verilator/include/verilated_imp.h
Wilson Snyder d4f7f5297a
Support IEEE time units and time precisions, #234. (#2253)
Includes `timescale, $printtimescale, $timeformat.
VL_TIME_MULTIPLIER, VL_TIME_PRECISION, VL_TIME_UNIT have been removed
and the time precision must now match the SystemC time precision.
To get closer behavior to older versions, use e.g. --timescale-override
"1ps/1ps".
2020-04-15 19:39:03 -04:00

487 lines
19 KiB
C++

// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
//
// Copyright 2009-2020 by Wilson Snyder. This program is free software; you can
// redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//=========================================================================
///
/// \file
/// \brief Verilator: Implementation Header, only for verilated.cpp internals.
///
/// Code available from: https://verilator.org
///
//=========================================================================
#ifndef _VERILATED_IMP_H_
#define _VERILATED_IMP_H_ 1 ///< Header Guard
// clang-format off
#if !defined(_VERILATED_CPP_) && !defined(_VERILATED_DPI_CPP_) && !defined(_VERILATED_VPI_CPP_)
# error "verilated_imp.h only to be included by verilated*.cpp internals"
#endif
#include "verilatedos.h"
#include "verilated.h"
#include "verilated_heavy.h"
#include "verilated_syms.h"
#include <deque>
#include <set>
#include <vector>
#ifdef VL_THREADED
# include <functional>
# include <queue>
#endif
// clang-format on
class VerilatedScope;
//======================================================================
// Threaded message passing
#ifdef VL_THREADED
/// Message, enqueued on an mtask, and consumed on the main eval thread
class VerilatedMsg {
public:
// TYPES
struct Cmp {
bool operator()(const VerilatedMsg& a, const VerilatedMsg& b) const {
return a.mtaskId() < b.mtaskId();
}
};
private:
// MEMBERS
vluint32_t m_mtaskId; ///< MTask that did enqueue
std::function<void()> m_cb; ///< Lambda to execute when message received
public:
// CONSTRUCTORS
VerilatedMsg(const std::function<void()>& cb)
: m_mtaskId(Verilated::mtaskId())
, m_cb(cb) {}
~VerilatedMsg() {}
// METHODS
vluint32_t mtaskId() const { return m_mtaskId; }
/// Execute the lambda function
void run() const { m_cb(); }
};
/// Each thread has a queue it pushes to
/// This assumes no thread starts pushing the next tick until the previous has drained.
/// If more aggressiveness is needed, a double-buffered scheme might work well.
class VerilatedEvalMsgQueue {
typedef std::multiset<VerilatedMsg, VerilatedMsg::Cmp> VerilatedThreadQueue;
std::atomic<vluint64_t> m_depth; ///< Current depth of queue (see comments below)
VerilatedMutex m_mutex; ///< Mutex protecting queue
VerilatedThreadQueue m_queue VL_GUARDED_BY(m_mutex); ///< Message queue
public:
// CONSTRUCTORS
VerilatedEvalMsgQueue()
: m_depth(0) {
assert(atomic_is_lock_free(&m_depth));
}
~VerilatedEvalMsgQueue() {}
private:
VL_UNCOPYABLE(VerilatedEvalMsgQueue);
public:
// METHODS
//// Add message to queue (called by producer)
void post(const VerilatedMsg& msg) VL_EXCLUDES(m_mutex) {
VerilatedLockGuard lock(m_mutex);
m_queue.insert(msg); // Pass by value to copy the message into queue
++m_depth;
}
/// Service queue until completion (called by consumer)
void process() VL_EXCLUDES(m_mutex) {
// Tracking m_depth is redundant to e.g. getting the mutex and looking at queue size,
// but on the reader side it's 4x faster to test an atomic then getting a mutex
while (m_depth) {
// Wait for a message to be added to the queue
// We don't use unique_lock as want to unlock with the message copy still in scope
m_mutex.lock();
assert(!m_queue.empty()); // Otherwise m_depth is wrong
// Unfortunately to release the lock we need to copy the message
// (Or have the message be a pointer, but then new/delete cost on each message)
// We assume messages are small, so copy
auto it = m_queue.begin();
const VerilatedMsg msg = *(it);
m_queue.erase(it);
m_mutex.unlock();
m_depth--; // Ok if outside critical section as only this code checks the value
{
VL_DEBUG_IF(VL_DBG_MSGF("Executing callback from mtaskId=%d\n", msg.mtaskId()););
msg.run();
}
}
}
};
/// Each thread has a local queue to build up messages until the end of the eval() call
class VerilatedThreadMsgQueue {
std::queue<VerilatedMsg> m_queue;
public:
// CONSTRUCTORS
VerilatedThreadMsgQueue() {}
~VerilatedThreadMsgQueue() {
// The only call of this with a non-empty queue is a fatal error.
// So this does not flush the queue, as the destination queue is not known to this class.
}
private:
VL_UNCOPYABLE(VerilatedThreadMsgQueue);
// METHODS
static VerilatedThreadMsgQueue& threadton() {
static VL_THREAD_LOCAL VerilatedThreadMsgQueue t_s;
return t_s;
}
public:
/// Add message to queue, called by producer
static void post(const VerilatedMsg& msg) VL_MT_SAFE {
// Handle calls to threaded routines outside
// of any mtask -- if an initial block calls $finish, say.
if (Verilated::mtaskId() == 0) {
// No queueing, just do the action immediately
msg.run();
} else {
Verilated::endOfEvalReqdInc();
threadton().m_queue.push(msg); // Pass by value to copy the message into queue
}
}
/// Push all messages to the eval's queue
static void flush(VerilatedEvalMsgQueue* evalMsgQp) VL_MT_SAFE {
while (!threadton().m_queue.empty()) {
evalMsgQp->post(threadton().m_queue.front());
threadton().m_queue.pop();
Verilated::endOfEvalReqdDec();
}
}
};
#endif // VL_THREADED
//======================================================================
// VerilatedImp
class VerilatedImp {
// Whole class is internal use only - Global information shared between verilated*.cpp files.
protected:
friend class Verilated;
// TYPES
typedef std::vector<std::string> ArgVec;
typedef std::map<std::pair<const void*, void*>, void*> UserMap;
typedef std::map<const char*, int, VerilatedCStrCmp> ExportNameMap;
// MEMBERS
static VerilatedImp s_s; ///< Static Singleton; One and only static this
struct Serialized { // All these members serialized/deserialized
int m_timeFormatUnits; // $timeformat units
int m_timeFormatPrecision; // $timeformat number of decimal places
int m_timeFormatWidth; // $timeformat character width
enum { UNITS_NONE = 99 }; // Default based on precision
Serialized()
: m_timeFormatUnits(UNITS_NONE)
, m_timeFormatPrecision(0)
, m_timeFormatWidth(20) {}
~Serialized() {}
} m_ser;
VerilatedMutex m_sergMutex; ///< Protect m_ser
struct SerializedG { // All these members serialized/deserialized and guarded
std::string m_timeFormatSuffix; // $timeformat printf format
} m_serg VL_GUARDED_BY(m_sergMutex);
// Nothing below here is save-restored; users expected to re-register appropriately
VerilatedMutex m_argMutex; ///< Protect m_argVec, m_argVecLoaded
/// Argument list (NOT save-restored, may want different results)
ArgVec m_argVec VL_GUARDED_BY(m_argMutex);
bool m_argVecLoaded VL_GUARDED_BY(m_argMutex); ///< Ever loaded argument list
VerilatedMutex m_userMapMutex; ///< Protect m_userMap
UserMap m_userMap VL_GUARDED_BY(m_userMapMutex); ///< Map of <(scope,userkey), userData>
VerilatedMutex m_nameMutex; ///< Protect m_nameMap
/// Map of <scope_name, scope pointer>
VerilatedScopeNameMap m_nameMap VL_GUARDED_BY(m_nameMutex);
VerilatedMutex m_hierMapMutex; ///< Protect m_hierMap
/// Map the represents scope hierarchy
VerilatedHierarchyMap m_hierMap VL_GUARDED_BY(m_hierMapMutex);
// Slow - somewhat static:
VerilatedMutex m_exportMutex; ///< Protect m_nameMap
/// Map of <export_func_proto, func number>
ExportNameMap m_exportMap VL_GUARDED_BY(m_exportMutex);
int m_exportNext VL_GUARDED_BY(m_exportMutex); ///< Next export funcnum
// File I/O
VerilatedMutex m_fdMutex; ///< Protect m_fdps, m_fdFree
std::vector<FILE*> m_fdps VL_GUARDED_BY(m_fdMutex); ///< File descriptors
/// List of free descriptors (SLOW - FOPEN/CLOSE only)
std::deque<IData> m_fdFree VL_GUARDED_BY(m_fdMutex);
public: // But only for verilated*.cpp
// CONSTRUCTORS
VerilatedImp()
: m_argVecLoaded(false)
, m_exportNext(0) {
m_fdps.resize(3);
m_fdps[0] = stdin;
m_fdps[1] = stdout;
m_fdps[2] = stderr;
}
~VerilatedImp() {}
private:
VL_UNCOPYABLE(VerilatedImp);
public:
// METHODS - debug
static void internalsDump() VL_MT_SAFE;
static void versionDump() VL_MT_SAFE;
// METHODS - arguments
public:
static void commandArgs(int argc, const char** argv) VL_EXCLUDES(s_s.m_argMutex);
static void commandArgsAdd(int argc, const char** argv) VL_EXCLUDES(s_s.m_argMutex);
static std::string argPlusMatch(const char* prefixp) VL_EXCLUDES(s_s.m_argMutex) {
VerilatedLockGuard lock(s_s.m_argMutex);
// Note prefixp does not include the leading "+"
size_t len = strlen(prefixp);
if (VL_UNLIKELY(!s_s.m_argVecLoaded)) {
s_s.m_argVecLoaded = true; // Complain only once
VL_FATAL_MT("unknown", 0, "",
"%Error: Verilog called $test$plusargs or $value$plusargs without"
" testbench C first calling Verilated::commandArgs(argc,argv).");
}
for (ArgVec::const_iterator it = s_s.m_argVec.begin(); it != s_s.m_argVec.end(); ++it) {
if ((*it)[0] == '+') {
if (0 == strncmp(prefixp, it->c_str() + 1, len)) return *it;
}
}
return "";
}
private:
static void commandArgsAddGuts(int argc, const char** argv) VL_REQUIRES(s_s.m_argMutex);
static void commandArgVl(const std::string& arg);
static bool commandArgVlValue(const std::string& arg, const std::string& prefix,
std::string& valuer);
public:
// METHODS - user scope tracking
// We implement this as a single large map instead of one map per scope
// There's often many more scopes than userdata's and thus having a ~48byte
// per map overhead * N scopes would take much more space and cache thrashing.
static inline void userInsert(const void* scopep, void* userKey, void* userData) VL_MT_SAFE {
VerilatedLockGuard lock(s_s.m_userMapMutex);
UserMap::iterator it = s_s.m_userMap.find(std::make_pair(scopep, userKey));
if (it != s_s.m_userMap.end()) {
it->second = userData;
} else {
s_s.m_userMap.insert(it, std::make_pair(std::make_pair(scopep, userKey), userData));
}
}
static inline void* userFind(const void* scopep, void* userKey) VL_MT_SAFE {
VerilatedLockGuard lock(s_s.m_userMapMutex);
UserMap::const_iterator it = s_s.m_userMap.find(std::make_pair(scopep, userKey));
if (VL_UNLIKELY(it == s_s.m_userMap.end())) return NULL;
return it->second;
}
private:
/// Symbol table destruction cleans up the entries for each scope.
static void userEraseScope(const VerilatedScope* scopep) VL_MT_SAFE {
// Slow ok - called once/scope on destruction, so we simply iterate.
VerilatedLockGuard lock(s_s.m_userMapMutex);
for (UserMap::iterator it = s_s.m_userMap.begin(); it != s_s.m_userMap.end();) {
if (it->first.first == scopep) {
s_s.m_userMap.erase(it++);
} else {
++it;
}
}
}
static void userDump() VL_MT_SAFE {
VerilatedLockGuard lock(s_s.m_userMapMutex); // Avoid it changing in middle of dump
bool first = true;
for (UserMap::const_iterator it = s_s.m_userMap.begin(); it != s_s.m_userMap.end(); ++it) {
if (first) {
VL_PRINTF_MT(" userDump:\n");
first = false;
}
VL_PRINTF_MT(" DPI_USER_DATA scope %p key %p: %p\n", it->first.first,
it->first.second, it->second);
}
}
public: // But only for verilated*.cpp
// METHODS - scope name
static void scopeInsert(const VerilatedScope* scopep) VL_MT_SAFE {
// Slow ok - called once/scope at construction
VerilatedLockGuard lock(s_s.m_nameMutex);
VerilatedScopeNameMap::iterator it = s_s.m_nameMap.find(scopep->name());
if (it == s_s.m_nameMap.end()) {
s_s.m_nameMap.insert(it, std::make_pair(scopep->name(), scopep));
}
}
static inline const VerilatedScope* scopeFind(const char* namep) VL_MT_SAFE {
VerilatedLockGuard lock(s_s.m_nameMutex);
// If too slow, can assume this is only VL_MT_SAFE_POSINIT
VerilatedScopeNameMap::const_iterator it = s_s.m_nameMap.find(namep);
if (VL_UNLIKELY(it == s_s.m_nameMap.end())) return NULL;
return it->second;
}
static void scopeErase(const VerilatedScope* scopep) VL_MT_SAFE {
// Slow ok - called once/scope at destruction
VerilatedLockGuard lock(s_s.m_nameMutex);
userEraseScope(scopep);
VerilatedScopeNameMap::iterator it = s_s.m_nameMap.find(scopep->name());
if (it != s_s.m_nameMap.end()) s_s.m_nameMap.erase(it);
}
static void scopesDump() VL_MT_SAFE {
VerilatedLockGuard lock(s_s.m_nameMutex);
VL_PRINTF_MT(" scopesDump:\n");
for (VerilatedScopeNameMap::const_iterator it = s_s.m_nameMap.begin();
it != s_s.m_nameMap.end(); ++it) {
const VerilatedScope* scopep = it->second;
scopep->scopeDump();
}
VL_PRINTF_MT("\n");
}
static const VerilatedScopeNameMap* scopeNameMap() VL_MT_SAFE_POSTINIT {
// Thread save only assuming this is called only after model construction completed
return &s_s.m_nameMap;
}
public: // But only for verilated*.cpp
// METHODS - hierarchy
static void hierarchyAdd(const VerilatedScope* fromp, const VerilatedScope* top) VL_MT_SAFE {
// Slow ok - called at construction for VPI accessible elements
VerilatedLockGuard lock(s_s.m_hierMapMutex);
s_s.m_hierMap[fromp].push_back(top);
}
static const VerilatedHierarchyMap* hierarchyMap() VL_MT_SAFE_POSTINIT {
// Thread save only assuming this is called only after model construction completed
return &s_s.m_hierMap;
}
public: // But only for verilated*.cpp
// METHODS - export names
// Each function prototype is converted to a function number which we
// then use to index a 2D table also indexed by scope number, because we
// can't know at Verilation time what scopes will exist in other modules
// in the design that also happen to have our same callback function.
// Rather than a 2D map, the integer scheme saves 500ish ns on a likely
// miss at the cost of a multiply, and all lookups move to slowpath.
static int exportInsert(const char* namep) VL_MT_SAFE {
// Slow ok - called once/function at creation
VerilatedLockGuard lock(s_s.m_exportMutex);
ExportNameMap::iterator it = s_s.m_exportMap.find(namep);
if (it == s_s.m_exportMap.end()) {
s_s.m_exportMap.insert(it, std::make_pair(namep, s_s.m_exportNext++));
return s_s.m_exportNext++;
} else {
return it->second;
}
}
static int exportFind(const char* namep) VL_MT_SAFE {
VerilatedLockGuard lock(s_s.m_exportMutex);
ExportNameMap::const_iterator it = s_s.m_exportMap.find(namep);
if (VL_LIKELY(it != s_s.m_exportMap.end())) return it->second;
std::string msg = (std::string("%Error: Testbench C called ") + namep
+ " but no such DPI export function name exists in ANY model");
VL_FATAL_MT("unknown", 0, "", msg.c_str());
return -1;
}
static const char* exportName(int funcnum) VL_MT_SAFE {
// Slowpath; find name for given export; errors only so no map to reverse-map it
VerilatedLockGuard lock(s_s.m_exportMutex);
for (ExportNameMap::const_iterator it = s_s.m_exportMap.begin();
it != s_s.m_exportMap.end(); ++it) {
if (it->second == funcnum) return it->first;
}
return "*UNKNOWN*";
}
static void exportsDump() VL_MT_SAFE {
VerilatedLockGuard lock(s_s.m_exportMutex);
bool first = true;
for (ExportNameMap::const_iterator it = s_s.m_exportMap.begin();
it != s_s.m_exportMap.end(); ++it) {
if (first) {
VL_PRINTF_MT(" exportDump:\n");
first = false;
}
VL_PRINTF_MT(" DPI_EXPORT_NAME %05d: %s\n", it->second, it->first);
}
}
// We don't free up m_exportMap until the end, because we can't be sure
// what other models are using the assigned funcnum's.
public: // But only for verilated*.cpp
// METHODS - timeformat
static std::string timeFormatSuffix() VL_MT_SAFE;
static void timeFormatSuffix(const std::string& value) VL_MT_SAFE;
static int timeFormatUnits() VL_MT_SAFE {
if (s_s.m_ser.m_timeFormatUnits == Serialized::UNITS_NONE) {
return Verilated::timeprecision();
}
return s_s.m_ser.m_timeFormatUnits;
}
static int timeFormatPrecision() VL_MT_SAFE { return s_s.m_ser.m_timeFormatPrecision; }
static int timeFormatWidth() VL_MT_SAFE { return s_s.m_ser.m_timeFormatWidth; }
static void timeFormatUnits(int value) VL_MT_SAFE;
static void timeFormatPrecision(int value) VL_MT_SAFE;
static void timeFormatWidth(int value) VL_MT_SAFE;
public: // But only for verilated*.cpp
// METHODS - file IO
static IData fdNew(FILE* fp) VL_MT_SAFE {
if (VL_UNLIKELY(!fp)) return 0;
// Bit 31 indicates it's a descriptor not a MCD
VerilatedLockGuard lock(s_s.m_fdMutex);
if (s_s.m_fdFree.empty()) {
// Need to create more space in m_fdps and m_fdFree
size_t start = s_s.m_fdps.size();
s_s.m_fdps.resize(start * 2);
for (size_t i = start; i < start * 2; ++i) {
s_s.m_fdFree.push_back(static_cast<IData>(i));
}
}
IData idx = s_s.m_fdFree.back();
s_s.m_fdFree.pop_back();
s_s.m_fdps[idx] = fp;
return (idx | (1UL << 31)); // bit 31 indicates not MCD
}
static void fdDelete(IData fdi) VL_MT_SAFE {
IData idx = VL_MASK_I(31) & fdi;
VerilatedLockGuard lock(s_s.m_fdMutex);
if (VL_UNLIKELY(!(fdi & (VL_ULL(1) << 31)) || idx >= s_s.m_fdps.size())) return;
if (VL_UNLIKELY(!s_s.m_fdps[idx])) return; // Already free
s_s.m_fdps[idx] = NULL;
s_s.m_fdFree.push_back(idx);
}
static inline FILE* fdToFp(IData fdi) VL_MT_SAFE {
IData idx = VL_MASK_I(31) & fdi;
VerilatedLockGuard lock(s_s.m_fdMutex); // This might get slow, if it does we can cache it
if (VL_UNLIKELY(!(fdi & (VL_ULL(1) << 31)) || idx >= s_s.m_fdps.size())) return NULL;
return s_s.m_fdps[idx];
}
};
//======================================================================
#endif // Guard