) {
case VLVT_UINT8:
*((CData*)(vop->varDatap())) = value_p->value.vector[0].aval & vop->mask();
return object;
case VLVT_UINT16:
*((SData*)(vop->varDatap())) = value_p->value.vector[0].aval & vop->mask();
return object;
case VLVT_UINT32:
*((IData*)(vop->varDatap())) = value_p->value.vector[0].aval & vop->mask();
return object;
case VLVT_WDATA: {
int words = VL_WORDS_I(vop->varp()->range().elements());
WDataOutP datap = ((IData*)(vop->varDatap()));
for (int i=0; i<words; i++) {
datap[i] = value_p->value.vector[i].aval;
if (i==(words-1)) {
datap[i] &= vop->mask();
}
}
return object;
}
case VLVT_UINT64: {
*((QData*)(vop->varDatap())) = _VL_SET_QII(
value_p->value.vector[1].aval & vop->mask(),
value_p->value.vector[0].aval);
return object;
}
default: {
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
return NULL;
}
}
} else if (value_p->format == vpiBinStrVal) {
switch (vop->varp()->vltype()) {
case VLVT_UINT8 :
case VLVT_UINT16:
case VLVT_UINT32:
case VLVT_UINT64:
case VLVT_WDATA: {
int bits = vop->varp()->range().elements();
int len = strlen(value_p->value.str);
CData* datap = ((CData*)(vop->varDatap()));
for (int i=0; i<bits; i++) {
char set = (i < len)?(value_p->value.str[len-i-1]=='1'):0;
// zero bits 7:1 of byte when assigning to bit 0, else
// or in 1 if bit set
if (i&7) {
datap[i>>3] |= set<<(i&7);
} else {
datap[i>>3] = set;
}
}
return object;
}
default:
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
return 0;
}
} else if (value_p->format == vpiOctStrVal) {
switch (vop->varp()->vltype()) {
case VLVT_UINT8 :
case VLVT_UINT16:
case VLVT_UINT32:
case VLVT_UINT64:
case VLVT_WDATA: {
int chars = (vop->varp()->range().elements()+2)/3;
int bytes = VL_BYTES_I(vop->varp()->range().elements());
int len = strlen(value_p->value.str);
CData* datap = ((CData*)(vop->varDatap()));
div_t idx;
datap[0] = 0; // reset zero'th byte
for (int i=0; i<chars; i++) {
union {
char byte[2];
short half;
} val;
idx = div(i*3, 8);
if (i < len) {
// ignore illegal chars
char digit = value_p->value.str[len-i-1];
if (digit >= '0' && digit <= '7') {
val.half = digit-'0';
} else {
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: Non octal character '%c' in '%s' as value %s for %s",
VL_FUNC, digit, value_p->value.str,
VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
val.half = 0;
}
} else {
val.half = 0;
}
// align octal character to position within vector, note that
// the three bits may straddle a byte bounday so two byte wide
// assignments are made to adjacent bytes - but not if the least
// signifcant byte of the aligned value is the most significant
// byte of the destination.
val.half <<= idx.rem;
datap[idx.quot] |= val.byte[0]; // or in value
if ((idx.quot+1) < bytes) {
datap[idx.quot+1] = val.byte[1]; // this also resets all bits to 0 prior to or'ing above
}
}
// mask off non existant bits in the most significant byte
if (idx.quot == (bytes-1)) {
datap[idx.quot] &= vop->mask_byte(idx.quot);
} else if (idx.quot+1 == (bytes-1)) {
datap[idx.quot+1] &= vop->mask_byte(idx.quot+1);
}
// zero off remaining top bytes
for (int i=idx.quot+2; i<bytes; i++) {
datap[i] = 0;
}
return object;
}
default:
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
return 0;
}
} else if (value_p->format == vpiDecStrVal) {
char remainder[16];
unsigned long long val;
int success = sscanf(value_p->value.str, "%30llu%15s", &val, remainder);
if (success < 1) {
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Parsing failed for '%s' as value %s for %s",
VL_FUNC, value_p->value.str, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
return 0;
}
if (success > 1) {
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: Trailing garbage '%s' in '%s' as value %s for %s",
VL_FUNC, remainder, value_p->value.str, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
}
switch (vop->varp()->vltype()) {
case VLVT_UINT8 : *((CData*)(vop->varDatap())) = val & vop->mask(); break;
case VLVT_UINT16: *((SData*)(vop->varDatap())) = val & vop->mask(); break;
case VLVT_UINT32: *((IData*)(vop->varDatap())) = val & vop->mask(); break;
case VLVT_UINT64: *((QData*)(vop->varDatap())) = val; ((IData*)(vop->varDatap()))[1] &= vop->mask(); break;
case VLVT_WDATA:
default:
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s, maximum limit is 64 bits",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
return 0;
}
return object;
} else if (value_p->format == vpiHexStrVal) {
switch (vop->varp()->vltype()) {
case VLVT_UINT8 :
case VLVT_UINT16:
case VLVT_UINT32:
case VLVT_UINT64:
case VLVT_WDATA: {
int chars = (vop->varp()->range().elements()+3)>>2;
CData* datap = ((CData*)(vop->varDatap()));
char* val = value_p->value.str;
// skip hex ident if one is detected at the start of the string
if (val[0] == '0' && (val[1] == 'x' || val[1] == 'X')) {
val += 2;
}
int len = strlen(val);
for (int i=0; i<chars; i++) {
char hex;
// compute hex digit value
if (i < len) {
char digit = val[len-i-1];
if (digit >= '0' && digit <= '9') hex = digit - '0';
else if (digit >= 'a' && digit <= 'f') hex = digit - 'a' + 10;
else if (digit >= 'A' && digit <= 'F') hex = digit - 'A' + 10;
else {
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: Non hex character '%c' in '%s' as value %s for %s",
VL_FUNC, digit, value_p->value.str, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
hex = 0;
}
} else {
hex = 0;
}
// assign hex digit value to destination
if (i&1) {
datap[i>>1] |= hex<<4;
} else {
datap[i>>1] = hex; // this also resets all bits to 0 prior to or'ing above of the msb
}
}
// apply bit mask to most significant byte
datap[(chars-1)>>1] &= vop->mask_byte((chars-1)>>1);
return object;
}
default:
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
return 0;
}
} else if (value_p->format == vpiStringVal) {
switch (vop->varp()->vltype()) {
case VLVT_UINT8 :
case VLVT_UINT16:
case VLVT_UINT32:
case VLVT_UINT64:
case VLVT_WDATA: {
int bytes = VL_BYTES_I(vop->varp()->range().elements());
int len = strlen(value_p->value.str);
CData* datap = ((CData*)(vop->varDatap()));
for (int i=0; i<bytes; i++) {
datap[i] = (i < len)?value_p->value.str[len-i-1]:0; // prepend with 0 values before placing string the least signifcant bytes
}
return object;
}
default:
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
return 0;
}
} else if (value_p->format == vpiIntVal) {
switch (vop->varp()->vltype()) {
case VLVT_UINT8:
*((CData*)(vop->varDatap())) = vop->mask() & value_p->value.integer;
return object;
case VLVT_UINT16:
*((SData*)(vop->varDatap())) = vop->mask() & value_p->value.integer;
return object;
case VLVT_UINT32:
*((IData*)(vop->varDatap())) = vop->mask() & value_p->value.integer;
return object;
case VLVT_WDATA: // FALLTHRU
case VLVT_UINT64: // FALLTHRU
default:
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
return 0;
}
}
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) as requested for %s",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format), vop->fullname());
return NULL;
}
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported format (%s) for ??",
VL_FUNC, VerilatedVpiError::strFromVpiVal(value_p->format));
return NULL;
}
void vpi_get_value_array(vpiHandle object, p_vpi_arrayvalue arrayvalue_p,
PLI_INT32 *index_p, PLI_UINT32 num) {
_VL_VPI_UNIMP(); return;
}
void vpi_put_value_array(vpiHandle object, p_vpi_arrayvalue arrayvalue_p,
PLI_INT32 *index_p, PLI_UINT32 num) {
_VL_VPI_UNIMP(); return;
}
// time processing
void vpi_get_time(vpiHandle object, p_vpi_time time_p) {
if (VL_UNLIKELY(!time_p)) {
_VL_VPI_WARNING(__FILE__, __LINE__, "Ignoring vpi_get_time with NULL value pointer");
return;
}
if (time_p->type == vpiSimTime) {
QData qtime = VL_TIME_Q();
IData itime[2];
VL_SET_WQ(itime, qtime);
time_p->low = itime[0];
time_p->high = itime[1];
return;
}
_VL_VPI_ERROR(__FILE__, __LINE__, "%s: Unsupported type (%d)",
VL_FUNC, time_p->type);
return;
}
// I/O routines
PLI_UINT32 vpi_mcd_open(PLI_BYTE8 *filenamep) {
_VL_VPI_ERROR_RESET(); // reset vpi error status
return VL_FOPEN_S(filenamep,"wb");
}
PLI_UINT32 vpi_mcd_close(PLI_UINT32 mcd) {
_VL_VPI_ERROR_RESET(); // reset vpi error status
VL_FCLOSE_I(mcd); return 0;
}
PLI_BYTE8 *vpi_mcd_name(PLI_UINT32 mcd) {
_VL_VPI_UNIMP(); return 0;
}
PLI_INT32 vpi_mcd_printf(PLI_UINT32 mcd, PLI_BYTE8 *formatp, ...) {
_VL_VPI_ERROR_RESET(); // reset vpi error status
va_list ap;
va_start(ap,formatp);
int chars = vpi_mcd_vprintf(mcd, formatp, ap);
va_end(ap);
return chars;
}
PLI_INT32 vpi_printf(PLI_BYTE8 *formatp, ...) {
_VL_VPI_ERROR_RESET(); // reset vpi error status
va_list ap;
va_start(ap,formatp);
int chars = vpi_vprintf(formatp, ap);
va_end(ap);
return chars;
}
PLI_INT32 vpi_vprintf(PLI_BYTE8* formatp, va_list ap) {
_VL_VPI_ERROR_RESET(); // reset vpi error status
return VL_VPRINTF(formatp, ap);
}
PLI_INT32 vpi_mcd_vprintf(PLI_UINT32 mcd, PLI_BYTE8 *format, va_list ap) {
FILE* fp = VL_CVT_I_FP(mcd);
_VL_VPI_ERROR_RESET(); // reset vpi error status
if (VL_UNLIKELY(!fp)) return 0;
int chars = vfprintf(fp, format, ap);
return chars;
}
PLI_INT32 vpi_flush(void) {
_VL_VPI_ERROR_RESET(); // reset vpi error status
Verilated::flushCall();
return 0;
}
PLI_INT32 vpi_mcd_flush(PLI_UINT32 mcd) {
FILE* fp = VL_CVT_I_FP(mcd);
_VL_VPI_ERROR_RESET(); // reset vpi error status
if (VL_UNLIKELY(!fp)) return 1;
fflush(fp);
return 0;
}
// utility routines
PLI_INT32 vpi_compare_objects(vpiHandle object1, vpiHandle object2) {
_VL_VPI_UNIMP(); return 0;
}
PLI_INT32 vpi_chk_error(p_vpi_error_info error_info_p) {
// executing vpi_chk_error does not reset error
// error_info_p can be NULL, so only return level in that case
p_vpi_error_info _error_info_p = VerilatedVpi::error_info()->getError();
if (error_info_p && _error_info_p) {
*error_info_p = *_error_info_p;
}
if (!_error_info_p) return 0; // no error occured
return _error_info_p->level; // return error severity level
};
PLI_INT32 vpi_free_object(vpiHandle object) {
_VL_VPI_ERROR_RESET(); // reset vpi error status
return vpi_release_handle(object); // Deprecated
}
PLI_INT32 vpi_release_handle (vpiHandle object) {
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_release_handle %p\n",object););
VerilatedVpio* vop = VerilatedVpio::castp(object);
_VL_VPI_ERROR_RESET(); // reset vpi error status
if (VL_UNLIKELY(!vop)) return 0;
vpi_remove_cb(object); // May not be a callback, but that's ok
delete vop;
return 1;
}
PLI_INT32 vpi_get_vlog_info(p_vpi_vlog_info vlog_info_p) {
_VL_VPI_ERROR_RESET(); // reset vpi error status
vlog_info_p->argc = Verilated::getCommandArgs()->argc;
vlog_info_p->argv = (PLI_BYTE8**)Verilated::getCommandArgs()->argv;
vlog_info_p->product = (PLI_BYTE8*)Verilated::productName();
vlog_info_p->version = (PLI_BYTE8*)Verilated::productVersion();
return 1;
}
// routines added with 1364-2001
PLI_INT32 vpi_get_data(PLI_INT32 id, PLI_BYTE8 *dataLoc, PLI_INT32 numOfBytes) {
_VL_VPI_UNIMP(); return 0;
}
PLI_INT32 vpi_put_data(PLI_INT32 id, PLI_BYTE8 *dataLoc, PLI_INT32 numOfBytes) {
_VL_VPI_UNIMP(); return 0;
}
void *vpi_get_userdata(vpiHandle obj) {
_VL_VPI_UNIMP(); return 0;
}
PLI_INT32 vpi_put_userdata(vpiHandle obj, void *userdata) {
_VL_VPI_UNIMP(); return 0;
}
PLI_INT32 vpi_control(PLI_INT32 operation, ...) {
VL_DEBUG_IF_PLI(VL_PRINTF("-vltVpi: vpi_control %d\n",operation););
_VL_VPI_ERROR_RESET(); // reset vpi error status
switch (operation) {
case vpiFinish: {
vl_finish(__FILE__,__LINE__,"*VPI*");
return 1;
}
case vpiStop: {
vl_stop(__FILE__,__LINE__,"*VPI*");
return 1;
}
}
_VL_VPI_WARNING(__FILE__, __LINE__, "%s: Unsupported type %s, ignoring",
VL_FUNC, VerilatedVpiError::strFromVpiProp(operation));
return 0;
}
vpiHandle vpi_handle_by_multi_index(vpiHandle obj, PLI_INT32 num_index, PLI_INT32 *index_array) {
_VL_VPI_UNIMP(); return 0;
}
//======================================================================
#endif // Guard