verilator/include/verilated_funcs.h
2024-01-01 20:11:46 -05:00

2330 lines
100 KiB
C++

// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
//
// Code available from: https://verilator.org
//
// Copyright 2003-2024 by Wilson Snyder. This program is free software; you can
// redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//*************************************************************************
///
/// \file
/// \brief Verilated common functions
///
/// verilated.h should be included instead of this file.
///
/// Those macro/function/variable starting or ending in _ are internal,
/// however many of the other function/macros here are also internal.
///
//*************************************************************************
#ifndef VERILATOR_VERILATED_FUNCS_H_
#define VERILATOR_VERILATED_FUNCS_H_
#ifndef VERILATOR_VERILATED_H_INTERNAL_
#error "verilated_funcs.h should only be included by verilated.h"
#endif
#include <string>
//=========================================================================
// Extern functions -- User may override -- See verilated.cpp
/// Routine to call for $finish
/// User code may wish to replace this function, to do so, define VL_USER_FINISH.
/// This code does not have to be thread safe.
/// Verilator internal code must call VL_FINISH_MT instead, which eventually calls this.
extern void vl_finish(const char* filename, int linenum, const char* hier) VL_MT_UNSAFE;
/// Routine to call for $stop and non-fatal error
/// User code may wish to replace this function, to do so, define VL_USER_STOP.
/// This code does not have to be thread safe.
/// Verilator internal code must call VL_FINISH_MT instead, which eventually calls this.
extern void vl_stop(const char* filename, int linenum, const char* hier) VL_MT_UNSAFE;
/// Routine to call for fatal messages
/// User code may wish to replace this function, to do so, define VL_USER_FATAL.
/// This code does not have to be thread safe.
/// Verilator internal code must call VL_FINISH_MT instead, which eventually calls this.
extern void vl_fatal(const char* filename, int linenum, const char* hier,
const char* msg) VL_MT_UNSAFE;
/// Routine to call for warning messages
/// User code may wish to replace this function, to do so, define VL_USER_WARN.
/// This code does not have to be thread safe.
extern void vl_warn(const char* filename, int linenum, const char* hier,
const char* msg) VL_MT_UNSAFE;
//=========================================================================
// Extern functions -- Slow path
/// Multithread safe wrapper for calls to $finish
extern void VL_FINISH_MT(const char* filename, int linenum, const char* hier) VL_MT_SAFE;
/// Multithread safe wrapper for calls to $stop
extern void VL_STOP_MT(const char* filename, int linenum, const char* hier,
bool maybe = true) VL_MT_SAFE;
/// Multithread safe wrapper to call for fatal messages
extern void VL_FATAL_MT(const char* filename, int linenum, const char* hier,
const char* msg) VL_MT_SAFE;
/// Multithread safe wrapper to call for warning messages
extern void VL_WARN_MT(const char* filename, int linenum, const char* hier,
const char* msg) VL_MT_SAFE;
// clang-format off
/// Print a string, multithread safe. Eventually VL_PRINTF will get called.
extern void VL_PRINTF_MT(const char* formatp, ...) VL_ATTR_PRINTF(1) VL_MT_SAFE;
// clang-format on
/// Print a debug message from internals with standard prefix, with printf style format
extern void VL_DBG_MSGF(const char* formatp, ...) VL_ATTR_PRINTF(1) VL_MT_SAFE;
// EMIT_RULE: VL_RANDOM: oclean=dirty
inline IData VL_RANDOM_I() VL_MT_SAFE { return vl_rand64(); }
inline QData VL_RANDOM_Q() VL_MT_SAFE { return vl_rand64(); }
extern WDataOutP VL_RANDOM_W(int obits, WDataOutP outwp) VL_MT_SAFE;
extern IData VL_RANDOM_SEEDED_II(IData& seedr) VL_MT_SAFE;
extern IData VL_URANDOM_SEEDED_II(IData seed) VL_MT_SAFE;
inline IData VL_URANDOM_RANGE_I(IData hi, IData lo) {
const uint64_t rnd = vl_rand64();
if (VL_LIKELY(hi > lo)) {
// (hi - lo + 1) can be zero when hi is UINT_MAX and lo is zero
if (VL_UNLIKELY(hi - lo + 1 == 0)) return rnd;
// Modulus isn't very fast but it's common that hi-low is power-of-two
return (rnd % (hi - lo + 1)) + lo;
} else {
if (VL_UNLIKELY(lo - hi + 1 == 0)) return rnd;
return (rnd % (lo - hi + 1)) + hi;
}
}
/// Random reset a signal of given width (init time only)
extern IData VL_RAND_RESET_I(int obits) VL_MT_SAFE;
/// Random reset a signal of given width (init time only)
extern QData VL_RAND_RESET_Q(int obits) VL_MT_SAFE;
/// Random reset a signal of given width (init time only)
extern WDataOutP VL_RAND_RESET_W(int obits, WDataOutP outwp) VL_MT_SAFE;
/// Zero reset a signal (slow - else use VL_ZERO_W)
extern WDataOutP VL_ZERO_RESET_W(int obits, WDataOutP outwp) VL_MT_SAFE;
extern void VL_PRINTTIMESCALE(const char* namep, const char* timeunitp,
const VerilatedContext* contextp) VL_MT_SAFE;
extern WDataOutP _vl_moddiv_w(int lbits, WDataOutP owp, WDataInP const lwp, WDataInP const rwp,
bool is_modulus) VL_MT_SAFE;
extern IData VL_FGETS_IXI(int obits, void* destp, IData fpi) VL_MT_SAFE;
extern void VL_FFLUSH_I(IData fdi) VL_MT_SAFE;
extern IData VL_FSEEK_I(IData fdi, IData offset, IData origin) VL_MT_SAFE;
extern IData VL_FTELL_I(IData fdi) VL_MT_SAFE;
extern void VL_FCLOSE_I(IData fdi) VL_MT_SAFE;
extern IData VL_FREAD_I(int width, int array_lsb, int array_size, void* memp, IData fpi,
IData start, IData count) VL_MT_SAFE;
extern void VL_WRITEF(const char* formatp, ...) VL_MT_SAFE;
extern void VL_FWRITEF(IData fpi, const char* formatp, ...) VL_MT_SAFE;
extern IData VL_FSCANF_IX(IData fpi, const char* formatp, ...) VL_MT_SAFE;
extern IData VL_SSCANF_IIX(int lbits, IData ld, const char* formatp, ...) VL_MT_SAFE;
extern IData VL_SSCANF_IQX(int lbits, QData ld, const char* formatp, ...) VL_MT_SAFE;
extern IData VL_SSCANF_IWX(int lbits, WDataInP const lwp, const char* formatp, ...) VL_MT_SAFE;
extern void VL_SFORMAT_X(int obits, CData& destr, const char* formatp, ...) VL_MT_SAFE;
extern void VL_SFORMAT_X(int obits, SData& destr, const char* formatp, ...) VL_MT_SAFE;
extern void VL_SFORMAT_X(int obits, IData& destr, const char* formatp, ...) VL_MT_SAFE;
extern void VL_SFORMAT_X(int obits, QData& destr, const char* formatp, ...) VL_MT_SAFE;
extern void VL_SFORMAT_X(int obits, void* destp, const char* formatp, ...) VL_MT_SAFE;
extern void VL_STACKTRACE() VL_MT_SAFE;
extern std::string VL_STACKTRACE_N() VL_MT_SAFE;
extern IData VL_SYSTEM_IW(int lhswords, WDataInP const lhsp) VL_MT_SAFE;
extern IData VL_SYSTEM_IQ(QData lhs) VL_MT_SAFE;
inline IData VL_SYSTEM_II(IData lhs) VL_MT_SAFE { return VL_SYSTEM_IQ(lhs); }
extern IData VL_TESTPLUSARGS_I(const std::string& format) VL_MT_SAFE;
extern const char* vl_mc_scan_plusargs(const char* prefixp) VL_MT_SAFE; // PLIish
//=========================================================================
// Base macros
// Return true if data[bit] set; not 0/1 return, but 0/non-zero return.
// Arguments must not have side effects
#define VL_BITISSETLIMIT_W(data, width, bit) (((bit) < (width)) && VL_BITISSET_W(data, bit))
// Shift appropriate word by bit. Does not account for wrapping between two words
// Argument 'bit' must not have side effects
#define VL_BITRSHIFT_W(data, bit) ((data)[VL_BITWORD_E(bit)] >> VL_BITBIT_E(bit))
// Create two 32-bit words from quadword
// WData is always at least 2 words; does not clean upper bits
#define VL_SET_WQ(owp, data) \
do { \
(owp)[0] = static_cast<IData>(data); \
(owp)[1] = static_cast<IData>((data) >> VL_EDATASIZE); \
} while (false)
#define VL_SET_WI(owp, data) \
do { \
(owp)[0] = static_cast<IData>(data); \
(owp)[1] = 0; \
} while (false)
#define VL_SET_QW(lwp) \
((static_cast<QData>((lwp)[0])) \
| (static_cast<QData>((lwp)[1]) << (static_cast<QData>(VL_EDATASIZE))))
#define VL_SET_QII(ld, rd) ((static_cast<QData>(ld) << 32ULL) | static_cast<QData>(rd))
// Return FILE* from IData
extern FILE* VL_CVT_I_FP(IData lhs) VL_MT_SAFE;
// clang-format off
// Use a union to avoid cast-to-different-size warnings
// Return void* from QData
static inline void* VL_CVT_Q_VP(QData lhs) VL_PURE {
union { void* fp; QData q; } u;
u.q = lhs;
return u.fp;
}
// Return QData from const void*
static inline QData VL_CVT_VP_Q(const void* fp) VL_PURE {
union { const void* fp; QData q; } u;
u.q = 0;
u.fp = fp;
return u.q;
}
// Return double from QData (bits, not numerically)
static inline double VL_CVT_D_Q(QData lhs) VL_PURE {
union { double d; QData q; } u;
u.q = lhs;
return u.d;
}
// Return QData from double (bits, not numerically)
static inline QData VL_CVT_Q_D(double lhs) VL_PURE {
union { double d; QData q; } u;
u.d = lhs;
return u.q;
}
// clang-format on
// Return double from lhs (numeric) unsigned
double VL_ITOR_D_W(int lbits, WDataInP const lwp) VL_PURE;
static inline double VL_ITOR_D_I(int, IData lhs) VL_PURE {
return static_cast<double>(static_cast<uint32_t>(lhs));
}
static inline double VL_ITOR_D_Q(int, QData lhs) VL_PURE {
return static_cast<double>(static_cast<uint64_t>(lhs));
}
// Return double from lhs (numeric) signed
double VL_ISTOR_D_W(int lbits, WDataInP const lwp) VL_MT_SAFE;
static inline double VL_ISTOR_D_I(int lbits, IData lhs) VL_MT_SAFE {
if (lbits == 32) return static_cast<double>(static_cast<int32_t>(lhs));
VlWide<VL_WQ_WORDS_E> lwp;
VL_SET_WI(lwp, lhs);
return VL_ISTOR_D_W(lbits, lwp);
}
static inline double VL_ISTOR_D_Q(int lbits, QData lhs) VL_MT_SAFE {
if (lbits == 64) return static_cast<double>(static_cast<int64_t>(lhs));
VlWide<VL_WQ_WORDS_E> lwp;
VL_SET_WQ(lwp, lhs);
return VL_ISTOR_D_W(lbits, lwp);
}
// Return QData from double (numeric)
static inline IData VL_RTOI_I_D(double lhs) VL_PURE { return static_cast<int32_t>(VL_TRUNC(lhs)); }
// Sign extend such that if MSB set, we get ffff_ffff, else 0s
// (Requires clean input)
#define VL_SIGN_I(nbits, lhs) ((lhs) >> VL_BITBIT_I((nbits)-VL_UL(1)))
#define VL_SIGN_Q(nbits, lhs) ((lhs) >> VL_BITBIT_Q((nbits)-1ULL))
#define VL_SIGN_E(nbits, lhs) ((lhs) >> VL_BITBIT_E((nbits)-VL_EUL(1)))
#define VL_SIGN_W(nbits, rwp) \
((rwp)[VL_BITWORD_E((nbits)-VL_EUL(1))] >> VL_BITBIT_E((nbits)-VL_EUL(1)))
#define VL_SIGNONES_E(nbits, lhs) (-(VL_SIGN_E(nbits, lhs)))
// Sign bit extended up to MSB, doesn't include unsigned portion
// Optimization bug in GCC 3.3 returns different bitmasks to later states for
static inline IData VL_EXTENDSIGN_I(int lbits, IData lhs) VL_PURE {
return (-((lhs) & (VL_UL(1) << (lbits - 1))));
}
static inline QData VL_EXTENDSIGN_Q(int lbits, QData lhs) VL_PURE {
return (-((lhs) & (1ULL << (lbits - 1))));
}
// Debugging prints
extern void _vl_debug_print_w(int lbits, WDataInP const iwp) VL_MT_SAFE;
//=========================================================================
// Pli macros
// clang-format off
#if defined(SYSTEMC_VERSION)
/// Return current simulation time
// Already defined: extern sc_time sc_time_stamp();
inline uint64_t vl_time_stamp64() VL_MT_SAFE { return sc_core::sc_time_stamp().value(); }
#else // Non-SystemC
# if !defined(VL_TIME_CONTEXT) && !defined(VL_NO_LEGACY)
# ifdef VL_TIME_STAMP64
// vl_time_stamp64() may be optionally defined by the user to return time.
// On MSVC++ weak symbols are not supported so must be declared, or define
// VL_TIME_CONTEXT.
extern uint64_t vl_time_stamp64() VL_ATTR_WEAK VL_MT_SAFE;
# else
// sc_time_stamp() may be optionally defined by the user to return time.
// On MSVC++ weak symbols are not supported so must be declared, or define
// VL_TIME_CONTEXT.
extern double sc_time_stamp() VL_ATTR_WEAK VL_MT_SAFE; // Verilator 4.032 and newer
inline uint64_t vl_time_stamp64() VL_MT_SAFE {
// clang9.0.1 requires & although we really do want the weak symbol value
// cppcheck-suppress duplicateValueTernary
return VL_LIKELY(&sc_time_stamp) ? static_cast<uint64_t>(sc_time_stamp()) : 0;
}
# endif
# endif
#endif
// clang-format on
uint64_t VerilatedContext::time() const VL_MT_SAFE {
// When using non-default context, fastest path is return time
if (VL_LIKELY(m_s.m_time)) return m_s.m_time;
#if defined(SYSTEMC_VERSION) || (!defined(VL_TIME_CONTEXT) && !defined(VL_NO_LEGACY))
// Zero time could mean really at zero, or using callback
// clang9.0.1 requires & although we really do want the weak symbol value
if (VL_LIKELY(&vl_time_stamp64)) { // else is weak symbol that is not defined
return vl_time_stamp64();
}
#endif
return 0;
}
#define VL_TIME_Q() (Verilated::threadContextp()->time())
#define VL_TIME_D() (static_cast<double>(VL_TIME_Q()))
// Time scaled from 1-per-precision into a module's time units ("Unit"-ed, not "United")
// Optimized assuming scale is always constant.
// Can't use multiply in Q flavor, as might lose precision
#define VL_TIME_ROUND(t, p) (((t) + ((p) / 2)) / (p))
#define VL_TIME_UNITED_Q(scale) VL_TIME_ROUND(VL_TIME_Q(), static_cast<QData>(scale))
#define VL_TIME_UNITED_D(scale) (VL_TIME_D() / static_cast<double>(scale))
// Return time precision as multiplier of time units
double vl_time_multiplier(int scale) VL_PURE;
// Return power of 10. e.g. returns 100 if n==2
uint64_t vl_time_pow10(int n) VL_PURE;
//=========================================================================
// Functional macros/routines
// These all take the form
// VL_func_IW(bits, bits, op, op)
// VL_func_WW(bits, bits, out, op, op)
// The I/W indicates if it's a integer or wide for the output and each operand.
// The bits indicate the bit width of the output and each operand.
// If wide output, a temporary storage location is specified.
//===================================================================
// SETTING OPERATORS
VL_ATTR_ALWINLINE
static WDataOutP VL_MEMSET_ZERO_W(WDataOutP owp, int words) VL_MT_SAFE {
return static_cast<WDataOutP>(std::memset(owp, 0, words * sizeof(EData)));
}
VL_ATTR_ALWINLINE
static WDataOutP VL_MEMSET_ONES_W(WDataOutP owp, int words) VL_MT_SAFE {
return static_cast<WDataOutP>(std::memset(owp, 0xff, words * sizeof(EData)));
}
VL_ATTR_ALWINLINE
static WDataOutP VL_MEMCPY_W(WDataOutP owp, WDataInP const iwp, int words) VL_MT_SAFE {
return static_cast<WDataOutP>(std::memcpy(owp, iwp, words * sizeof(EData)));
}
// Output clean
// EMIT_RULE: VL_CLEAN: oclean=clean; obits=lbits;
#define VL_CLEAN_II(obits, lbits, lhs) ((lhs) & (VL_MASK_I(obits)))
#define VL_CLEAN_QQ(obits, lbits, lhs) ((lhs) & (VL_MASK_Q(obits)))
// EMIT_RULE: VL_ASSIGNCLEAN: oclean=clean; obits==lbits;
#define VL_ASSIGNCLEAN_W(obits, owp, lwp) VL_CLEAN_WW((obits), (owp), (lwp))
static inline WDataOutP _vl_clean_inplace_w(int obits, WDataOutP owp) VL_MT_SAFE {
const int words = VL_WORDS_I(obits);
owp[words - 1] &= VL_MASK_E(obits);
return owp;
}
static inline WDataOutP VL_CLEAN_WW(int obits, WDataOutP owp, WDataInP const lwp) VL_MT_SAFE {
const int words = VL_WORDS_I(obits);
VL_MEMCPY_W(owp, lwp, words - 1);
owp[words - 1] = lwp[words - 1] & VL_MASK_E(obits);
return owp;
}
static inline WDataOutP VL_ZERO_W(int obits, WDataOutP owp) VL_MT_SAFE {
return VL_MEMSET_ZERO_W(owp, VL_WORDS_I(obits));
}
static inline WDataOutP VL_ALLONES_W(int obits, WDataOutP owp) VL_MT_SAFE {
const int words = VL_WORDS_I(obits);
VL_MEMSET_ONES_W(owp, words - 1);
owp[words - 1] = VL_MASK_E(obits);
return owp;
}
// EMIT_RULE: VL_ASSIGN: oclean=rclean; obits==lbits;
// For now, we always have a clean rhs.
// Note: If a ASSIGN isn't clean, use VL_ASSIGNCLEAN instead to do the same thing.
static inline WDataOutP VL_ASSIGN_W(int obits, WDataOutP owp, WDataInP const lwp) VL_MT_SAFE {
return VL_MEMCPY_W(owp, lwp, VL_WORDS_I(obits));
}
// EMIT_RULE: VL_ASSIGNBIT: rclean=clean;
static inline void VL_ASSIGNBIT_II(int bit, CData& lhsr, IData rhs) VL_PURE {
lhsr = ((lhsr & ~(VL_UL(1) << VL_BITBIT_I(bit))) | (rhs << VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_II(int bit, SData& lhsr, IData rhs) VL_PURE {
lhsr = ((lhsr & ~(VL_UL(1) << VL_BITBIT_I(bit))) | (rhs << VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_II(int bit, IData& lhsr, IData rhs) VL_PURE {
lhsr = ((lhsr & ~(VL_UL(1) << VL_BITBIT_I(bit))) | (rhs << VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_QI(int bit, QData& lhsr, QData rhs) VL_PURE {
lhsr = ((lhsr & ~(1ULL << VL_BITBIT_Q(bit))) | (static_cast<QData>(rhs) << VL_BITBIT_Q(bit)));
}
static inline void VL_ASSIGNBIT_WI(int bit, WDataOutP owp, IData rhs) VL_MT_SAFE {
const EData orig = owp[VL_BITWORD_E(bit)];
owp[VL_BITWORD_E(bit)] = ((orig & ~(VL_EUL(1) << VL_BITBIT_E(bit)))
| (static_cast<EData>(rhs) << VL_BITBIT_E(bit)));
}
// Alternative form that is an instruction faster when rhs is constant one.
static inline void VL_ASSIGNBIT_IO(int bit, CData& lhsr) VL_PURE {
lhsr = (lhsr | (VL_UL(1) << VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_IO(int bit, SData& lhsr) VL_PURE {
lhsr = (lhsr | (VL_UL(1) << VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_IO(int bit, IData& lhsr) VL_PURE {
lhsr = (lhsr | (VL_UL(1) << VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_QO(int bit, QData& lhsr) VL_PURE {
lhsr = (lhsr | (1ULL << VL_BITBIT_Q(bit)));
}
static inline void VL_ASSIGNBIT_WO(int bit, WDataOutP owp) VL_MT_SAFE {
const EData orig = owp[VL_BITWORD_E(bit)];
owp[VL_BITWORD_E(bit)] = (orig | (VL_EUL(1) << VL_BITBIT_E(bit)));
}
//===================================================================
// SYSTEMC OPERATORS
// Copying verilog format to systemc integers and bit vectors.
// Get a SystemC variable
#define VL_ASSIGN_ISI(obits, vvar, svar) \
{ (vvar) = VL_CLEAN_II((obits), (obits), (svar).read()); }
#define VL_ASSIGN_QSQ(obits, vvar, svar) \
{ (vvar) = VL_CLEAN_QQ((obits), (obits), (svar).read()); }
#define VL_ASSIGN_ISW(obits, od, svar) \
{ (od) = ((svar).read().get_word(0)) & VL_MASK_I(obits); }
#define VL_ASSIGN_QSW(obits, od, svar) \
{ \
(od) = ((static_cast<QData>((svar).read().get_word(1))) << VL_IDATASIZE \
| (svar).read().get_word(0)) \
& VL_MASK_Q(obits); \
}
#define VL_ASSIGN_WSW(obits, owp, svar) \
{ \
const int words = VL_WORDS_I(obits); \
for (int i = 0; i < words; ++i) (owp)[i] = (svar).read().get_word(i); \
(owp)[words - 1] &= VL_MASK_E(obits); \
}
#define VL_ASSIGN_ISU(obits, vvar, svar) \
{ (vvar) = VL_CLEAN_II((obits), (obits), (svar).read().to_uint()); }
#define VL_ASSIGN_QSU(obits, vvar, svar) \
{ (vvar) = VL_CLEAN_QQ((obits), (obits), (svar).read().to_uint64()); }
#define VL_ASSIGN_WSB(obits, owp, svar) \
{ \
const int words = VL_WORDS_I(obits); \
sc_dt::sc_biguint<(obits)> _butemp = (svar).read(); \
uint32_t* chunkp = _butemp.get_raw(); \
int32_t lsb = 0; \
while (lsb < obits - BITS_PER_DIGIT) { \
const uint32_t data = *chunkp; \
++chunkp; \
_vl_insert_WI(owp.data(), data, lsb + BITS_PER_DIGIT - 1, lsb); \
lsb += BITS_PER_DIGIT; \
} \
if (lsb < obits) { \
const uint32_t msb_data = *chunkp; \
_vl_insert_WI(owp.data(), msb_data, obits - 1, lsb); \
} \
(owp)[words - 1] &= VL_MASK_E(obits); \
}
// Copying verilog format from systemc integers and bit vectors.
// Set a SystemC variable
#define VL_ASSIGN_SII(obits, svar, vvar) \
{ (svar).write(vvar); }
#define VL_ASSIGN_SQQ(obits, svar, vvar) \
{ (svar).write(vvar); }
#define VL_ASSIGN_SWI(obits, svar, rd) \
{ \
sc_dt::sc_bv<(obits)> _bvtemp; \
_bvtemp.set_word(0, (rd)); \
(svar).write(_bvtemp); \
}
#define VL_ASSIGN_SWQ(obits, svar, rd) \
{ \
sc_dt::sc_bv<(obits)> _bvtemp; \
_bvtemp.set_word(0, static_cast<IData>(rd)); \
_bvtemp.set_word(1, static_cast<IData>((rd) >> VL_IDATASIZE)); \
(svar).write(_bvtemp); \
}
#define VL_ASSIGN_SWW(obits, svar, rwp) \
{ \
sc_dt::sc_bv<(obits)> _bvtemp; \
for (int i = 0; i < VL_WORDS_I(obits); ++i) _bvtemp.set_word(i, (rwp)[i]); \
(svar).write(_bvtemp); \
}
#define VL_ASSIGN_SUI(obits, svar, rd) \
{ (svar).write(rd); }
#define VL_ASSIGN_SUQ(obits, svar, rd) \
{ (svar).write(rd); }
#define VL_ASSIGN_SBI(obits, svar, rd) \
{ (svar).write(rd); }
#define VL_ASSIGN_SBQ(obits, svar, rd) \
{ (svar).write(rd); }
#define VL_SC_BITS_PER_DIGIT 30 // This comes from sc_nbdefs.h BITS_PER_DIGIT
#define VL_ASSIGN_SBW(obits, svar, rwp) \
{ \
sc_dt::sc_biguint<(obits)> _butemp; \
int32_t lsb = 0; \
uint32_t* chunkp = _butemp.get_raw(); \
while (lsb + VL_SC_BITS_PER_DIGIT < (obits)) { \
static_assert(std::is_same<IData, EData>::value, "IData and EData mismatch"); \
const uint32_t data = VL_SEL_IWII(lsb + VL_SC_BITS_PER_DIGIT + 1, (rwp).data(), lsb, \
VL_SC_BITS_PER_DIGIT); \
*chunkp = data & VL_MASK_E(VL_SC_BITS_PER_DIGIT); \
++chunkp; \
lsb += VL_SC_BITS_PER_DIGIT; \
} \
if (lsb < (obits)) { \
const uint32_t msb_data = VL_SEL_IWII((obits) + 1, (rwp).data(), lsb, (obits)-lsb); \
*chunkp = msb_data & VL_MASK_E((obits)-lsb); \
} \
(svar).write(_butemp); \
}
//===================================================================
// Extending sizes
// CAREFUL, we're width changing, so obits!=lbits
// Right must be clean because otherwise size increase would pick up bad bits
// EMIT_RULE: VL_EXTEND: oclean=clean; rclean==clean;
#define VL_EXTEND_II(obits, lbits, lhs) ((lhs))
#define VL_EXTEND_QI(obits, lbits, lhs) (static_cast<QData>(lhs))
#define VL_EXTEND_QQ(obits, lbits, lhs) ((lhs))
static inline WDataOutP VL_EXTEND_WI(int obits, int, WDataOutP owp, IData ld) VL_MT_SAFE {
// Note for extracts that obits != lbits
owp[0] = ld;
VL_MEMSET_ZERO_W(owp + 1, VL_WORDS_I(obits) - 1);
return owp;
}
static inline WDataOutP VL_EXTEND_WQ(int obits, int, WDataOutP owp, QData ld) VL_MT_SAFE {
VL_SET_WQ(owp, ld);
VL_MEMSET_ZERO_W(owp + VL_WQ_WORDS_E, VL_WORDS_I(obits) - VL_WQ_WORDS_E);
return owp;
}
static inline WDataOutP VL_EXTEND_WW(int obits, int lbits, WDataOutP owp,
WDataInP const lwp) VL_MT_SAFE {
const int lwords = VL_WORDS_I(lbits);
VL_PREFETCH_RD(lwp);
VL_MEMSET_ZERO_W(owp + lwords, VL_WORDS_I(obits) - lwords);
return VL_MEMCPY_W(owp, lwp, lwords);
}
// EMIT_RULE: VL_EXTENDS: oclean=*dirty*; obits=lbits;
// Sign extension; output dirty
static inline IData VL_EXTENDS_II(int, int lbits, IData lhs) VL_PURE {
return VL_EXTENDSIGN_I(lbits, lhs) | lhs;
}
static inline QData VL_EXTENDS_QI(int, int lbits, QData lhs /*Q_as_need_extended*/) VL_PURE {
return VL_EXTENDSIGN_Q(lbits, lhs) | lhs;
}
static inline QData VL_EXTENDS_QQ(int, int lbits, QData lhs) VL_PURE {
return VL_EXTENDSIGN_Q(lbits, lhs) | lhs;
}
static inline WDataOutP VL_EXTENDS_WI(int obits, int lbits, WDataOutP owp, IData ld) VL_MT_SAFE {
owp[0] = ld;
if (VL_SIGN_E(lbits, owp[0])) {
owp[0] |= ~VL_MASK_E(lbits);
VL_MEMSET_ONES_W(owp + 1, VL_WORDS_I(obits) - 1);
} else {
VL_MEMSET_ZERO_W(owp + 1, VL_WORDS_I(obits) - 1);
}
return owp;
}
static inline WDataOutP VL_EXTENDS_WQ(int obits, int lbits, WDataOutP owp, QData ld) VL_MT_SAFE {
VL_SET_WQ(owp, ld);
if (VL_SIGN_E(lbits, owp[1])) {
owp[1] |= ~VL_MASK_E(lbits);
VL_MEMSET_ONES_W(owp + VL_WQ_WORDS_E, VL_WORDS_I(obits) - VL_WQ_WORDS_E);
} else {
VL_MEMSET_ZERO_W(owp + VL_WQ_WORDS_E, VL_WORDS_I(obits) - VL_WQ_WORDS_E);
}
return owp;
}
static inline WDataOutP VL_EXTENDS_WW(int obits, int lbits, WDataOutP owp,
WDataInP const lwp) VL_MT_SAFE {
const int lwords = VL_WORDS_I(lbits);
VL_PREFETCH_RD(lwp);
owp[lwords - 1] = lwp[lwords - 1];
if (VL_SIGN_E(lbits, lwp[lwords - 1])) {
owp[lwords - 1] |= ~VL_MASK_E(lbits);
VL_MEMSET_ONES_W(owp + lwords, VL_WORDS_I(obits) - lwords);
} else {
VL_MEMSET_ZERO_W(owp + lwords, VL_WORDS_I(obits) - lwords);
}
return VL_MEMCPY_W(owp, lwp, lwords - 1);
}
//===================================================================
// REDUCTION OPERATORS
// EMIT_RULE: VL_REDAND: oclean=clean; lclean==clean; obits=1;
#define VL_REDAND_II(lbits, lhs) ((lhs) == VL_MASK_I(lbits))
#define VL_REDAND_IQ(lbits, lhs) ((lhs) == VL_MASK_Q(lbits))
static inline IData VL_REDAND_IW(int lbits, WDataInP const lwp) VL_PURE {
const int words = VL_WORDS_I(lbits);
EData combine = lwp[0];
for (int i = 1; i < words - 1; ++i) combine &= lwp[i];
combine &= ~VL_MASK_E(lbits) | lwp[words - 1];
// cppcheck-has-bug-suppress knownConditionTrueFalse
return ((~combine) == 0);
}
// EMIT_RULE: VL_REDOR: oclean=clean; lclean==clean; obits=1;
#define VL_REDOR_I(lhs) ((lhs) != 0)
#define VL_REDOR_Q(lhs) ((lhs) != 0)
static inline IData VL_REDOR_W(int words, WDataInP const lwp) VL_PURE {
EData equal = 0;
for (int i = 0; i < words; ++i) equal |= lwp[i];
return (equal != 0);
}
// EMIT_RULE: VL_REDXOR: oclean=dirty; obits=1;
static inline IData VL_REDXOR_2(IData r) VL_PURE {
// Experiments show VL_REDXOR_2 is faster than __builtin_parityl
r = (r ^ (r >> 1));
return r;
}
static inline IData VL_REDXOR_4(IData r) VL_PURE {
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
return __builtin_parityl(r);
#else
r = (r ^ (r >> 1));
r = (r ^ (r >> 2));
return r;
#endif
}
static inline IData VL_REDXOR_8(IData r) VL_PURE {
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
return __builtin_parityl(r);
#else
r = (r ^ (r >> 1));
r = (r ^ (r >> 2));
r = (r ^ (r >> 4));
return r;
#endif
}
static inline IData VL_REDXOR_16(IData r) VL_PURE {
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
return __builtin_parityl(r);
#else
r = (r ^ (r >> 1));
r = (r ^ (r >> 2));
r = (r ^ (r >> 4));
r = (r ^ (r >> 8));
return r;
#endif
}
static inline IData VL_REDXOR_32(IData r) VL_PURE {
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
return __builtin_parityl(r);
#else
r = (r ^ (r >> 1));
r = (r ^ (r >> 2));
r = (r ^ (r >> 4));
r = (r ^ (r >> 8));
r = (r ^ (r >> 16));
return r;
#endif
}
static inline IData VL_REDXOR_64(QData r) VL_PURE {
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
return __builtin_parityll(r);
#else
r = (r ^ (r >> 1));
r = (r ^ (r >> 2));
r = (r ^ (r >> 4));
r = (r ^ (r >> 8));
r = (r ^ (r >> 16));
r = (r ^ (r >> 32));
return static_cast<IData>(r);
#endif
}
static inline IData VL_REDXOR_W(int words, WDataInP const lwp) VL_PURE {
EData r = lwp[0];
for (int i = 1; i < words; ++i) r ^= lwp[i];
return VL_REDXOR_32(r);
}
// EMIT_RULE: VL_COUNTONES_II: oclean = false; lhs clean
static inline IData VL_COUNTONES_I(IData lhs) VL_PURE {
// This is faster than __builtin_popcountl
IData r = lhs - ((lhs >> 1) & 033333333333) - ((lhs >> 2) & 011111111111);
r = (r + (r >> 3)) & 030707070707;
r = (r + (r >> 6));
r = (r + (r >> 12) + (r >> 24)) & 077;
return r;
}
static inline IData VL_COUNTONES_Q(QData lhs) VL_PURE {
return VL_COUNTONES_I(static_cast<IData>(lhs)) + VL_COUNTONES_I(static_cast<IData>(lhs >> 32));
}
#define VL_COUNTONES_E VL_COUNTONES_I
static inline IData VL_COUNTONES_W(int words, WDataInP const lwp) VL_PURE {
EData r = 0;
for (int i = 0; i < words; ++i) r += VL_COUNTONES_E(lwp[i]);
return r;
}
// EMIT_RULE: VL_COUNTBITS_II: oclean = false; lhs clean
static inline IData VL_COUNTBITS_I(int lbits, IData lhs, IData ctrl0, IData ctrl1,
IData ctrl2) VL_PURE {
const int ctrlSum = (ctrl0 & 0x1) + (ctrl1 & 0x1) + (ctrl2 & 0x1);
if (ctrlSum == 3) {
return VL_COUNTONES_I(lhs);
} else if (ctrlSum == 0) {
const IData mask = (lbits == 32) ? -1 : ((1 << lbits) - 1);
return VL_COUNTONES_I(~lhs & mask);
} else {
return (lbits == 32) ? 32 : lbits;
}
}
static inline IData VL_COUNTBITS_Q(int lbits, QData lhs, IData ctrl0, IData ctrl1,
IData ctrl2) VL_PURE {
return VL_COUNTBITS_I(32, static_cast<IData>(lhs), ctrl0, ctrl1, ctrl2)
+ VL_COUNTBITS_I(lbits - 32, static_cast<IData>(lhs >> 32), ctrl0, ctrl1, ctrl2);
}
#define VL_COUNTBITS_E VL_COUNTBITS_I
static inline IData VL_COUNTBITS_W(int lbits, int words, WDataInP const lwp, IData ctrl0,
IData ctrl1, IData ctrl2) VL_MT_SAFE {
EData r = 0;
IData wordLbits = 32;
for (int i = 0; i < words; ++i) {
if (i == words - 1) wordLbits = lbits % 32;
r += VL_COUNTBITS_E(wordLbits, lwp[i], ctrl0, ctrl1, ctrl2);
}
return r;
}
static inline IData VL_ONEHOT_I(IData lhs) VL_PURE {
return (((lhs & (lhs - 1)) == 0) & (lhs != 0));
}
static inline IData VL_ONEHOT_Q(QData lhs) VL_PURE {
return (((lhs & (lhs - 1)) == 0) & (lhs != 0));
}
static inline IData VL_ONEHOT_W(int words, WDataInP const lwp) VL_PURE {
EData one = 0;
for (int i = 0; (i < words); ++i) {
if (lwp[i]) {
if (one) return 0;
one = 1;
if (lwp[i] & (lwp[i] - 1)) return 0;
}
}
return one;
}
static inline IData VL_ONEHOT0_I(IData lhs) VL_PURE { return ((lhs & (lhs - 1)) == 0); }
static inline IData VL_ONEHOT0_Q(QData lhs) VL_PURE { return ((lhs & (lhs - 1)) == 0); }
static inline IData VL_ONEHOT0_W(int words, WDataInP const lwp) VL_PURE {
bool one = false;
for (int i = 0; (i < words); ++i) {
if (lwp[i]) {
if (one) return 0;
one = true;
if (lwp[i] & (lwp[i] - 1)) return 0;
}
}
return 1;
}
static inline IData VL_CLOG2_I(IData lhs) VL_PURE {
// There are faster algorithms, or fls GCC4 builtins, but rarely used
// In C++20 there will be std::bit_width(lhs) - 1
if (VL_UNLIKELY(!lhs)) return 0;
--lhs;
int shifts = 0;
for (; lhs != 0; ++shifts) lhs = lhs >> 1;
return shifts;
}
static inline IData VL_CLOG2_Q(QData lhs) VL_PURE {
if (VL_UNLIKELY(!lhs)) return 0;
--lhs;
int shifts = 0;
for (; lhs != 0; ++shifts) lhs = lhs >> 1ULL;
return shifts;
}
static inline IData VL_CLOG2_W(int words, WDataInP const lwp) VL_PURE {
const EData adjust = (VL_COUNTONES_W(words, lwp) == 1) ? 0 : 1;
for (int i = words - 1; i >= 0; --i) {
if (VL_UNLIKELY(lwp[i])) { // Shorter worst case if predict not taken
for (int bit = VL_EDATASIZE - 1; bit >= 0; --bit) {
if (VL_UNLIKELY(VL_BITISSET_E(lwp[i], bit))) {
return i * VL_EDATASIZE + bit + adjust;
}
}
// Can't get here - one bit must be set
}
}
return 0;
}
static inline IData VL_MOSTSETBITP1_W(int words, WDataInP const lwp) VL_PURE {
// MSB set bit plus one; similar to FLS. 0=value is zero
for (int i = words - 1; i >= 0; --i) {
if (VL_UNLIKELY(lwp[i])) { // Shorter worst case if predict not taken
for (int bit = VL_EDATASIZE - 1; bit >= 0; --bit) {
if (VL_UNLIKELY(VL_BITISSET_E(lwp[i], bit))) return i * VL_EDATASIZE + bit + 1;
}
// Can't get here - one bit must be set
}
}
return 0;
}
//===================================================================
// SIMPLE LOGICAL OPERATORS
// EMIT_RULE: VL_AND: oclean=lclean||rclean; obits=lbits; lbits==rbits;
static inline WDataOutP VL_AND_W(int words, WDataOutP owp, WDataInP const lwp,
WDataInP const rwp) VL_MT_SAFE {
for (int i = 0; (i < words); ++i) owp[i] = (lwp[i] & rwp[i]);
return owp;
}
// EMIT_RULE: VL_OR: oclean=lclean&&rclean; obits=lbits; lbits==rbits;
static inline WDataOutP VL_OR_W(int words, WDataOutP owp, WDataInP const lwp,
WDataInP const rwp) VL_MT_SAFE {
for (int i = 0; (i < words); ++i) owp[i] = (lwp[i] | rwp[i]);
return owp;
}
// EMIT_RULE: VL_CHANGEXOR: oclean=1; obits=32; lbits==rbits;
static inline IData VL_CHANGEXOR_W(int words, WDataInP const lwp, WDataInP const rwp) VL_PURE {
IData od = 0;
for (int i = 0; (i < words); ++i) od |= (lwp[i] ^ rwp[i]);
return od;
}
// EMIT_RULE: VL_XOR: oclean=lclean&&rclean; obits=lbits; lbits==rbits;
static inline WDataOutP VL_XOR_W(int words, WDataOutP owp, WDataInP const lwp,
WDataInP const rwp) VL_MT_SAFE {
for (int i = 0; (i < words); ++i) owp[i] = (lwp[i] ^ rwp[i]);
return owp;
}
// EMIT_RULE: VL_NOT: oclean=dirty; obits=lbits;
static inline WDataOutP VL_NOT_W(int words, WDataOutP owp, WDataInP const lwp) VL_MT_SAFE {
for (int i = 0; i < words; ++i) owp[i] = ~(lwp[i]);
return owp;
}
//=========================================================================
// Logical comparisons
// EMIT_RULE: VL_EQ: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
// EMIT_RULE: VL_NEQ: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
// EMIT_RULE: VL_LT: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
// EMIT_RULE: VL_GT: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
// EMIT_RULE: VL_GTE: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
// EMIT_RULE: VL_LTE: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
#define VL_NEQ_W(words, lwp, rwp) (!VL_EQ_W(words, lwp, rwp))
#define VL_LT_W(words, lwp, rwp) (_vl_cmp_w(words, lwp, rwp) < 0)
#define VL_LTE_W(words, lwp, rwp) (_vl_cmp_w(words, lwp, rwp) <= 0)
#define VL_GT_W(words, lwp, rwp) (_vl_cmp_w(words, lwp, rwp) > 0)
#define VL_GTE_W(words, lwp, rwp) (_vl_cmp_w(words, lwp, rwp) >= 0)
// Output clean, <lhs> AND <rhs> MUST BE CLEAN
static inline IData VL_EQ_W(int words, WDataInP const lwp, WDataInP const rwp) VL_PURE {
EData nequal = 0;
for (int i = 0; (i < words); ++i) nequal |= (lwp[i] ^ rwp[i]);
return (nequal == 0);
}
// Internal usage
static inline int _vl_cmp_w(int words, WDataInP const lwp, WDataInP const rwp) VL_PURE {
for (int i = words - 1; i >= 0; --i) {
if (lwp[i] > rwp[i]) return 1;
if (lwp[i] < rwp[i]) return -1;
}
return 0; // ==
}
#define VL_LTS_IWW(lbits, lwp, rwp) (_vl_cmps_w(lbits, lwp, rwp) < 0)
#define VL_LTES_IWW(lbits, lwp, rwp) (_vl_cmps_w(lbits, lwp, rwp) <= 0)
#define VL_GTS_IWW(lbits, lwp, rwp) (_vl_cmps_w(lbits, lwp, rwp) > 0)
#define VL_GTES_IWW(lbits, lwp, rwp) (_vl_cmps_w(lbits, lwp, rwp) >= 0)
static inline IData VL_GTS_III(int lbits, IData lhs, IData rhs) VL_PURE {
// For lbits==32, this becomes just a single instruction, otherwise ~5.
// GCC 3.3.4 sign extension bugs on AMD64 architecture force us to use quad logic
const int64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); // Q for gcc
const int64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); // Q for gcc
return lhs_signed > rhs_signed;
}
static inline IData VL_GTS_IQQ(int lbits, QData lhs, QData rhs) VL_PURE {
const int64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
const int64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
return lhs_signed > rhs_signed;
}
static inline IData VL_GTES_III(int lbits, IData lhs, IData rhs) VL_PURE {
const int64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); // Q for gcc
const int64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); // Q for gcc
return lhs_signed >= rhs_signed;
}
static inline IData VL_GTES_IQQ(int lbits, QData lhs, QData rhs) VL_PURE {
const int64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
const int64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
return lhs_signed >= rhs_signed;
}
static inline IData VL_LTS_III(int lbits, IData lhs, IData rhs) VL_PURE {
const int64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); // Q for gcc
const int64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); // Q for gcc
return lhs_signed < rhs_signed;
}
static inline IData VL_LTS_IQQ(int lbits, QData lhs, QData rhs) VL_PURE {
const int64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
const int64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
return lhs_signed < rhs_signed;
}
static inline IData VL_LTES_III(int lbits, IData lhs, IData rhs) VL_PURE {
const int64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); // Q for gcc
const int64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); // Q for gcc
return lhs_signed <= rhs_signed;
}
static inline IData VL_LTES_IQQ(int lbits, QData lhs, QData rhs) VL_PURE {
const int64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
const int64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
return lhs_signed <= rhs_signed;
}
static inline int _vl_cmps_w(int lbits, WDataInP const lwp, WDataInP const rwp) VL_PURE {
const int words = VL_WORDS_I(lbits);
int i = words - 1;
// We need to flip sense if negative comparison
const EData lsign = VL_SIGN_E(lbits, lwp[i]);
const EData rsign = VL_SIGN_E(lbits, rwp[i]);
if (!lsign && rsign) return 1; // + > -
if (lsign && !rsign) return -1; // - < +
for (; i >= 0; --i) {
if (lwp[i] > rwp[i]) return 1;
if (lwp[i] < rwp[i]) return -1;
}
return 0; // ==
}
//=========================================================================
// Expressions
// Output NOT clean
static inline WDataOutP VL_NEGATE_W(int words, WDataOutP owp, WDataInP const lwp) VL_MT_SAFE {
EData carry = 1;
for (int i = 0; i < words; ++i) {
owp[i] = ~lwp[i] + carry;
carry = (owp[i] < ~lwp[i]);
}
return owp;
}
static inline void VL_NEGATE_INPLACE_W(int words, WDataOutP owp_lwp) VL_MT_SAFE {
EData carry = 1;
for (int i = 0; i < words; ++i) {
const EData word = ~owp_lwp[i] + carry;
carry = (word < ~owp_lwp[i]);
owp_lwp[i] = word;
}
}
// EMIT_RULE: VL_MUL: oclean=dirty; lclean==clean; rclean==clean;
// EMIT_RULE: VL_DIV: oclean=dirty; lclean==clean; rclean==clean;
// EMIT_RULE: VL_MODDIV: oclean=dirty; lclean==clean; rclean==clean;
static inline IData VL_DIV_III(int lbits, IData lhs, IData rhs) {
return (rhs == 0) ? 0 : lhs / rhs;
}
static inline QData VL_DIV_QQQ(int lbits, QData lhs, QData rhs) {
return (rhs == 0) ? 0 : lhs / rhs;
}
#define VL_DIV_WWW(lbits, owp, lwp, rwp) (_vl_moddiv_w(lbits, owp, lwp, rwp, 0))
static inline IData VL_MODDIV_III(int lbits, IData lhs, IData rhs) {
return (rhs == 0) ? 0 : lhs % rhs;
}
static inline QData VL_MODDIV_QQQ(int lbits, QData lhs, QData rhs) {
return (rhs == 0) ? 0 : lhs % rhs;
}
#define VL_MODDIV_WWW(lbits, owp, lwp, rwp) (_vl_moddiv_w(lbits, owp, lwp, rwp, 1))
static inline WDataOutP VL_ADD_W(int words, WDataOutP owp, WDataInP const lwp,
WDataInP const rwp) VL_MT_SAFE {
QData carry = 0;
for (int i = 0; i < words; ++i) {
carry = carry + static_cast<QData>(lwp[i]) + static_cast<QData>(rwp[i]);
owp[i] = (carry & 0xffffffffULL);
carry = (carry >> 32ULL) & 0xffffffffULL;
}
// Last output word is dirty
return owp;
}
static inline WDataOutP VL_SUB_W(int words, WDataOutP owp, WDataInP const lwp,
WDataInP const rwp) VL_MT_SAFE {
QData carry = 0;
for (int i = 0; i < words; ++i) {
carry = (carry + static_cast<QData>(lwp[i])
+ static_cast<QData>(static_cast<IData>(~rwp[i])));
if (i == 0) ++carry; // Negation of rwp
owp[i] = (carry & 0xffffffffULL);
carry = (carry >> 32ULL) & 0xffffffffULL;
}
// Last output word is dirty
return owp;
}
static inline WDataOutP VL_MUL_W(int words, WDataOutP owp, WDataInP const lwp,
WDataInP const rwp) VL_MT_SAFE {
for (int i = 0; i < words; ++i) owp[i] = 0;
for (int lword = 0; lword < words; ++lword) {
for (int rword = 0; rword < words; ++rword) {
QData mul = static_cast<QData>(lwp[lword]) * static_cast<QData>(rwp[rword]);
for (int qword = lword + rword; qword < words; ++qword) {
mul += static_cast<QData>(owp[qword]);
owp[qword] = (mul & 0xffffffffULL);
mul = (mul >> 32ULL) & 0xffffffffULL;
}
}
}
// Last output word is dirty
return owp;
}
static inline IData VL_MULS_III(int lbits, IData lhs, IData rhs) VL_PURE {
const int32_t lhs_signed = VL_EXTENDS_II(32, lbits, lhs);
const int32_t rhs_signed = VL_EXTENDS_II(32, lbits, rhs);
return lhs_signed * rhs_signed;
}
static inline QData VL_MULS_QQQ(int lbits, QData lhs, QData rhs) VL_PURE {
const int64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
const int64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
return lhs_signed * rhs_signed;
}
static inline WDataOutP VL_MULS_WWW(int lbits, WDataOutP owp, WDataInP const lwp,
WDataInP const rwp) VL_MT_SAFE {
const int words = VL_WORDS_I(lbits);
VL_DEBUG_IFDEF(assert(words <= VL_MULS_MAX_WORDS););
// cppcheck-suppress variableScope
WData lwstore[VL_MULS_MAX_WORDS]; // Fixed size, as MSVC++ doesn't allow [words] here
// cppcheck-suppress variableScope
WData rwstore[VL_MULS_MAX_WORDS];
WDataInP lwusp = lwp;
WDataInP rwusp = rwp;
const EData lneg = VL_SIGN_E(lbits, lwp[words - 1]);
if (lneg) { // Negate lhs
lwusp = lwstore;
VL_NEGATE_W(words, lwstore, lwp);
// cppcheck-has-bug-suppress unreadVariable
lwstore[words - 1] &= VL_MASK_E(lbits); // Clean it
}
const EData rneg = VL_SIGN_E(lbits, rwp[words - 1]);
if (rneg) { // Negate rhs
rwusp = rwstore;
VL_NEGATE_W(words, rwstore, rwp);
// cppcheck-has-bug-suppress unreadVariable
rwstore[words - 1] &= VL_MASK_E(lbits); // Clean it
}
VL_MUL_W(words, owp, lwusp, rwusp);
owp[words - 1] &= VL_MASK_E(
lbits); // Clean. Note it's ok for the multiply to overflow into the sign bit
if ((lneg ^ rneg) & 1) { // Negate output (not using NEGATE, as owp==lwp)
QData carry = 0;
for (int i = 0; i < words; ++i) {
carry = carry + static_cast<QData>(static_cast<IData>(~owp[i]));
if (i == 0) ++carry; // Negation of temp2
owp[i] = (carry & 0xffffffffULL);
carry = (carry >> 32ULL) & 0xffffffffULL;
}
// Not needed: owp[words-1] |= 1<<VL_BITBIT_E(lbits-1); // Set sign bit
}
// Last output word is dirty
return owp;
}
static inline IData VL_DIVS_III(int lbits, IData lhs, IData rhs) VL_PURE {
if (VL_UNLIKELY(rhs == 0)) return 0;
// -MAX / -1 cannot be represented in twos complement, and will cause SIGFPE
if (VL_UNLIKELY(lhs == 0x80000000 && rhs == 0xffffffff)) return 0;
const int32_t lhs_signed = VL_EXTENDS_II(VL_IDATASIZE, lbits, lhs);
const int32_t rhs_signed = VL_EXTENDS_II(VL_IDATASIZE, lbits, rhs);
return lhs_signed / rhs_signed;
}
static inline QData VL_DIVS_QQQ(int lbits, QData lhs, QData rhs) VL_PURE {
if (VL_UNLIKELY(rhs == 0)) return 0;
// -MAX / -1 cannot be represented in twos complement, and will cause SIGFPE
if (VL_UNLIKELY(lhs == 0x8000000000000000ULL && rhs == 0xffffffffffffffffULL)) return 0;
const int64_t lhs_signed = VL_EXTENDS_QQ(VL_QUADSIZE, lbits, lhs);
const int64_t rhs_signed = VL_EXTENDS_QQ(VL_QUADSIZE, lbits, rhs);
return lhs_signed / rhs_signed;
}
static inline IData VL_MODDIVS_III(int lbits, IData lhs, IData rhs) VL_PURE {
if (VL_UNLIKELY(rhs == 0)) return 0;
if (VL_UNLIKELY(lhs == 0x80000000 && rhs == 0xffffffff)) return 0;
const int32_t lhs_signed = VL_EXTENDS_II(VL_IDATASIZE, lbits, lhs);
const int32_t rhs_signed = VL_EXTENDS_II(VL_IDATASIZE, lbits, rhs);
return lhs_signed % rhs_signed;
}
static inline QData VL_MODDIVS_QQQ(int lbits, QData lhs, QData rhs) VL_PURE {
if (VL_UNLIKELY(rhs == 0)) return 0;
if (VL_UNLIKELY(lhs == 0x8000000000000000ULL && rhs == 0xffffffffffffffffULL)) return 0;
const int64_t lhs_signed = VL_EXTENDS_QQ(VL_QUADSIZE, lbits, lhs);
const int64_t rhs_signed = VL_EXTENDS_QQ(VL_QUADSIZE, lbits, rhs);
return lhs_signed % rhs_signed;
}
static inline WDataOutP VL_DIVS_WWW(int lbits, WDataOutP owp, WDataInP const lwp,
WDataInP const rwp) VL_MT_SAFE {
const int lwords = VL_WORDS_I(lbits);
const EData lsign = VL_SIGN_E(lbits, lwp[lwords - 1]);
const EData rsign = VL_SIGN_E(lbits, rwp[lwords - 1]);
VL_DEBUG_IFDEF(assert(lwords <= VL_MULS_MAX_WORDS););
// cppcheck-suppress variableScope
WData lwstore[VL_MULS_MAX_WORDS]; // Fixed size, as MSVC++ doesn't allow [words] here
// cppcheck-suppress variableScope
WData rwstore[VL_MULS_MAX_WORDS];
WDataInP ltup = lwp;
WDataInP rtup = rwp;
if (lsign) ltup = _vl_clean_inplace_w(lbits, VL_NEGATE_W(lwords, lwstore, lwp));
if (rsign) rtup = _vl_clean_inplace_w(lbits, VL_NEGATE_W(lwords, rwstore, rwp));
if ((lsign && !rsign) || (!lsign && rsign)) {
WData qNoSign[VL_MULS_MAX_WORDS];
VL_DIV_WWW(lbits, qNoSign, ltup, rtup);
_vl_clean_inplace_w(lbits, VL_NEGATE_W(lwords, owp, qNoSign));
return owp;
} else {
return VL_DIV_WWW(lbits, owp, ltup, rtup);
}
}
static inline WDataOutP VL_MODDIVS_WWW(int lbits, WDataOutP owp, WDataInP const lwp,
WDataInP const rwp) VL_MT_SAFE {
const int lwords = VL_WORDS_I(lbits);
const EData lsign = VL_SIGN_E(lbits, lwp[lwords - 1]);
const EData rsign = VL_SIGN_E(lbits, rwp[lwords - 1]);
VL_DEBUG_IFDEF(assert(lwords <= VL_MULS_MAX_WORDS););
// cppcheck-suppress variableScope
WData lwstore[VL_MULS_MAX_WORDS]; // Fixed size, as MSVC++ doesn't allow [words] here
// cppcheck-suppress variableScope
WData rwstore[VL_MULS_MAX_WORDS];
WDataInP ltup = lwp;
WDataInP rtup = rwp;
if (lsign) ltup = _vl_clean_inplace_w(lbits, VL_NEGATE_W(lwords, lwstore, lwp));
if (rsign) rtup = _vl_clean_inplace_w(lbits, VL_NEGATE_W(lwords, rwstore, rwp));
if (lsign) { // Only dividend sign matters for modulus
WData qNoSign[VL_MULS_MAX_WORDS];
VL_MODDIV_WWW(lbits, qNoSign, ltup, rtup);
_vl_clean_inplace_w(lbits, VL_NEGATE_W(lwords, owp, qNoSign));
return owp;
} else {
return VL_MODDIV_WWW(lbits, owp, ltup, rtup);
}
}
#define VL_POW_IIQ(obits, lbits, rbits, lhs, rhs) VL_POW_QQQ(obits, lbits, rbits, lhs, rhs)
#define VL_POW_IIW(obits, lbits, rbits, lhs, rwp) VL_POW_QQW(obits, lbits, rbits, lhs, rwp)
#define VL_POW_QQI(obits, lbits, rbits, lhs, rhs) VL_POW_QQQ(obits, lbits, rbits, lhs, rhs)
#define VL_POW_WWI(obits, lbits, rbits, owp, lwp, rhs) \
VL_POW_WWQ(obits, lbits, rbits, owp, lwp, rhs)
static inline IData VL_POW_III(int, int, int rbits, IData lhs, IData rhs) VL_PURE {
if (VL_UNLIKELY(rhs == 0)) return 1;
if (VL_UNLIKELY(lhs == 0)) return 0;
IData power = lhs;
IData out = 1;
for (int i = 0; i < rbits; ++i) {
if (i > 0) power = power * power;
if (rhs & (1ULL << i)) out *= power;
}
return out;
}
static inline QData VL_POW_QQQ(int, int, int rbits, QData lhs, QData rhs) VL_PURE {
if (VL_UNLIKELY(rhs == 0)) return 1;
if (VL_UNLIKELY(lhs == 0)) return 0;
QData power = lhs;
QData out = 1ULL;
for (int i = 0; i < rbits; ++i) {
if (i > 0) power = power * power;
if (rhs & (1ULL << i)) out *= power;
}
return out;
}
WDataOutP VL_POW_WWW(int obits, int, int rbits, WDataOutP owp, WDataInP const lwp,
WDataInP const rwp) VL_MT_SAFE;
WDataOutP VL_POW_WWQ(int obits, int, int rbits, WDataOutP owp, WDataInP const lwp,
QData rhs) VL_MT_SAFE;
QData VL_POW_QQW(int obits, int, int rbits, QData lhs, WDataInP const rwp) VL_MT_SAFE;
#define VL_POWSS_IIQ(obits, lbits, rbits, lhs, rhs, lsign, rsign) \
VL_POWSS_QQQ(obits, lbits, rbits, lhs, rhs, lsign, rsign)
#define VL_POWSS_IIQ(obits, lbits, rbits, lhs, rhs, lsign, rsign) \
VL_POWSS_QQQ(obits, lbits, rbits, lhs, rhs, lsign, rsign)
#define VL_POWSS_IIW(obits, lbits, rbits, lhs, rwp, lsign, rsign) \
VL_POWSS_QQW(obits, lbits, rbits, lhs, rwp, lsign, rsign)
#define VL_POWSS_QQI(obits, lbits, rbits, lhs, rhs, lsign, rsign) \
VL_POWSS_QQQ(obits, lbits, rbits, lhs, rhs, lsign, rsign)
#define VL_POWSS_WWI(obits, lbits, rbits, owp, lwp, rhs, lsign, rsign) \
VL_POWSS_WWQ(obits, lbits, rbits, owp, lwp, rhs, lsign, rsign)
static inline IData VL_POWSS_III(int obits, int, int rbits, IData lhs, IData rhs, bool lsign,
bool rsign) VL_MT_SAFE {
if (VL_UNLIKELY(rhs == 0)) return 1;
if (rsign && VL_SIGN_I(rbits, rhs)) {
if (lhs == 0) {
return 0; // "X"
} else if (lhs == 1) {
return 1;
} else if (lsign && lhs == VL_MASK_I(obits)) { // -1
if (rhs & 1) {
return VL_MASK_I(obits); // -1^odd=-1
} else {
return 1; // -1^even=1
}
}
return 0;
}
return VL_POW_III(obits, rbits, rbits, lhs, rhs);
}
static inline QData VL_POWSS_QQQ(int obits, int, int rbits, QData lhs, QData rhs, bool lsign,
bool rsign) VL_MT_SAFE {
if (VL_UNLIKELY(rhs == 0)) return 1;
if (rsign && VL_SIGN_Q(rbits, rhs)) {
if (lhs == 0) {
return 0; // "X"
} else if (lhs == 1) {
return 1;
} else if (lsign && lhs == VL_MASK_Q(obits)) { // -1
if (rhs & 1) {
return VL_MASK_Q(obits); // -1^odd=-1
} else {
return 1; // -1^even=1
}
}
return 0;
}
return VL_POW_QQQ(obits, rbits, rbits, lhs, rhs);
}
WDataOutP VL_POWSS_WWW(int obits, int, int rbits, WDataOutP owp, WDataInP const lwp,
WDataInP const rwp, bool lsign, bool rsign) VL_MT_SAFE;
WDataOutP VL_POWSS_WWQ(int obits, int, int rbits, WDataOutP owp, WDataInP const lwp, QData rhs,
bool lsign, bool rsign) VL_MT_SAFE;
QData VL_POWSS_QQW(int obits, int, int rbits, QData lhs, WDataInP const rwp, bool lsign,
bool rsign) VL_MT_SAFE;
//===================================================================
// Concat/replication
// INTERNAL: Stuff LHS bit 0++ into OUTPUT at specified offset
// ld may be "dirty", output is clean
static inline void _vl_insert_II(CData& lhsr, IData ld, int hbit, int lbit, int rbits) VL_PURE {
const IData cleanmask = VL_MASK_I(rbits);
const IData insmask = (VL_MASK_I(hbit - lbit + 1)) << lbit;
lhsr = (lhsr & ~insmask) | ((ld << lbit) & (insmask & cleanmask));
}
static inline void _vl_insert_II(SData& lhsr, IData ld, int hbit, int lbit, int rbits) VL_PURE {
const IData cleanmask = VL_MASK_I(rbits);
const IData insmask = (VL_MASK_I(hbit - lbit + 1)) << lbit;
lhsr = (lhsr & ~insmask) | ((ld << lbit) & (insmask & cleanmask));
}
static inline void _vl_insert_II(IData& lhsr, IData ld, int hbit, int lbit, int rbits) VL_PURE {
const IData cleanmask = VL_MASK_I(rbits);
const IData insmask = (VL_MASK_I(hbit - lbit + 1)) << lbit;
lhsr = (lhsr & ~insmask) | ((ld << lbit) & (insmask & cleanmask));
}
static inline void _vl_insert_QQ(QData& lhsr, QData ld, int hbit, int lbit, int rbits) VL_PURE {
const QData cleanmask = VL_MASK_Q(rbits);
const QData insmask = (VL_MASK_Q(hbit - lbit + 1)) << lbit;
lhsr = (lhsr & ~insmask) | ((ld << lbit) & (insmask & cleanmask));
}
static inline void _vl_insert_WI(WDataOutP iowp, IData ld, int hbit, int lbit,
int rbits = 0) VL_MT_SAFE {
const int hoffset = VL_BITBIT_E(hbit);
const int loffset = VL_BITBIT_E(lbit);
const int roffset = VL_BITBIT_E(rbits);
const int hword = VL_BITWORD_E(hbit);
const int lword = VL_BITWORD_E(lbit);
const int rword = VL_BITWORD_E(rbits);
const EData cleanmask = hword == rword ? VL_MASK_E(roffset) : VL_MASK_E(0);
if (hoffset == VL_SIZEBITS_E && loffset == 0) {
// Fast and common case, word based insertion
iowp[VL_BITWORD_E(lbit)] = ld & cleanmask;
} else {
const EData lde = static_cast<EData>(ld);
if (hword == lword) { // know < EData bits because above checks it
// Assignment is contained within one word of destination
const EData insmask = (VL_MASK_E(hoffset - loffset + 1)) << loffset;
iowp[lword] = (iowp[lword] & ~insmask) | ((lde << loffset) & (insmask & cleanmask));
} else {
// Assignment crosses a word boundary in destination
const EData hinsmask = (VL_MASK_E(hoffset - 0 + 1)) << 0;
const EData linsmask = (VL_MASK_E((VL_EDATASIZE - 1) - loffset + 1)) << loffset;
const int nbitsonright = VL_EDATASIZE - loffset; // bits that end up in lword
iowp[lword] = (iowp[lword] & ~linsmask) | ((lde << loffset) & linsmask);
iowp[hword]
= (iowp[hword] & ~hinsmask) | ((lde >> nbitsonright) & (hinsmask & cleanmask));
}
}
}
// INTERNAL: Stuff large LHS bit 0++ into OUTPUT at specified offset
// lwp may be "dirty"
static inline void _vl_insert_WW(WDataOutP iowp, WDataInP const lwp, int hbit, int lbit,
int rbits = 0) VL_MT_SAFE {
const int hoffset = VL_BITBIT_E(hbit);
const int loffset = VL_BITBIT_E(lbit);
const int roffset = VL_BITBIT_E(rbits);
const int lword = VL_BITWORD_E(lbit);
const int hword = VL_BITWORD_E(hbit);
const int rword = VL_BITWORD_E(rbits);
const int words = VL_WORDS_I(hbit - lbit + 1);
// Cleaning mask, only applied to top word of the assignment. Is a no-op
// if we don't assign to the top word of the destination.
const EData cleanmask = hword == rword ? VL_MASK_E(roffset) : VL_MASK_E(0);
if (hoffset == VL_SIZEBITS_E && loffset == 0) {
// Fast and common case, word based insertion
for (int i = 0; i < (words - 1); ++i) iowp[lword + i] = lwp[i];
iowp[hword] = lwp[words - 1] & cleanmask;
} else if (loffset == 0) {
// Non-32bit, but nicely aligned, so stuff all but the last word
for (int i = 0; i < (words - 1); ++i) iowp[lword + i] = lwp[i];
// Know it's not a full word as above fast case handled it
const EData hinsmask = (VL_MASK_E(hoffset - 0 + 1));
iowp[hword] = (iowp[hword] & ~hinsmask) | (lwp[words - 1] & (hinsmask & cleanmask));
} else {
const EData hinsmask = (VL_MASK_E(hoffset - 0 + 1)) << 0;
const EData linsmask = (VL_MASK_E((VL_EDATASIZE - 1) - loffset + 1)) << loffset;
const int nbitsonright
= VL_EDATASIZE - loffset; // bits that end up in lword (know loffset!=0)
// Middle words
for (int i = 0; i < words; ++i) {
{ // Lower word
const int oword = lword + i;
const EData d = lwp[i] << loffset;
const EData od = (iowp[oword] & ~linsmask) | (d & linsmask);
if (oword == hword) {
iowp[oword] = (iowp[oword] & ~hinsmask) | (od & (hinsmask & cleanmask));
} else {
iowp[oword] = od;
}
}
{ // Upper word
const int oword = lword + i + 1;
if (oword <= hword) {
const EData d = lwp[i] >> nbitsonright;
const EData od = (d & ~linsmask) | (iowp[oword] & linsmask);
if (oword == hword) {
iowp[oword] = (iowp[oword] & ~hinsmask) | (od & (hinsmask & cleanmask));
} else {
iowp[oword] = od;
}
}
}
}
}
}
static inline void _vl_insert_WQ(WDataOutP iowp, QData ld, int hbit, int lbit,
int rbits = 0) VL_MT_SAFE {
VlWide<VL_WQ_WORDS_E> lwp;
VL_SET_WQ(lwp, ld);
_vl_insert_WW(iowp, lwp, hbit, lbit, rbits);
}
// EMIT_RULE: VL_REPLICATE: oclean=clean>width32, dirty<=width32; lclean=clean; rclean==clean;
// RHS MUST BE CLEAN CONSTANT.
#define VL_REPLICATE_IOI(lbits, ld, rep) (-(ld)) // Iff lbits==1
#define VL_REPLICATE_QOI(lbits, ld, rep) (-(static_cast<QData>(ld))) // Iff lbits==1
static inline IData VL_REPLICATE_III(int lbits, IData ld, IData rep) VL_PURE {
IData returndata = ld;
for (unsigned i = 1; i < rep; ++i) {
returndata = returndata << lbits;
returndata |= ld;
}
return returndata;
}
static inline QData VL_REPLICATE_QII(int lbits, IData ld, IData rep) VL_PURE {
QData returndata = ld;
for (unsigned i = 1; i < rep; ++i) {
returndata = returndata << lbits;
returndata |= static_cast<QData>(ld);
}
return returndata;
}
static inline WDataOutP VL_REPLICATE_WII(int lbits, WDataOutP owp, IData ld,
IData rep) VL_MT_SAFE {
owp[0] = ld;
// Zeroing all words isn't strictly needed but allows compiler to know
// it does not need to preserve data in word(s) not being written
for (unsigned i = 1; i < VL_WORDS_I(static_cast<unsigned>(lbits) * rep); ++i) owp[i] = 0;
for (unsigned i = 1; i < rep; ++i) {
_vl_insert_WI(owp, ld, i * lbits + lbits - 1, i * lbits);
}
return owp;
}
static inline WDataOutP VL_REPLICATE_WQI(int lbits, WDataOutP owp, QData ld,
IData rep) VL_MT_SAFE {
VL_SET_WQ(owp, ld);
// Zeroing all words isn't strictly needed but allows compiler to know
// it does not need to preserve data in word(s) not being written
for (unsigned i = 2; i < VL_WORDS_I(static_cast<unsigned>(lbits) * rep); ++i) owp[i] = 0;
for (unsigned i = 1; i < rep; ++i) {
_vl_insert_WQ(owp, ld, i * lbits + lbits - 1, i * lbits);
}
return owp;
}
static inline WDataOutP VL_REPLICATE_WWI(int lbits, WDataOutP owp, WDataInP const lwp,
IData rep) VL_MT_SAFE {
for (unsigned i = 0; i < VL_WORDS_I(static_cast<unsigned>(lbits)); ++i) owp[i] = lwp[i];
// Zeroing all words isn't strictly needed but allows compiler to know
// it does not need to preserve data in word(s) not being written
for (unsigned i = VL_WORDS_I(static_cast<unsigned>(lbits));
i < VL_WORDS_I(static_cast<unsigned>(lbits * rep)); ++i)
owp[i] = 0;
for (unsigned i = 1; i < rep; ++i) {
_vl_insert_WW(owp, lwp, i * lbits + lbits - 1, i * lbits);
}
return owp;
}
// Left stream operator. Output will always be clean. LHS and RHS must be clean.
// Special "fast" versions for slice sizes that are a power of 2. These use
// shifts and masks to execute faster than the slower for-loop approach where a
// subset of bits is copied in during each iteration.
static inline IData VL_STREAML_FAST_III(int lbits, IData ld, IData rd_log2) VL_PURE {
// Pre-shift bits in most-significant slice:
//
// If lbits is not a multiple of the slice size (i.e., lbits % rd != 0),
// then we end up with a "gap" in our reversed result. For example, if we
// have a 5-bit Verilog signal (lbits=5) in an 8-bit C data type:
//
// ld = ---43210
//
// (where numbers are the Verilog signal bit numbers and '-' is an unused bit).
// Executing the switch statement below with a slice size of two (rd=2,
// rd_log2=1) produces:
//
// ret = 1032-400
//
// Pre-shifting the bits in the most-significant slice allows us to avoid
// this gap in the shuffled data:
//
// ld_adjusted = --4-3210
// ret = 10324---
IData ret = ld;
if (rd_log2) {
const uint32_t lbitsFloor = lbits & ~VL_MASK_I(rd_log2); // max multiple of rd <= lbits
const uint32_t lbitsRem = lbits - lbitsFloor; // number of bits in most-sig slice (MSS)
const IData msbMask = lbitsFloor == 32 ? 0UL : VL_MASK_I(lbitsRem) << lbitsFloor;
ret = (ret & ~msbMask) | ((ret & msbMask) << ((VL_UL(1) << rd_log2) - lbitsRem));
}
switch (rd_log2) {
case 0: ret = ((ret >> 1) & VL_UL(0x55555555)) | ((ret & VL_UL(0x55555555)) << 1); // FALLTHRU
case 1: ret = ((ret >> 2) & VL_UL(0x33333333)) | ((ret & VL_UL(0x33333333)) << 2); // FALLTHRU
case 2: ret = ((ret >> 4) & VL_UL(0x0f0f0f0f)) | ((ret & VL_UL(0x0f0f0f0f)) << 4); // FALLTHRU
case 3: ret = ((ret >> 8) & VL_UL(0x00ff00ff)) | ((ret & VL_UL(0x00ff00ff)) << 8); // FALLTHRU
case 4: ret = ((ret >> 16) | (ret << 16)); // FALLTHRU
default:;
}
return ret >> (VL_IDATASIZE - lbits);
}
static inline QData VL_STREAML_FAST_QQI(int lbits, QData ld, IData rd_log2) VL_PURE {
// Pre-shift bits in most-significant slice (see comment in VL_STREAML_FAST_III)
QData ret = ld;
if (rd_log2) {
const uint32_t lbitsFloor = lbits & ~VL_MASK_I(rd_log2);
const uint32_t lbitsRem = lbits - lbitsFloor;
const QData msbMask = lbitsFloor == 64 ? 0ULL : VL_MASK_Q(lbitsRem) << lbitsFloor;
ret = (ret & ~msbMask) | ((ret & msbMask) << ((1ULL << rd_log2) - lbitsRem));
}
switch (rd_log2) {
case 0:
ret = (((ret >> 1) & 0x5555555555555555ULL)
| ((ret & 0x5555555555555555ULL) << 1)); // FALLTHRU
case 1:
ret = (((ret >> 2) & 0x3333333333333333ULL)
| ((ret & 0x3333333333333333ULL) << 2)); // FALLTHRU
case 2:
ret = (((ret >> 4) & 0x0f0f0f0f0f0f0f0fULL)
| ((ret & 0x0f0f0f0f0f0f0f0fULL) << 4)); // FALLTHRU
case 3:
ret = (((ret >> 8) & 0x00ff00ff00ff00ffULL)
| ((ret & 0x00ff00ff00ff00ffULL) << 8)); // FALLTHRU
case 4:
ret = (((ret >> 16) & 0x0000ffff0000ffffULL)
| ((ret & 0x0000ffff0000ffffULL) << 16)); // FALLTHRU
case 5: ret = ((ret >> 32) | (ret << 32)); // FALLTHRU
default:;
}
return ret >> (VL_QUADSIZE - lbits);
}
// Regular "slow" streaming operators
static inline IData VL_STREAML_III(int lbits, IData ld, IData rd) VL_PURE {
IData ret = 0;
// Slice size should never exceed the lhs width
const IData mask = VL_MASK_I(rd);
for (int istart = 0; istart < lbits; istart += rd) {
int ostart = lbits - rd - istart;
ostart = ostart > 0 ? ostart : 0;
ret |= ((ld >> istart) & mask) << ostart;
}
return ret;
}
static inline QData VL_STREAML_QQI(int lbits, QData ld, IData rd) VL_PURE {
QData ret = 0;
// Slice size should never exceed the lhs width
const QData mask = VL_MASK_Q(rd);
for (int istart = 0; istart < lbits; istart += rd) {
int ostart = lbits - rd - istart;
ostart = ostart > 0 ? ostart : 0;
ret |= ((ld >> istart) & mask) << ostart;
}
return ret;
}
static inline WDataOutP VL_STREAML_WWI(int lbits, WDataOutP owp, WDataInP const lwp,
IData rd) VL_MT_SAFE {
VL_ZERO_W(lbits, owp);
// Slice size should never exceed the lhs width
const int ssize = (rd < static_cast<IData>(lbits)) ? rd : (static_cast<IData>(lbits));
for (int istart = 0; istart < lbits; istart += rd) {
int ostart = lbits - rd - istart;
ostart = ostart > 0 ? ostart : 0;
for (int sbit = 0; sbit < ssize && sbit < lbits - istart; ++sbit) {
// Extract a single bit from lwp and shift it to the correct
// location for owp.
const EData bit = (VL_BITRSHIFT_W(lwp, (istart + sbit)) & 1)
<< VL_BITBIT_E(ostart + sbit);
owp[VL_BITWORD_E(ostart + sbit)] |= bit;
}
}
return owp;
}
template <typename T>
static inline void VL_ASSIGN_DYN_Q(VlQueue<T>& q, int elem_size, int lbits, QData from) {
const int size = (lbits + elem_size - 1) / elem_size;
q.renew(size);
const QData mask = VL_MASK_Q(elem_size);
for (int i = 0; i < size; ++i) q.at(i) = (T)((from >> (i * elem_size)) & mask);
}
template <typename T>
static inline IData VL_DYN_TO_I(const VlQueue<T>& q, int elem_size) {
IData ret = 0;
for (int i = 0; i < q.size(); ++i) ret |= q.at(i) << (i * elem_size);
return ret;
}
template <typename T>
static inline QData VL_DYN_TO_Q(const VlQueue<T>& q, int elem_size) {
QData ret = 0;
for (int i = 0; i < q.size(); ++i) ret |= q.at(i) << (i * elem_size);
return ret;
}
// Because concats are common and wide, it's valuable to always have a clean output.
// Thus we specify inputs must be clean, so we don't need to clean the output.
// Note the bit shifts are always constants, so the adds in these constify out.
// Casts required, as args may be 8 bit entities, and need to shift to appropriate output size
#define VL_CONCAT_III(obits, lbits, rbits, ld, rd) \
(static_cast<IData>(ld) << (rbits) | static_cast<IData>(rd))
#define VL_CONCAT_QII(obits, lbits, rbits, ld, rd) \
(static_cast<QData>(ld) << (rbits) | static_cast<QData>(rd))
#define VL_CONCAT_QIQ(obits, lbits, rbits, ld, rd) \
(static_cast<QData>(ld) << (rbits) | static_cast<QData>(rd))
#define VL_CONCAT_QQI(obits, lbits, rbits, ld, rd) \
(static_cast<QData>(ld) << (rbits) | static_cast<QData>(rd))
#define VL_CONCAT_QQQ(obits, lbits, rbits, ld, rd) \
(static_cast<QData>(ld) << (rbits) | static_cast<QData>(rd))
static inline WDataOutP VL_CONCAT_WII(int obits, int lbits, int rbits, WDataOutP owp, IData ld,
IData rd) VL_MT_SAFE {
owp[0] = rd;
VL_MEMSET_ZERO_W(owp + 1, VL_WORDS_I(obits) - 1);
_vl_insert_WI(owp, ld, rbits + lbits - 1, rbits);
return owp;
}
static inline WDataOutP VL_CONCAT_WWI(int obits, int lbits, int rbits, WDataOutP owp,
WDataInP const lwp, IData rd) VL_MT_SAFE {
owp[0] = rd;
VL_MEMSET_ZERO_W(owp + 1, VL_WORDS_I(obits) - 1);
_vl_insert_WW(owp, lwp, rbits + lbits - 1, rbits);
return owp;
}
static inline WDataOutP VL_CONCAT_WIW(int obits, int lbits, int rbits, WDataOutP owp, IData ld,
WDataInP const rwp) VL_MT_SAFE {
const int rwords = VL_WORDS_I(rbits);
VL_MEMCPY_W(owp, rwp, rwords);
VL_MEMSET_ZERO_W(owp + rwords, VL_WORDS_I(obits) - rwords);
_vl_insert_WI(owp, ld, rbits + lbits - 1, rbits);
return owp;
}
static inline WDataOutP VL_CONCAT_WIQ(int obits, int lbits, int rbits, WDataOutP owp, IData ld,
QData rd) VL_MT_SAFE {
VL_SET_WQ(owp, rd);
VL_MEMSET_ZERO_W(owp + VL_WQ_WORDS_E, VL_WORDS_I(obits) - VL_WQ_WORDS_E);
_vl_insert_WI(owp, ld, rbits + lbits - 1, rbits);
return owp;
}
static inline WDataOutP VL_CONCAT_WQI(int obits, int lbits, int rbits, WDataOutP owp, QData ld,
IData rd) VL_MT_SAFE {
owp[0] = rd;
VL_MEMSET_ZERO_W(owp + 1, VL_WORDS_I(obits) - 1);
_vl_insert_WQ(owp, ld, rbits + lbits - 1, rbits);
return owp;
}
static inline WDataOutP VL_CONCAT_WQQ(int obits, int lbits, int rbits, WDataOutP owp, QData ld,
QData rd) VL_MT_SAFE {
VL_SET_WQ(owp, rd);
VL_MEMSET_ZERO_W(owp + VL_WQ_WORDS_E, VL_WORDS_I(obits) - VL_WQ_WORDS_E);
_vl_insert_WQ(owp, ld, rbits + lbits - 1, rbits);
return owp;
}
static inline WDataOutP VL_CONCAT_WWQ(int obits, int lbits, int rbits, WDataOutP owp,
WDataInP const lwp, QData rd) VL_MT_SAFE {
VL_SET_WQ(owp, rd);
VL_MEMSET_ZERO_W(owp + VL_WQ_WORDS_E, VL_WORDS_I(obits) - VL_WQ_WORDS_E);
_vl_insert_WW(owp, lwp, rbits + lbits - 1, rbits);
return owp;
}
static inline WDataOutP VL_CONCAT_WQW(int obits, int lbits, int rbits, WDataOutP owp, QData ld,
WDataInP const rwp) VL_MT_SAFE {
const int rwords = VL_WORDS_I(rbits);
VL_MEMCPY_W(owp, rwp, rwords);
VL_MEMSET_ZERO_W(owp + rwords, VL_WORDS_I(obits) - rwords);
_vl_insert_WQ(owp, ld, rbits + lbits - 1, rbits);
return owp;
}
static inline WDataOutP VL_CONCAT_WWW(int obits, int lbits, int rbits, WDataOutP owp,
WDataInP const lwp, WDataInP const rwp) VL_MT_SAFE {
const int rwords = VL_WORDS_I(rbits);
VL_MEMCPY_W(owp, rwp, rwords);
VL_MEMSET_ZERO_W(owp + rwords, VL_WORDS_I(obits) - rwords);
_vl_insert_WW(owp, lwp, rbits + lbits - 1, rbits);
return owp;
}
//===================================================================
// Shifts
// Static shift, used by internal functions
// The output is the same as the input - it overlaps!
static inline void _vl_shiftl_inplace_w(int obits, WDataOutP iowp,
IData rd /*1 or 4*/) VL_MT_SAFE {
const int words = VL_WORDS_I(obits);
const EData linsmask = VL_MASK_E(rd);
for (int i = words - 1; i >= 1; --i) {
iowp[i]
= ((iowp[i] << rd) & ~linsmask) | ((iowp[i - 1] >> (VL_EDATASIZE - rd)) & linsmask);
}
iowp[0] = ((iowp[0] << rd) & ~linsmask);
iowp[VL_WORDS_I(obits) - 1] &= VL_MASK_E(obits);
}
// EMIT_RULE: VL_SHIFTL: oclean=lclean; rclean==clean;
// Important: Unlike most other funcs, the shift might well be a computed
// expression. Thus consider this when optimizing. (And perhaps have 2 funcs?)
// If RHS (rd/rwp) is larger than the output, zeros (or all ones for >>>) must be returned
// (This corresponds to AstShift*Ovr Ast nodes)
static inline IData VL_SHIFTL_III(int obits, int, int, IData lhs, IData rhs) VL_MT_SAFE {
if (VL_UNLIKELY(rhs >= VL_IDATASIZE)) return 0;
return lhs << rhs; // Small is common so not clean return
}
static inline IData VL_SHIFTL_IIQ(int obits, int, int, IData lhs, QData rhs) VL_MT_SAFE {
if (VL_UNLIKELY(rhs >= VL_IDATASIZE)) return 0;
return VL_CLEAN_II(obits, obits, lhs << rhs);
}
static inline QData VL_SHIFTL_QQI(int obits, int, int, QData lhs, IData rhs) VL_MT_SAFE {
if (VL_UNLIKELY(rhs >= VL_QUADSIZE)) return 0;
return lhs << rhs; // Small is common so not clean return
}
static inline QData VL_SHIFTL_QQQ(int obits, int, int, QData lhs, QData rhs) VL_MT_SAFE {
if (VL_UNLIKELY(rhs >= VL_QUADSIZE)) return 0;
return VL_CLEAN_QQ(obits, obits, lhs << rhs);
}
static inline WDataOutP VL_SHIFTL_WWI(int obits, int, int, WDataOutP owp, WDataInP const lwp,
IData rd) VL_MT_SAFE {
const int word_shift = VL_BITWORD_E(rd);
const int bit_shift = VL_BITBIT_E(rd);
if (rd >= static_cast<IData>(obits)) { // rd may be huge with MSB set
for (int i = 0; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
} else if (bit_shift == 0) { // Aligned word shift (<<0,<<32,<<64 etc)
for (int i = 0; i < word_shift; ++i) owp[i] = 0;
for (int i = word_shift; i < VL_WORDS_I(obits); ++i) owp[i] = lwp[i - word_shift];
} else {
for (int i = 0; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
_vl_insert_WW(owp, lwp, obits - 1, rd);
}
return owp;
}
static inline WDataOutP VL_SHIFTL_WWW(int obits, int lbits, int rbits, WDataOutP owp,
WDataInP const lwp, WDataInP const rwp) VL_MT_SAFE {
for (int i = 1; i < VL_WORDS_I(rbits); ++i) {
if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more
return VL_ZERO_W(obits, owp);
}
}
return VL_SHIFTL_WWI(obits, lbits, 32, owp, lwp, rwp[0]);
}
static inline WDataOutP VL_SHIFTL_WWQ(int obits, int lbits, int rbits, WDataOutP owp,
WDataInP const lwp, QData rd) VL_MT_SAFE {
VlWide<VL_WQ_WORDS_E> rwp;
VL_SET_WQ(rwp, rd);
return VL_SHIFTL_WWW(obits, lbits, rbits, owp, lwp, rwp);
}
static inline IData VL_SHIFTL_IIW(int obits, int, int rbits, IData lhs,
WDataInP const rwp) VL_MT_SAFE {
for (int i = 1; i < VL_WORDS_I(rbits); ++i) {
if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more
return 0;
}
}
return VL_SHIFTL_III(obits, obits, 32, lhs, rwp[0]);
}
static inline QData VL_SHIFTL_QQW(int obits, int, int rbits, QData lhs,
WDataInP const rwp) VL_MT_SAFE {
for (int i = 1; i < VL_WORDS_I(rbits); ++i) {
if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more
return 0;
}
}
// Above checks rwp[1]==0 so not needed in below shift
return VL_SHIFTL_QQI(obits, obits, 32, lhs, rwp[0]);
}
// EMIT_RULE: VL_SHIFTR: oclean=lclean; rclean==clean;
// Important: Unlike most other funcs, the shift might well be a computed
// expression. Thus consider this when optimizing. (And perhaps have 2 funcs?)
static inline IData VL_SHIFTR_III(int obits, int, int, IData lhs, IData rhs) VL_PURE {
if (VL_UNLIKELY(rhs >= VL_IDATASIZE)) return 0;
return lhs >> rhs; // Small is common so assumed not clean
}
static inline IData VL_SHIFTR_IIQ(int obits, int, int, IData lhs, QData rhs) VL_PURE {
if (VL_UNLIKELY(rhs >= VL_IDATASIZE)) return 0;
return VL_CLEAN_QQ(obits, obits, lhs >> rhs);
}
static inline QData VL_SHIFTR_QQI(int obits, int, int, QData lhs, IData rhs) VL_PURE {
if (VL_UNLIKELY(rhs >= VL_QUADSIZE)) return 0;
return lhs >> rhs; // Small is common so assumed not clean
}
static inline QData VL_SHIFTR_QQQ(int obits, int, int, QData lhs, QData rhs) VL_PURE {
if (VL_UNLIKELY(rhs >= VL_QUADSIZE)) return 0;
return VL_CLEAN_QQ(obits, obits, lhs >> rhs);
}
static inline WDataOutP VL_SHIFTR_WWI(int obits, int, int, WDataOutP owp, WDataInP const lwp,
IData rd) VL_MT_SAFE {
const int word_shift = VL_BITWORD_E(rd); // Maybe 0
const int bit_shift = VL_BITBIT_E(rd);
if (rd >= static_cast<IData>(obits)) { // rd may be huge with MSB set
for (int i = 0; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
} else if (bit_shift == 0) { // Aligned word shift (>>0,>>32,>>64 etc)
const int copy_words = (VL_WORDS_I(obits) - word_shift);
for (int i = 0; i < copy_words; ++i) owp[i] = lwp[i + word_shift];
for (int i = copy_words; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
} else {
const int loffset = rd & VL_SIZEBITS_E;
const int nbitsonright = VL_EDATASIZE - loffset; // bits that end up in lword (know
// loffset!=0) Middle words
const int words = VL_WORDS_I(obits - rd);
for (int i = 0; i < words; ++i) {
owp[i] = lwp[i + word_shift] >> loffset;
const int upperword = i + word_shift + 1;
if (upperword < VL_WORDS_I(obits)) owp[i] |= lwp[upperword] << nbitsonright;
}
for (int i = words; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
}
return owp;
}
static inline WDataOutP VL_SHIFTR_WWW(int obits, int lbits, int rbits, WDataOutP owp,
WDataInP const lwp, WDataInP const rwp) VL_MT_SAFE {
for (int i = 1; i < VL_WORDS_I(rbits); ++i) {
if (VL_UNLIKELY(rwp[i])) { // Huge shift 1>>32 or more
return VL_ZERO_W(obits, owp);
}
}
return VL_SHIFTR_WWI(obits, lbits, 32, owp, lwp, rwp[0]);
}
static inline WDataOutP VL_SHIFTR_WWQ(int obits, int lbits, int rbits, WDataOutP owp,
WDataInP const lwp, QData rd) VL_MT_SAFE {
VlWide<VL_WQ_WORDS_E> rwp;
VL_SET_WQ(rwp, rd);
return VL_SHIFTR_WWW(obits, lbits, rbits, owp, lwp, rwp);
}
static inline IData VL_SHIFTR_IIW(int obits, int, int rbits, IData lhs,
WDataInP const rwp) VL_PURE {
for (int i = 1; i < VL_WORDS_I(rbits); ++i) {
if (VL_UNLIKELY(rwp[i])) return 0; // Huge shift 1>>32 or more
}
return VL_SHIFTR_III(obits, obits, 32, lhs, rwp[0]);
}
static inline QData VL_SHIFTR_QQW(int obits, int, int rbits, QData lhs,
WDataInP const rwp) VL_PURE {
for (int i = 1; i < VL_WORDS_I(rbits); ++i) {
if (VL_UNLIKELY(rwp[i])) return 0; // Huge shift 1>>32 or more
}
return VL_SHIFTR_QQI(obits, obits, 32, lhs, rwp[0]);
}
// EMIT_RULE: VL_SHIFTRS: oclean=false; lclean=clean, rclean==clean;
static inline IData VL_SHIFTRS_III(int obits, int lbits, int, IData lhs, IData rhs) VL_PURE {
// Note the C standard does not specify the >> operator as a arithmetic shift!
// IEEE says signed if output signed, but bit position from lbits;
// must use lbits for sign; lbits might != obits,
// an EXTEND(SHIFTRS(...)) can became a SHIFTRS(...) within same 32/64 bit word length
const IData sign = -(lhs >> (lbits - 1)); // ffff_ffff if negative
if (VL_UNLIKELY(rhs >= VL_IDATASIZE)) return sign & VL_MASK_I(obits);
const IData signext = ~(VL_MASK_I(lbits) >> rhs); // One with bits where we've shifted "past"
return (lhs >> rhs) | (sign & VL_CLEAN_II(obits, obits, signext));
}
static inline QData VL_SHIFTRS_QQI(int obits, int lbits, int, QData lhs, IData rhs) VL_PURE {
const QData sign = -(lhs >> (lbits - 1));
if (VL_UNLIKELY(rhs >= VL_QUADSIZE)) return sign & VL_MASK_Q(obits);
const QData signext = ~(VL_MASK_Q(lbits) >> rhs);
return (lhs >> rhs) | (sign & VL_CLEAN_QQ(obits, obits, signext));
}
static inline IData VL_SHIFTRS_IQI(int obits, int lbits, int rbits, QData lhs, IData rhs) VL_PURE {
return static_cast<IData>(VL_SHIFTRS_QQI(obits, lbits, rbits, lhs, rhs));
}
static inline WDataOutP VL_SHIFTRS_WWI(int obits, int lbits, int, WDataOutP owp,
WDataInP const lwp, IData rd) VL_MT_SAFE {
const int word_shift = VL_BITWORD_E(rd);
const int bit_shift = VL_BITBIT_E(rd);
const int lmsw = VL_WORDS_I(obits) - 1;
const EData sign = VL_SIGNONES_E(lbits, lwp[lmsw]);
if (rd >= static_cast<IData>(obits)) { // Shifting past end, sign in all of lbits
for (int i = 0; i <= lmsw; ++i) owp[i] = sign;
owp[lmsw] &= VL_MASK_E(lbits);
} else if (bit_shift == 0) { // Aligned word shift (>>0,>>32,>>64 etc)
const int copy_words = (VL_WORDS_I(obits) - word_shift);
for (int i = 0; i < copy_words; ++i) owp[i] = lwp[i + word_shift];
if (copy_words >= 0) owp[copy_words - 1] |= ~VL_MASK_E(obits) & sign;
for (int i = copy_words; i < VL_WORDS_I(obits); ++i) owp[i] = sign;
owp[lmsw] &= VL_MASK_E(lbits);
} else {
const int loffset = rd & VL_SIZEBITS_E;
const int nbitsonright
= VL_EDATASIZE - loffset; // bits that end up in lword (know loffset!=0)
// Middle words
const int words = VL_WORDS_I(obits - rd);
for (int i = 0; i < words; ++i) {
owp[i] = lwp[i + word_shift] >> loffset;
const int upperword = i + word_shift + 1;
if (upperword < VL_WORDS_I(obits)) owp[i] |= lwp[upperword] << nbitsonright;
}
if (words) owp[words - 1] |= sign & ~VL_MASK_E(obits - loffset);
for (int i = words; i < VL_WORDS_I(obits); ++i) owp[i] = sign;
owp[lmsw] &= VL_MASK_E(lbits);
}
return owp;
}
static inline WDataOutP VL_SHIFTRS_WWW(int obits, int lbits, int rbits, WDataOutP owp,
WDataInP const lwp, WDataInP const rwp) VL_MT_SAFE {
EData overshift = 0; // Huge shift 1>>32 or more
for (int i = 1; i < VL_WORDS_I(rbits); ++i) overshift |= rwp[i];
if (VL_UNLIKELY(overshift || rwp[0] >= static_cast<IData>(obits))) {
const int owords = VL_WORDS_I(obits);
if (VL_SIGN_E(lbits, lwp[owords - 1])) {
VL_MEMSET_ONES_W(owp, owords);
owp[owords - 1] &= VL_MASK_E(lbits);
} else {
VL_MEMSET_ZERO_W(owp, owords);
}
return owp;
}
return VL_SHIFTRS_WWI(obits, lbits, 32, owp, lwp, rwp[0]);
}
static inline WDataOutP VL_SHIFTRS_WWQ(int obits, int lbits, int rbits, WDataOutP owp,
WDataInP const lwp, QData rd) VL_MT_SAFE {
VlWide<VL_WQ_WORDS_E> rwp;
VL_SET_WQ(rwp, rd);
return VL_SHIFTRS_WWW(obits, lbits, rbits, owp, lwp, rwp);
}
static inline IData VL_SHIFTRS_IIW(int obits, int lbits, int rbits, IData lhs,
WDataInP const rwp) VL_PURE {
EData overshift = 0; // Huge shift 1>>32 or more
for (int i = 1; i < VL_WORDS_I(rbits); ++i) overshift |= rwp[i];
if (VL_UNLIKELY(overshift || rwp[0] >= static_cast<IData>(obits))) {
const IData sign = -(lhs >> (lbits - 1)); // ffff_ffff if negative
return VL_CLEAN_II(obits, obits, sign);
}
return VL_SHIFTRS_III(obits, lbits, 32, lhs, rwp[0]);
}
static inline QData VL_SHIFTRS_QQW(int obits, int lbits, int rbits, QData lhs,
WDataInP const rwp) VL_PURE {
EData overshift = 0; // Huge shift 1>>32 or more
for (int i = 1; i < VL_WORDS_I(rbits); ++i) overshift |= rwp[i];
if (VL_UNLIKELY(overshift || rwp[0] >= static_cast<IData>(obits))) {
const QData sign = -(lhs >> (lbits - 1)); // ffff_ffff if negative
return VL_CLEAN_QQ(obits, obits, sign);
}
return VL_SHIFTRS_QQI(obits, lbits, 32, lhs, rwp[0]);
}
static inline IData VL_SHIFTRS_IIQ(int obits, int lbits, int rbits, IData lhs, QData rhs) VL_PURE {
VlWide<VL_WQ_WORDS_E> rwp;
VL_SET_WQ(rwp, rhs);
return VL_SHIFTRS_IIW(obits, lbits, rbits, lhs, rwp);
}
static inline QData VL_SHIFTRS_QQQ(int obits, int lbits, int rbits, QData lhs, QData rhs) VL_PURE {
VlWide<VL_WQ_WORDS_E> rwp;
VL_SET_WQ(rwp, rhs);
return VL_SHIFTRS_QQW(obits, lbits, rbits, lhs, rwp);
}
//===================================================================
// Bit selection
// EMIT_RULE: VL_BITSEL: oclean=dirty; rclean==clean;
#define VL_BITSEL_IIII(lbits, lhs, rhs) ((lhs) >> (rhs))
#define VL_BITSEL_QIII(lbits, lhs, rhs) ((lhs) >> (rhs))
#define VL_BITSEL_QQII(lbits, lhs, rhs) ((lhs) >> (rhs))
#define VL_BITSEL_IQII(lbits, lhs, rhs) (static_cast<IData>((lhs) >> (rhs)))
static inline IData VL_BITSEL_IWII(int lbits, WDataInP const lwp, IData rd) VL_MT_SAFE {
const int word = VL_BITWORD_E(rd);
if (VL_UNLIKELY(rd > static_cast<IData>(lbits))) {
return ~0; // Spec says you can go outside the range of a array. Don't coredump if so.
// We return all 1's as that's more likely to find bugs (?) than 0's.
} else {
return (lwp[word] >> VL_BITBIT_E(rd));
}
}
// EMIT_RULE: VL_RANGE: oclean=lclean; out=dirty
// <msb> & <lsb> MUST BE CLEAN (currently constant)
#define VL_SEL_IIII(lbits, lhs, lsb, width) ((lhs) >> (lsb))
#define VL_SEL_QQII(lbits, lhs, lsb, width) ((lhs) >> (lsb))
#define VL_SEL_IQII(lbits, lhs, lsb, width) (static_cast<IData>((lhs) >> (lsb)))
static inline IData VL_SEL_IWII(int lbits, WDataInP const lwp, IData lsb, IData width) VL_MT_SAFE {
const int msb = lsb + width - 1;
if (VL_UNLIKELY(msb >= lbits)) {
return ~0; // Spec says you can go outside the range of a array. Don't coredump if so.
} else if (VL_BITWORD_E(msb) == VL_BITWORD_E(static_cast<int>(lsb))) {
return VL_BITRSHIFT_W(lwp, lsb);
} else {
// 32 bit extraction may span two words
const int nbitsfromlow = VL_EDATASIZE - VL_BITBIT_E(lsb); // bits that come from low word
return ((lwp[VL_BITWORD_E(msb)] << nbitsfromlow) | VL_BITRSHIFT_W(lwp, lsb));
}
}
static inline QData VL_SEL_QWII(int lbits, WDataInP const lwp, IData lsb, IData width) VL_MT_SAFE {
const int msb = lsb + width - 1;
if (VL_UNLIKELY(msb > lbits)) {
return ~0; // Spec says you can go outside the range of a array. Don't coredump if so.
} else if (VL_BITWORD_E(msb) == VL_BITWORD_E(static_cast<int>(lsb))) {
return VL_BITRSHIFT_W(lwp, lsb);
} else if (VL_BITWORD_E(msb) == 1 + VL_BITWORD_E(static_cast<int>(lsb))) {
const int nbitsfromlow = VL_EDATASIZE - VL_BITBIT_E(lsb);
const QData hi = (lwp[VL_BITWORD_E(msb)]);
const QData lo = VL_BITRSHIFT_W(lwp, lsb);
return (hi << nbitsfromlow) | lo;
} else {
// 64 bit extraction may span three words
const int nbitsfromlow = VL_EDATASIZE - VL_BITBIT_E(lsb);
const QData hi = (lwp[VL_BITWORD_E(msb)]);
const QData mid = (lwp[VL_BITWORD_E(lsb) + 1]);
const QData lo = VL_BITRSHIFT_W(lwp, lsb);
return (hi << (nbitsfromlow + VL_EDATASIZE)) | (mid << nbitsfromlow) | lo;
}
}
static inline WDataOutP VL_SEL_WWII(int obits, int lbits, WDataOutP owp, WDataInP const lwp,
IData lsb, IData width) VL_MT_SAFE {
const int msb = lsb + width - 1;
const int word_shift = VL_BITWORD_E(lsb);
if (VL_UNLIKELY(msb > lbits)) { // Outside bounds,
for (int i = 0; i < VL_WORDS_I(obits) - 1; ++i) owp[i] = ~0;
owp[VL_WORDS_I(obits) - 1] = VL_MASK_E(obits);
} else if (VL_BITBIT_E(lsb) == 0) {
// Just a word extract
for (int i = 0; i < VL_WORDS_I(obits); ++i) owp[i] = lwp[i + word_shift];
} else {
// Not a _vl_insert because the bits come from any bit number and goto bit 0
const int loffset = lsb & VL_SIZEBITS_E;
const int nbitsfromlow = VL_EDATASIZE - loffset; // bits that end up in lword (know
// loffset!=0) Middle words
const int words = VL_WORDS_I(msb - lsb + 1);
for (int i = 0; i < words; ++i) {
owp[i] = lwp[i + word_shift] >> loffset;
const int upperword = i + word_shift + 1;
if (upperword <= static_cast<int>(VL_BITWORD_E(msb))) {
owp[i] |= lwp[upperword] << nbitsfromlow;
}
}
for (int i = words; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
}
return owp;
}
//======================================================================
// Expressions needing insert/select
// Return QData from double (numeric)
// EMIT_RULE: VL_RTOIROUND_Q_D: oclean=dirty; lclean==clean/real
static inline QData VL_RTOIROUND_Q_D(double lhs) VL_PURE {
// IEEE format: [63]=sign [62:52]=exp+1023 [51:0]=mantissa
// This does not need to support subnormals as they are sub-integral
lhs = VL_ROUND(lhs);
if (lhs == 0.0) return 0;
const QData q = VL_CVT_Q_D(lhs);
const int lsb = static_cast<int>((q >> 52ULL) & VL_MASK_Q(11)) - 1023 - 52;
const uint64_t mantissa = (q & VL_MASK_Q(52)) | (1ULL << 52);
uint64_t out = 0;
if (lsb < 0) {
out = mantissa >> -lsb;
} else if (lsb < 64) {
out = mantissa << lsb;
}
if (lhs < 0) out = -out;
return out;
}
static inline IData VL_RTOIROUND_I_D(double lhs) VL_PURE {
return static_cast<IData>(VL_RTOIROUND_Q_D(lhs));
}
static inline WDataOutP VL_RTOIROUND_W_D(int obits, WDataOutP owp, double lhs) VL_MT_SAFE {
// IEEE format: [63]=sign [62:52]=exp+1023 [51:0]=mantissa
// This does not need to support subnormals as they are sub-integral
lhs = VL_ROUND(lhs);
VL_ZERO_W(obits, owp);
if (lhs == 0.0) return owp;
const QData q = VL_CVT_Q_D(lhs);
const int lsb = static_cast<int>((q >> 52ULL) & VL_MASK_Q(11)) - 1023 - 52;
const uint64_t mantissa = (q & VL_MASK_Q(52)) | (1ULL << 52);
if (lsb < 0) {
VL_SET_WQ(owp, mantissa >> -lsb);
} else if (lsb < obits) {
_vl_insert_WQ(owp, mantissa, lsb + 52, lsb);
}
if (lhs < 0) VL_NEGATE_INPLACE_W(VL_WORDS_I(obits), owp);
return owp;
}
//======================================================================
// Range assignments
// EMIT_RULE: VL_ASSIGNRANGE: rclean=dirty;
static inline void VL_ASSIGNSEL_II(int rbits, int obits, int lsb, CData& lhsr, IData rhs) VL_PURE {
_vl_insert_II(lhsr, rhs, lsb + obits - 1, lsb, rbits);
}
static inline void VL_ASSIGNSEL_II(int rbits, int obits, int lsb, SData& lhsr, IData rhs) VL_PURE {
_vl_insert_II(lhsr, rhs, lsb + obits - 1, lsb, rbits);
}
static inline void VL_ASSIGNSEL_II(int rbits, int obits, int lsb, IData& lhsr, IData rhs) VL_PURE {
_vl_insert_II(lhsr, rhs, lsb + obits - 1, lsb, rbits);
}
static inline void VL_ASSIGNSEL_QI(int rbits, int obits, int lsb, QData& lhsr, IData rhs) VL_PURE {
_vl_insert_QQ(lhsr, rhs, lsb + obits - 1, lsb, rbits);
}
static inline void VL_ASSIGNSEL_QQ(int rbits, int obits, int lsb, QData& lhsr, QData rhs) VL_PURE {
_vl_insert_QQ(lhsr, rhs, lsb + obits - 1, lsb, rbits);
}
// static inline void VL_ASSIGNSEL_IIIW(int obits, int lsb, IData& lhsr, WDataInP const rwp)
// VL_MT_SAFE { Illegal, as lhs width >= rhs width
static inline void VL_ASSIGNSEL_WI(int rbits, int obits, int lsb, WDataOutP iowp,
IData rhs) VL_MT_SAFE {
_vl_insert_WI(iowp, rhs, lsb + obits - 1, lsb, rbits);
}
static inline void VL_ASSIGNSEL_WQ(int rbits, int obits, int lsb, WDataOutP iowp,
QData rhs) VL_MT_SAFE {
_vl_insert_WQ(iowp, rhs, lsb + obits - 1, lsb, rbits);
}
static inline void VL_ASSIGNSEL_WW(int rbits, int obits, int lsb, WDataOutP iowp,
WDataInP const rwp) VL_MT_SAFE {
_vl_insert_WW(iowp, rwp, lsb + obits - 1, lsb, rbits);
}
//======================================================================
// Triops
static inline WDataOutP VL_COND_WIWW(int obits, WDataOutP owp, int cond, WDataInP const w1p,
WDataInP const w2p) VL_MT_SAFE {
return VL_MEMCPY_W(owp, cond ? w1p : w2p, VL_WORDS_I(obits));
}
//======================================================================
// Constification
// VL_CONST_W_#X(int obits, WDataOutP owp, IData data0, .... IData data(#-1))
// Sets wide vector words to specified constant words.
// These macros are used when o might represent more words then are given as constants,
// hence all upper words must be zeroed.
// If changing the number of functions here, also change EMITCINLINES_NUM_CONSTW
#define VL_C_END_(obits, wordsSet) \
VL_MEMSET_ZERO_W(o + (wordsSet), VL_WORDS_I(obits) - (wordsSet)); \
return o
// clang-format off
static inline WDataOutP VL_CONST_W_1X(int obits, WDataOutP o, EData d0) VL_MT_SAFE {
o[0] = d0;
VL_C_END_(obits, 1);
}
static inline WDataOutP VL_CONST_W_2X(int obits, WDataOutP o, EData d1, EData d0) VL_MT_SAFE {
o[0] = d0; o[1] = d1;
VL_C_END_(obits, 2);
}
static inline WDataOutP VL_CONST_W_3X(int obits, WDataOutP o, EData d2, EData d1,
EData d0) VL_MT_SAFE {
o[0] = d0; o[1] = d1; o[2] = d2;
VL_C_END_(obits, 3);
}
static inline WDataOutP VL_CONST_W_4X(int obits, WDataOutP o,
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3;
VL_C_END_(obits, 4);
}
static inline WDataOutP VL_CONST_W_5X(int obits, WDataOutP o,
EData d4,
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3;
o[4] = d4;
VL_C_END_(obits, 5);
}
static inline WDataOutP VL_CONST_W_6X(int obits, WDataOutP o,
EData d5, EData d4,
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3;
o[4] = d4; o[5] = d5;
VL_C_END_(obits, 6);
}
static inline WDataOutP VL_CONST_W_7X(int obits, WDataOutP o,
EData d6, EData d5, EData d4,
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3;
o[4] = d4; o[5] = d5; o[6] = d6;
VL_C_END_(obits, 7);
}
static inline WDataOutP VL_CONST_W_8X(int obits, WDataOutP o,
EData d7, EData d6, EData d5, EData d4,
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3;
o[4] = d4; o[5] = d5; o[6] = d6; o[7] = d7;
VL_C_END_(obits, 8);
}
//
static inline WDataOutP VL_CONSTHI_W_1X(int obits, int lsb, WDataOutP o,
EData d0) VL_MT_SAFE {
WDataOutP ohi = o + VL_WORDS_I(lsb);
ohi[0] = d0;
VL_C_END_(obits, VL_WORDS_I(lsb) + 1);
}
static inline WDataOutP VL_CONSTHI_W_2X(int obits, int lsb, WDataOutP o,
EData d1, EData d0) VL_MT_SAFE {
WDataOutP ohi = o + VL_WORDS_I(lsb);
ohi[0] = d0; ohi[1] = d1;
VL_C_END_(obits, VL_WORDS_I(lsb) + 2);
}
static inline WDataOutP VL_CONSTHI_W_3X(int obits, int lsb, WDataOutP o,
EData d2, EData d1, EData d0) VL_MT_SAFE {
WDataOutP ohi = o + VL_WORDS_I(lsb);
ohi[0] = d0; ohi[1] = d1; ohi[2] = d2;
VL_C_END_(obits, VL_WORDS_I(lsb) + 3);
}
static inline WDataOutP VL_CONSTHI_W_4X(int obits, int lsb, WDataOutP o,
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
WDataOutP ohi = o + VL_WORDS_I(lsb);
ohi[0] = d0; ohi[1] = d1; ohi[2] = d2; ohi[3] = d3;
VL_C_END_(obits, VL_WORDS_I(lsb) + 4);
}
static inline WDataOutP VL_CONSTHI_W_5X(int obits, int lsb, WDataOutP o,
EData d4,
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
WDataOutP ohi = o + VL_WORDS_I(lsb);
ohi[0] = d0; ohi[1] = d1; ohi[2] = d2; ohi[3] = d3;
ohi[4] = d4;
VL_C_END_(obits, VL_WORDS_I(lsb) + 5);
}
static inline WDataOutP VL_CONSTHI_W_6X(int obits, int lsb, WDataOutP o,
EData d5, EData d4,
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
WDataOutP ohi = o + VL_WORDS_I(lsb);
ohi[0] = d0; ohi[1] = d1; ohi[2] = d2; ohi[3] = d3;
ohi[4] = d4; ohi[5] = d5;
VL_C_END_(obits, VL_WORDS_I(lsb) + 6);
}
static inline WDataOutP VL_CONSTHI_W_7X(int obits, int lsb, WDataOutP o,
EData d6, EData d5, EData d4,
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
WDataOutP ohi = o + VL_WORDS_I(lsb);
ohi[0] = d0; ohi[1] = d1; ohi[2] = d2; ohi[3] = d3;
ohi[4] = d4; ohi[5] = d5; ohi[6] = d6;
VL_C_END_(obits, VL_WORDS_I(lsb) + 7);
}
static inline WDataOutP VL_CONSTHI_W_8X(int obits, int lsb, WDataOutP o,
EData d7, EData d6, EData d5, EData d4,
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
WDataOutP ohi = o + VL_WORDS_I(lsb);
ohi[0] = d0; ohi[1] = d1; ohi[2] = d2; ohi[3] = d3;
ohi[4] = d4; ohi[5] = d5; ohi[6] = d6; ohi[7] = d7;
VL_C_END_(obits, VL_WORDS_I(lsb) + 8);
}
#undef VL_C_END_
// Partial constant, lower words of vector wider than 8*32, starting at bit number lsb
static inline void VL_CONSTLO_W_8X(int lsb, WDataOutP obase,
EData d7, EData d6, EData d5, EData d4,
EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
WDataOutP o = obase + VL_WORDS_I(lsb);
o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3; o[4] = d4; o[5] = d5; o[6] = d6; o[7] = d7;
}
// clang-format on
//======================================================================
// Strings
extern std::string VL_PUTC_N(const std::string& lhs, IData rhs, CData ths) VL_PURE;
extern CData VL_GETC_N(const std::string& lhs, IData rhs) VL_PURE;
extern std::string VL_SUBSTR_N(const std::string& lhs, IData rhs, IData ths) VL_PURE;
inline IData VL_CMP_NN(const std::string& lhs, const std::string& rhs, bool ignoreCase) VL_PURE {
// SystemVerilog does not allow a string variable to contain '\0'.
// So C functions such as strcmp() can correctly compare strings.
if (ignoreCase) {
return VL_STRCASECMP(lhs.c_str(), rhs.c_str());
} else {
return std::strcmp(lhs.c_str(), rhs.c_str());
}
}
extern IData VL_ATOI_N(const std::string& str, int base) VL_PURE;
extern IData VL_NTOI_I(int obits, const std::string& str) VL_PURE;
extern QData VL_NTOI_Q(int obits, const std::string& str) VL_PURE;
extern void VL_NTOI_W(int obits, WDataOutP owp, const std::string& str) VL_PURE;
extern IData VL_FGETS_NI(std::string& dest, IData fpi) VL_MT_SAFE;
//======================================================================
// Dist functions
extern IData VL_DIST_CHI_SQUARE(IData& seedr, IData udeg_of_free) VL_MT_SAFE;
extern IData VL_DIST_ERLANG(IData& seedr, IData uk, IData umean) VL_MT_SAFE;
extern IData VL_DIST_EXPONENTIAL(IData& seedr, IData umean) VL_MT_SAFE;
extern IData VL_DIST_NORMAL(IData& seedr, IData umean, IData udeviation) VL_MT_SAFE;
extern IData VL_DIST_POISSON(IData& seedr, IData umean) VL_MT_SAFE;
extern IData VL_DIST_T(IData& seedr, IData udeg_of_free) VL_MT_SAFE;
extern IData VL_DIST_UNIFORM(IData& seedr, IData ustart, IData uend) VL_MT_SAFE;
//======================================================================
// Conversion functions
extern std::string VL_CVT_PACK_STR_NW(int lwords, const WDataInP lwp) VL_PURE;
extern std::string VL_CVT_PACK_STR_ND(const VlQueue<std::string>& q) VL_PURE;
inline std::string VL_CVT_PACK_STR_NQ(QData lhs) VL_PURE {
VlWide<VL_WQ_WORDS_E> lw;
VL_SET_WQ(lw, lhs);
return VL_CVT_PACK_STR_NW(VL_WQ_WORDS_E, lw);
}
inline std::string VL_CVT_PACK_STR_NN(const std::string& lhs) VL_PURE { return lhs; }
inline std::string& VL_CVT_PACK_STR_NN(std::string& lhs) VL_PURE { return lhs; }
inline std::string VL_CVT_PACK_STR_NI(IData lhs) VL_PURE {
VlWide<VL_WQ_WORDS_E> lw;
VL_SET_WI(lw, lhs);
return VL_CVT_PACK_STR_NW(1, lw);
}
inline std::string VL_CONCATN_NNN(const std::string& lhs, const std::string& rhs) VL_PURE {
return lhs + rhs;
}
inline std::string VL_REPLICATEN_NNQ(const std::string& lhs, IData rep) VL_PURE {
std::string result;
result.reserve(lhs.length() * rep);
for (unsigned times = 0; times < rep; ++times) result += lhs;
return result;
}
inline std::string VL_REPLICATEN_NNI(const std::string& lhs, IData rep) VL_PURE {
return VL_REPLICATEN_NNQ(lhs, rep);
}
inline IData VL_LEN_IN(const std::string& ld) { return static_cast<IData>(ld.length()); }
extern std::string VL_TOLOWER_NN(const std::string& ld) VL_PURE;
extern std::string VL_TOUPPER_NN(const std::string& ld) VL_PURE;
extern IData VL_FERROR_IN(IData fpi, std::string& outputr) VL_MT_SAFE;
extern IData VL_FERROR_IW(IData fpi, int obits, WDataOutP outwp) VL_MT_SAFE;
extern IData VL_FOPEN_NN(const std::string& filename, const std::string& mode) VL_MT_SAFE;
extern IData VL_FOPEN_MCD_N(const std::string& filename) VL_MT_SAFE;
extern void VL_READMEM_N(bool hex, int bits, QData depth, int array_lsb,
const std::string& filename, void* memp, QData start,
QData end) VL_MT_SAFE;
extern void VL_WRITEMEM_N(bool hex, int bits, QData depth, int array_lsb,
const std::string& filename, const void* memp, QData start,
QData end) VL_MT_SAFE;
extern IData VL_SSCANF_INX(int lbits, const std::string& ld, const char* formatp, ...) VL_MT_SAFE;
extern void VL_SFORMAT_X(int obits_ignored, std::string& output, const char* formatp,
...) VL_MT_SAFE;
extern std::string VL_SFORMATF_NX(const char* formatp, ...) VL_MT_SAFE;
extern void VL_TIMEFORMAT_IINI(int units, int precision, const std::string& suffix, int width,
VerilatedContext* contextp) VL_MT_SAFE;
extern IData VL_VALUEPLUSARGS_INW(int rbits, const std::string& ld, WDataOutP rwp) VL_MT_SAFE;
inline IData VL_VALUEPLUSARGS_INI(int rbits, const std::string& ld, CData& rdr) VL_MT_SAFE {
VlWide<2> rwp;
const IData got = VL_VALUEPLUSARGS_INW(rbits, ld, rwp);
if (got) rdr = rwp[0];
return got;
}
inline IData VL_VALUEPLUSARGS_INI(int rbits, const std::string& ld, SData& rdr) VL_MT_SAFE {
VlWide<2> rwp;
const IData got = VL_VALUEPLUSARGS_INW(rbits, ld, rwp);
if (got) rdr = rwp[0];
return got;
}
inline IData VL_VALUEPLUSARGS_INI(int rbits, const std::string& ld, IData& rdr) VL_MT_SAFE {
VlWide<2> rwp;
const IData got = VL_VALUEPLUSARGS_INW(rbits, ld, rwp);
if (got) rdr = rwp[0];
return got;
}
inline IData VL_VALUEPLUSARGS_INQ(int rbits, const std::string& ld, QData& rdr) VL_MT_SAFE {
VlWide<2> rwp;
const IData got = VL_VALUEPLUSARGS_INW(rbits, ld, rwp);
if (got) rdr = VL_SET_QW(rwp);
return got;
}
inline IData VL_VALUEPLUSARGS_INQ(int rbits, const std::string& ld, double& rdr) VL_MT_SAFE {
VlWide<2> rwp;
const IData got = VL_VALUEPLUSARGS_INW(rbits, ld, rwp);
if (got) rdr = VL_CVT_D_Q(VL_SET_QW(rwp));
return got;
}
extern IData VL_VALUEPLUSARGS_INN(int, const std::string& ld, std::string& rdr) VL_MT_SAFE;
//======================================================================
#endif // Guard