verilator/include/verilated_vcd_c.h
Yutetsu TAKATSUKASA 39ce2f77f4
Internals: Remove VerilatedVcd::m_suffixesp. No functional change is intended. (#2933)
Reasons are:
- it's error prone to keep updating whennever m_suffixes is resized
- invalid pointer may be set when there is not signal to trace as in t_trace_dumporder_bad
2021-05-07 20:45:58 -04:00

409 lines
17 KiB
C++

// -*- mode: C++; c-file-style: "cc-mode" -*-
//=============================================================================
//
// Code available from: https://verilator.org
//
// Copyright 2001-2021 by Wilson Snyder. This program is free software; you
// can redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//=============================================================================
///
/// \file
/// \brief Verilated tracing in VCD format header
///
/// User wrapper code should use this header when creating VCD traces.
///
//=============================================================================
#ifndef VERILATOR_VERILATED_VCD_C_H_
#define VERILATOR_VERILATED_VCD_C_H_
#include "verilated.h"
#include "verilated_trace.h"
#include <map>
#include <string>
#include <vector>
class VerilatedVcd;
//=============================================================================
// VerilatedFile
/// Class representing a file to write to. These virtual methods can be
/// overrode for e.g. socket I/O.
class VerilatedVcdFile VL_NOT_FINAL {
private:
int m_fd = 0; // File descriptor we're writing to
public:
// METHODS
/// Construct a (as yet) closed file
VerilatedVcdFile() = default;
/// Close and destruct
virtual ~VerilatedVcdFile() = default;
/// Open a file with given filename
virtual bool open(const std::string& name) VL_MT_UNSAFE;
/// Close object's file
virtual void close() VL_MT_UNSAFE;
/// Write data to file (if it is open)
virtual ssize_t write(const char* bufp, ssize_t len) VL_MT_UNSAFE;
};
//=============================================================================
// VerilatedVcd
// Base class to create a Verilator VCD dump
// This is an internally used class - see VerilatedVcdC for what to call from applications
class VerilatedVcd VL_NOT_FINAL : public VerilatedTrace<VerilatedVcd> {
private:
// Give the superclass access to private bits (to avoid virtual functions)
friend class VerilatedTrace<VerilatedVcd>;
//=========================================================================
// VCD specific internals
VerilatedVcdFile* m_filep; // File we're writing to
bool m_fileNewed; // m_filep needs destruction
bool m_isOpen = false; // True indicates open file
bool m_evcd = false; // True for evcd format
std::string m_filename; // Filename we're writing to (if open)
vluint64_t m_rolloverMB = 0; // MB of file size to rollover at
int m_modDepth = 0; // Depth of module hierarchy
char* m_wrBufp; // Output buffer
char* m_wrFlushp; // Output buffer flush trigger location
char* m_writep; // Write pointer into output buffer
vluint64_t m_wrChunkSize; // Output buffer size
vluint64_t m_wroteBytes = 0; // Number of bytes written to this file
std::vector<char> m_suffixes; // VCD line end string codes + metadata
using NameMap = std::map<const std::string, const std::string>;
NameMap* m_namemapp = nullptr; // List of names for the header
void bufferResize(vluint64_t minsize);
void bufferFlush() VL_MT_UNSAFE_ONE;
inline void bufferCheck() {
// Flush the write buffer if there's not enough space left for new information
// We only call this once per vector, so we need enough slop for a very wide "b###" line
if (VL_UNLIKELY(m_writep > m_wrFlushp)) bufferFlush();
}
void openNextImp(bool incFilename);
void closePrev();
void closeErr();
void makeNameMap();
void deleteNameMap();
void printIndent(int level_change);
void printStr(const char* str);
void printQuad(vluint64_t n);
void printTime(vluint64_t timeui);
void declare(vluint32_t code, const char* name, const char* wirep, bool array, int arraynum,
bool tri, bool bussed, int msb, int lsb);
void dumpHeader();
static char* writeCode(char* writep, vluint32_t code);
void finishLine(vluint32_t code, char* writep);
// CONSTRUCTORS
VL_UNCOPYABLE(VerilatedVcd);
protected:
//=========================================================================
// Implementation of VerilatedTrace interface
// Implementations of protected virtual methods for VerilatedTrace
virtual void emitTimeChange(vluint64_t timeui) override;
// Hooks called from VerilatedTrace
virtual bool preFullDump() override { return isOpen(); }
virtual bool preChangeDump() override;
// Implementations of duck-typed methods for VerilatedTrace. These are
// called from only one place (namely full*) so always inline them.
inline void emitBit(vluint32_t code, CData newval);
inline void emitCData(vluint32_t code, CData newval, int bits);
inline void emitSData(vluint32_t code, SData newval, int bits);
inline void emitIData(vluint32_t code, IData newval, int bits);
inline void emitQData(vluint32_t code, QData newval, int bits);
inline void emitWData(vluint32_t code, const WData* newvalp, int bits);
inline void emitDouble(vluint32_t code, double newval);
public:
//=========================================================================
// External interface to client code
explicit VerilatedVcd(VerilatedVcdFile* filep = nullptr);
~VerilatedVcd();
// ACCESSORS
// Set size in megabytes after which new file should be created
void rolloverMB(vluint64_t rolloverMB) { m_rolloverMB = rolloverMB; }
// METHODS
// Open the file; call isOpen() to see if errors
void open(const char* filename) VL_MT_SAFE_EXCLUDES(m_mutex);
// Open next data-only file
void openNext(bool incFilename) VL_MT_SAFE_EXCLUDES(m_mutex);
// Close the file
void close() VL_MT_SAFE_EXCLUDES(m_mutex);
// Flush any remaining data to this file
void flush() VL_MT_SAFE_EXCLUDES(m_mutex);
// Return if file is open
bool isOpen() const VL_MT_SAFE { return m_isOpen; }
//=========================================================================
// Internal interface to Verilator generated code
void declBit(vluint32_t code, const char* name, bool array, int arraynum);
void declBus(vluint32_t code, const char* name, bool array, int arraynum, int msb, int lsb);
void declQuad(vluint32_t code, const char* name, bool array, int arraynum, int msb, int lsb);
void declArray(vluint32_t code, const char* name, bool array, int arraynum, int msb, int lsb);
void declDouble(vluint32_t code, const char* name, bool array, int arraynum);
#ifdef VL_TRACE_VCD_OLD_API
//=========================================================================
// Note: These are only for testing for backward compatibility with foreign
// code and is not used by Verilator. Do not use these as there is no
// guarantee of functionality.
void declTriBit(vluint32_t code, const char* name, bool array, int arraynum);
void declTriBus(vluint32_t code, const char* name, bool array, int arraynum, int msb, int lsb);
void declTriQuad(vluint32_t code, const char* name, bool array, int arraynum, int msb,
int lsb);
void declTriArray(vluint32_t code, const char* name, bool array, int arraynum, int msb,
int lsb);
void fullBit(vluint32_t* oldp, CData newval) { fullBit(oldp - this->oldp(0), newval); }
void fullCData(vluint32_t* oldp, CData newval, int bits) {
fullBus(oldp - this->oldp(0), newval, bits);
}
void fullSData(vluint32_t* oldp, SData newval, int bits) {
fullBus(oldp - this->oldp(0), newval, bits);
}
void fullIData(vluint32_t* oldp, IData newval, int bits) {
fullBus(oldp - this->oldp(0), newval, bits);
}
void fullQData(vluint32_t* oldp, QData newval, int bits) {
fullQuad(oldp - this->oldp(0), newval, bits);
}
void fullWData(vluint32_t* oldp, const WData* newvalp, int bits) {
fullArray(oldp - this->oldp(0), newvalp, bits);
}
void fullDouble(vluint32_t* oldp, double newval) { fullDouble(oldp - this->oldp(0), newval); }
inline void chgBit(vluint32_t* oldp, CData newval) { chgBit(oldp - this->oldp(0), newval); }
inline void chgCData(vluint32_t* oldp, CData newval, int bits) {
chgBus(oldp - this->oldp(0), newval, bits);
}
inline void chgSData(vluint32_t* oldp, SData newval, int bits) {
chgBus(oldp - this->oldp(0), newval, bits);
}
inline void chgIData(vluint32_t* oldp, IData newval, int bits) {
chgBus(oldp - this->oldp(0), newval, bits);
}
inline void chgQData(vluint32_t* oldp, QData newval, int bits) {
chgQuad(oldp - this->oldp(0), newval, bits);
}
inline void chgWData(vluint32_t* oldp, const WData* newvalp, int bits) {
chgArray(oldp - this->oldp(0), newvalp, bits);
}
inline void chgDouble(vluint32_t* oldp, double newval) {
chgDouble(oldp - this->oldp(0), newval);
}
// Inside dumping routines, dump one signal, faster when not inlined
// due to code size reduction.
void fullBit(vluint32_t code, const vluint32_t newval);
void fullBus(vluint32_t code, const vluint32_t newval, int bits);
void fullQuad(vluint32_t code, const vluint64_t newval, int bits);
void fullArray(vluint32_t code, const vluint32_t* newvalp, int bits);
void fullArray(vluint32_t code, const vluint64_t* newvalp, int bits);
void fullTriBit(vluint32_t code, const vluint32_t newval, const vluint32_t newtri);
void fullTriBus(vluint32_t code, const vluint32_t newval, const vluint32_t newtri, int bits);
void fullTriQuad(vluint32_t code, const vluint64_t newval, const vluint64_t newtri, int bits);
void fullTriArray(vluint32_t code, const vluint32_t* newvalp, const vluint32_t* newtrip,
int bits);
void fullDouble(vluint32_t code, const double newval);
// Inside dumping routines, dump one signal if it has changed.
// We do want to inline these to avoid calls when the value did not change.
inline void chgBit(vluint32_t code, const vluint32_t newval) {
vluint32_t diff = oldp(code)[0] ^ newval;
if (VL_UNLIKELY(diff)) fullBit(code, newval);
}
inline void chgBus(vluint32_t code, const vluint32_t newval, int bits) {
vluint32_t diff = oldp(code)[0] ^ newval;
if (VL_UNLIKELY(diff)) {
if (VL_UNLIKELY(bits == 32 || (diff & ((1U << bits) - 1)))) {
fullBus(code, newval, bits);
}
}
}
inline void chgQuad(vluint32_t code, const vluint64_t newval, int bits) {
vluint64_t diff = (*(reinterpret_cast<vluint64_t*>(oldp(code)))) ^ newval;
if (VL_UNLIKELY(diff)) {
if (VL_UNLIKELY(bits == 64 || (diff & ((1ULL << bits) - 1)))) {
fullQuad(code, newval, bits);
}
}
}
inline void chgArray(vluint32_t code, const vluint32_t* newvalp, int bits) {
for (int word = 0; word < (((bits - 1) / 32) + 1); ++word) {
if (VL_UNLIKELY(oldp(code)[word] ^ newvalp[word])) {
fullArray(code, newvalp, bits);
return;
}
}
}
inline void chgArray(vluint32_t code, const vluint64_t* newvalp, int bits) {
for (int word = 0; word < (((bits - 1) / 64) + 1); ++word) {
if (VL_UNLIKELY(*(reinterpret_cast<vluint64_t*>(oldp(code + 2 * word)))
^ newvalp[word])) {
fullArray(code, newvalp, bits);
return;
}
}
}
inline void chgTriBit(vluint32_t code, const vluint32_t newval, const vluint32_t newtri) {
vluint32_t diff = ((oldp(code)[0] ^ newval) | (oldp(code)[1] ^ newtri));
if (VL_UNLIKELY(diff)) {
// Verilator 3.510 and newer provide clean input, so the below
// is only for back compatibility
if (VL_UNLIKELY(diff & 1)) { // Change after clean?
fullTriBit(code, newval, newtri);
}
}
}
inline void chgTriBus(vluint32_t code, const vluint32_t newval, const vluint32_t newtri,
int bits) {
vluint32_t diff = ((oldp(code)[0] ^ newval) | (oldp(code)[1] ^ newtri));
if (VL_UNLIKELY(diff)) {
if (VL_UNLIKELY(bits == 32 || (diff & ((1U << bits) - 1)))) {
fullTriBus(code, newval, newtri, bits);
}
}
}
inline void chgTriQuad(vluint32_t code, const vluint64_t newval, const vluint64_t newtri,
int bits) {
vluint64_t diff = (((*(reinterpret_cast<vluint64_t*>(oldp(code)))) ^ newval)
| ((*(reinterpret_cast<vluint64_t*>(oldp(code + 1)))) ^ newtri));
if (VL_UNLIKELY(diff)) {
if (VL_UNLIKELY(bits == 64 || (diff & ((1ULL << bits) - 1)))) {
fullTriQuad(code, newval, newtri, bits);
}
}
}
inline void chgTriArray(vluint32_t code, const vluint32_t* newvalp, const vluint32_t* newtrip,
int bits) {
for (int word = 0; word < (((bits - 1) / 32) + 1); ++word) {
if (VL_UNLIKELY((oldp(code)[word * 2] ^ newvalp[word])
| (oldp(code)[word * 2 + 1] ^ newtrip[word]))) {
fullTriArray(code, newvalp, newtrip, bits);
return;
}
}
}
inline void chgDouble(vluint32_t code, const double newval) {
// cppcheck-suppress invalidPointerCast
if (VL_UNLIKELY((*(reinterpret_cast<double*>(oldp(code)))) != newval)) {
fullDouble(code, newval);
}
}
// METHODS
// Old/standalone API only
void evcd(bool flag) { m_evcd = flag; }
#endif // VL_TRACE_VCD_OLD_API
};
#ifndef DOXYGEN
// Declare specializations here they are used in VerilatedVcdC just below
template <> void VerilatedTrace<VerilatedVcd>::dump(vluint64_t timeui);
template <> void VerilatedTrace<VerilatedVcd>::set_time_unit(const char* unitp);
template <> void VerilatedTrace<VerilatedVcd>::set_time_unit(const std::string& unit);
template <> void VerilatedTrace<VerilatedVcd>::set_time_resolution(const char* unitp);
template <> void VerilatedTrace<VerilatedVcd>::set_time_resolution(const std::string& unit);
#endif // DOXYGEN
//=============================================================================
// VerilatedVcdC
/// Class representing a VCD dump file in C standalone (no SystemC)
/// simulations. Also derived for use in SystemC simulations.
class VerilatedVcdC VL_NOT_FINAL {
VerilatedVcd m_sptrace; // Trace file being created
// CONSTRUCTORS
VL_UNCOPYABLE(VerilatedVcdC);
public:
/// Construct the dump. Optional argument is a preconstructed file.
explicit VerilatedVcdC(VerilatedVcdFile* filep = nullptr)
: m_sptrace{filep} {}
/// Destruct, flush, and close the dump
~VerilatedVcdC() { close(); }
public:
// METHODS - User called
/// Return if file is open
bool isOpen() const VL_MT_SAFE { return m_sptrace.isOpen(); }
/// Open a new VCD file
/// This includes a complete header dump each time it is called,
/// just as if this object was deleted and reconstructed.
void open(const char* filename) VL_MT_SAFE { m_sptrace.open(filename); }
/// Continue a VCD dump by rotating to a new file name
/// The header is only in the first file created, this allows
/// "cat" to be used to combine the header plus any number of data files.
void openNext(bool incFilename = true) VL_MT_SAFE { m_sptrace.openNext(incFilename); }
/// Set size in megabytes after which new file should be created
void rolloverMB(size_t rolloverMB) VL_MT_SAFE { m_sptrace.rolloverMB(rolloverMB); }
/// Close dump
void close() VL_MT_SAFE { m_sptrace.close(); }
/// Flush dump
void flush() VL_MT_SAFE { m_sptrace.flush(); }
/// Write one cycle of dump data
void dump(vluint64_t timeui) VL_MT_SAFE { m_sptrace.dump(timeui); }
/// Write one cycle of dump data - backward compatible and to reduce
/// conversion warnings. It's better to use a vluint64_t time instead.
void dump(double timestamp) { dump(static_cast<vluint64_t>(timestamp)); }
void dump(vluint32_t timestamp) { dump(static_cast<vluint64_t>(timestamp)); }
void dump(int timestamp) { dump(static_cast<vluint64_t>(timestamp)); }
// METHODS - Internal/backward compatible
// \protectedsection
// Set time units (s/ms, defaults to ns)
// Users should not need to call this, as for Verilated models, these
// propage from the Verilated default timeunit
void set_time_unit(const char* unit) VL_MT_SAFE { m_sptrace.set_time_unit(unit); }
void set_time_unit(const std::string& unit) VL_MT_SAFE { m_sptrace.set_time_unit(unit); }
// Set time resolution (s/ms, defaults to ns)
// Users should not need to call this, as for Verilated models, these
// propage from the Verilated default timeprecision
void set_time_resolution(const char* unit) VL_MT_SAFE { m_sptrace.set_time_resolution(unit); }
void set_time_resolution(const std::string& unit) VL_MT_SAFE {
m_sptrace.set_time_resolution(unit);
}
// Internal class access
inline VerilatedVcd* spTrace() { return &m_sptrace; }
#ifdef VL_TRACE_VCD_OLD_API
//=========================================================================
// Note: These are only for testing for backward compatibility with foreign
// code and is not used by Verilator. Do not use these as there is no
// guarantee of functionality.
// Use evcd format
void evcd(bool flag) VL_MT_UNSAFE_ONE { m_sptrace.evcd(flag); }
#endif
};
#endif // guard