verilator/src/V3Sched.cpp
Bartłomiej Chmiel a668b7c658
Fix missing VlProcess handle in coroutines with splits (#5623) (#5650)
Signed-off-by: Bartłomiej Chmiel <bchmiel@antmicro.com>
2024-12-02 05:43:26 -05:00

1425 lines
62 KiB
C++

// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
// DESCRIPTION: Verilator: Code scheduling
//
// Code available from: https://verilator.org
//
//*************************************************************************
//
// Copyright 2003-2024 by Wilson Snyder. This program is free software; you
// can redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//*************************************************************************
//
// V3Sched::schedule is the top level entry-point to the scheduling algorithm
// at a high level, the process is:
//
// - Gather and classify all logic in the design based on what triggers its execution
// - Schedule static, initial and final logic classes in source order
// - Break combinational cycles by introducing hybrid logic
// - Create 'settle' region that restores the combinational invariant
// - Partition the clocked and combinational (including hybrid) logic into pre/act/nba.
// All clocks (signals referenced in an AstSenTree) generated via a blocking assignment
// (including combinationally generated signals) are computed within the act region.
// - Replicate combinational logic
// - Create input combinational logic loop
// - Create the pre/act/nba triggers
// - Create the 'act' region evaluation function
// - Create the 'nba' region evaluation function
// - Bolt it all together to create the '_eval' function
//
// Details of the algorithm are described in the internals documentation docs/internals.rst
//
//*************************************************************************
#include "V3PchAstNoMT.h" // VL_MT_DISABLED_CODE_UNIT
#include "V3Sched.h"
#include "V3EmitCBase.h"
#include "V3EmitV.h"
#include "V3Order.h"
#include "V3SenExprBuilder.h"
#include "V3Stats.h"
VL_DEFINE_DEBUG_FUNCTIONS;
namespace V3Sched {
namespace {
//============================================================================
// Utility functions
AstCFunc* makeSubFunction(AstNetlist* netlistp, const string& name, bool slow) {
AstScope* const scopeTopp = netlistp->topScopep()->scopep();
AstCFunc* const funcp = new AstCFunc{netlistp->fileline(), name, scopeTopp, ""};
funcp->dontCombine(true);
funcp->isStatic(false);
funcp->isLoose(true);
funcp->slow(slow);
funcp->isConst(false);
funcp->declPrivate(true);
scopeTopp->addBlocksp(funcp);
return funcp;
}
AstCFunc* makeTopFunction(AstNetlist* netlistp, const string& name, bool slow) {
AstCFunc* const funcp = makeSubFunction(netlistp, name, slow);
funcp->entryPoint(true);
return funcp;
}
std::vector<const AstSenTree*> getSenTreesUsedBy(const std::vector<const LogicByScope*>& lbsps) {
const VNUser1InUse user1InUse;
std::vector<const AstSenTree*> result;
for (const LogicByScope* const lbsp : lbsps) {
for (const auto& pair : *lbsp) {
AstActive* const activep = pair.second;
AstSenTree* const senTreep = activep->sensesp();
if (senTreep->user1SetOnce()) continue;
if (senTreep->hasClocked() || senTreep->hasHybrid()) result.push_back(senTreep);
}
}
return result;
}
void remapSensitivities(const LogicByScope& lbs,
std::unordered_map<const AstSenTree*, AstSenTree*> senTreeMap) {
for (const auto& pair : lbs) {
AstActive* const activep = pair.second;
AstSenTree* const senTreep = activep->sensesp();
if (senTreep->hasCombo()) continue;
activep->sensesp(senTreeMap.at(senTreep));
}
}
void invertAndMergeSenTreeMap(
V3Order::TrigToSenMap& result,
const std::unordered_map<const AstSenTree*, AstSenTree*>& senTreeMap) {
for (const auto& pair : senTreeMap) result.emplace(pair.second, pair.first);
}
//============================================================================
// Code generation utility functions
AstAssign* setVar(AstVarScope* vscp, uint32_t val) {
FileLine* const flp = vscp->fileline();
AstVarRef* const refp = new AstVarRef{flp, vscp, VAccess::WRITE};
AstConst* const valp = new AstConst{flp, AstConst::DTyped{}, vscp->dtypep()};
valp->num().setLong(val);
return new AstAssign{flp, refp, valp};
}
AstNodeStmt* incrementVar(AstVarScope* vscp) {
FileLine* const flp = vscp->fileline();
AstVarRef* const wrefp = new AstVarRef{flp, vscp, VAccess::WRITE};
AstVarRef* const rrefp = new AstVarRef{flp, vscp, VAccess::READ};
AstConst* const onep = new AstConst{flp, AstConst::DTyped{}, vscp->dtypep()};
onep->num().setLong(1);
return new AstAssign{flp, wrefp, new AstAdd{flp, rrefp, onep}};
}
AstNodeStmt* callVoidFunc(AstCFunc* funcp) {
AstCCall* const callp = new AstCCall{funcp->fileline(), funcp};
callp->dtypeSetVoid();
return callp->makeStmt();
}
AstNodeStmt* checkIterationLimit(AstNetlist* netlistp, const string& name, AstVarScope* counterp,
AstCFunc* trigDumpp) {
FileLine* const flp = netlistp->fileline();
// If we exceeded the iteration limit, die
const uint32_t limit = v3Global.opt.convergeLimit();
AstVarRef* const counterRefp = new AstVarRef{flp, counterp, VAccess::READ};
AstConst* const constp = new AstConst{flp, AstConst::DTyped{}, counterp->dtypep()};
constp->num().setLong(limit);
AstNodeExpr* const condp = new AstGt{flp, counterRefp, constp};
AstIf* const ifp = new AstIf{flp, condp};
ifp->branchPred(VBranchPred::BP_UNLIKELY);
AstTextBlock* const blockp = new AstTextBlock{flp};
ifp->addThensp(blockp);
FileLine* const locp = netlistp->topModulep()->fileline();
const string& file = VIdProtect::protect(locp->filename());
const string& line = cvtToStr(locp->lineno());
const auto add = [&](const string& text) { blockp->addText(flp, text, true); };
add("#ifdef VL_DEBUG\n");
blockp->addNodesp(callVoidFunc(trigDumpp));
add("#endif\n");
add("VL_FATAL_MT(\"" + V3OutFormatter::quoteNameControls(file) + "\", " + line + ", \"\", ");
add("\"" + name + " region did not converge.\");\n");
return ifp;
}
AstNodeStmt* profExecSectionPush(FileLine* flp, const string& name) {
return new AstCStmt{flp, "VL_EXEC_TRACE_ADD_RECORD(vlSymsp).sectionPush(\"" + name + "\");\n"};
}
AstNodeStmt* profExecSectionPop(FileLine* flp) {
return new AstCStmt{flp, "VL_EXEC_TRACE_ADD_RECORD(vlSymsp).sectionPop();\n"};
}
struct EvalLoop final {
// Flag set to true during the first iteration of the loop
AstVarScope* firstIterp;
// The loop itself and statements around it
AstNodeStmt* stmtsp = nullptr;
};
// Create an eval loop with all the trimmings.
EvalLoop createEvalLoop(
AstNetlist* netlistp, //
const std::string& tag, // Tag for current phase
const string& name, // Name of current phase
bool slow, // Should create slow functions
AstVarScope* trigp, // The trigger vector
AstCFunc* dumpFuncp, // Trigger dump function for debugging only
AstNodeStmt* innerp, // The inner loop, if any
AstNodeStmt* phasePrepp, // Prep statements run before checking triggers
AstNodeStmt* phaseWorkp, // The work to do if anything triggered
// Extra statements to run after the work, even if no triggers fired. This function is
// passed a variable, which must be set to true if we must continue and loop again,
// and must be unmodified otherwise.
std::function<AstNodeStmt*(AstVarScope*)> phaseExtra = [](AstVarScope*) { return nullptr; } //
) {
const std::string varPrefix = "__V" + tag;
AstScope* const scopeTopp = netlistp->topScopep()->scopep();
FileLine* const flp = netlistp->fileline();
// We wrap the prep/cond/work in a function for readability
AstCFunc* const phaseFuncp = makeTopFunction(netlistp, "_eval_phase__" + tag, slow);
{
// The execute flag
AstVarScope* const executeFlagp = scopeTopp->createTemp(varPrefix + "Execute", 1);
executeFlagp->varp()->noReset(true);
// Add the preparatory statements
phaseFuncp->addStmtsp(phasePrepp);
// Check if any triggers are fired, save the result
AstCMethodHard* const callp
= new AstCMethodHard{flp, new AstVarRef{flp, trigp, VAccess::READ}, "any"};
callp->dtypeSetBit();
phaseFuncp->addStmtsp(
new AstAssign{flp, new AstVarRef{flp, executeFlagp, VAccess::WRITE}, callp});
// Add the work
AstIf* const ifp = new AstIf{flp, new AstVarRef{flp, executeFlagp, VAccess::READ}};
ifp->addThensp(phaseWorkp);
phaseFuncp->addStmtsp(ifp);
// Construct the extra statements
if (AstNodeStmt* const extrap = phaseExtra(executeFlagp)) phaseFuncp->addStmtsp(extrap);
// The function returns ture iff it did run the work
phaseFuncp->rtnType("bool");
phaseFuncp->addStmtsp(
new AstCReturn{flp, new AstVarRef{flp, executeFlagp, VAccess::READ}});
}
// The result statements
AstNodeStmt* stmtps = nullptr;
// Prof-exec section push
if (v3Global.opt.profExec()) stmtps = profExecSectionPush(flp, "loop " + tag);
const auto addVar = [&](const std::string& name, int width, uint32_t initVal) {
AstVarScope* const vscp = scopeTopp->createTemp("__V" + tag + name, width);
vscp->varp()->noReset(true);
stmtps = AstNode::addNext(stmtps, setVar(vscp, initVal));
return vscp;
};
// The iteration counter
AstVarScope* const counterp = addVar("IterCount", 32, 0);
// The first iteration flag
AstVarScope* const firstIterFlagp = addVar("FirstIteration", 1, 1);
// The continuation flag
AstVarScope* const continueFlagp = addVar("Continue", 1, 1);
// The loop
{
AstWhile* const loopp
= new AstWhile{flp, new AstVarRef{flp, continueFlagp, VAccess::READ}};
// Check the iteration limit (aborts if exceeded)
loopp->addStmtsp(checkIterationLimit(netlistp, name, counterp, dumpFuncp));
// Increment the iteration counter
loopp->addStmtsp(incrementVar(counterp));
// Reset continuation flag
loopp->addStmtsp(setVar(continueFlagp, 0));
// Execute the inner loop
loopp->addStmtsp(innerp);
// Call the phase function to execute the current work. If we did
// work, then need to loop again, so set the continuation flag
AstCCall* const callp = new AstCCall{flp, phaseFuncp};
callp->dtypeSetBit();
AstIf* const ifp = new AstIf{flp, callp};
ifp->addThensp(setVar(continueFlagp, 1));
loopp->addStmtsp(ifp);
// Clear the first iteration flag
loopp->addStmtsp(setVar(firstIterFlagp, 0));
stmtps->addNext(loopp);
}
// Prof-exec section pop
if (v3Global.opt.profExec()) stmtps->addNext(profExecSectionPop(flp));
return {firstIterFlagp, stmtps};
}
//============================================================================
// Split large function according to --output-split-cfuncs
AstCFunc* splitCheckCreateNewSubFunc(AstCFunc* ofuncp) {
static std::map<AstCFunc*, uint32_t> funcNums; // What split number to attach to a function
const uint32_t funcNum = funcNums[ofuncp]++;
const std::string name = ofuncp->name() + "__" + cvtToStr(funcNum);
AstCFunc* const subFuncp = new AstCFunc{ofuncp->fileline(), name, ofuncp->scopep()};
subFuncp->dontCombine(true);
subFuncp->isStatic(false);
subFuncp->isLoose(true);
subFuncp->slow(ofuncp->slow());
subFuncp->declPrivate(ofuncp->declPrivate());
if (ofuncp->needProcess()) subFuncp->setNeedProcess();
return subFuncp;
};
void splitCheck(AstCFunc* ofuncp) {
if (!v3Global.opt.outputSplitCFuncs() || !ofuncp->stmtsp()) return;
if (ofuncp->nodeCount() < v3Global.opt.outputSplitCFuncs()) return;
int func_stmts = 0;
const bool is_ofuncp_coroutine = ofuncp->isCoroutine();
AstCFunc* funcp = nullptr;
const auto finishSubFuncp = [&](AstCFunc* subFuncp) {
ofuncp->scopep()->addBlocksp(subFuncp);
AstCCall* const callp = new AstCCall{subFuncp->fileline(), subFuncp};
callp->dtypeSetVoid();
if (is_ofuncp_coroutine && subFuncp->exists([](const AstCAwait*) {
return true;
})) { // Wrap call with co_await
subFuncp->rtnType("VlCoroutine");
AstCAwait* const awaitp = new AstCAwait{subFuncp->fileline(), callp};
awaitp->dtypeSetVoid();
ofuncp->addStmtsp(awaitp->makeStmt());
} else {
ofuncp->addStmtsp(callp->makeStmt());
}
};
funcp = splitCheckCreateNewSubFunc(ofuncp);
func_stmts = 0;
// Unlink all statements, then add item by item to new sub-functions
AstBegin* const tempp = new AstBegin{ofuncp->fileline(), "[EditWrapper]",
ofuncp->stmtsp()->unlinkFrBackWithNext()};
// Currently we do not use finalsp in V3Sched, if we do, it needs to be handled here
UASSERT_OBJ(!ofuncp->finalsp(), ofuncp, "Should not have any finalps");
while (tempp->stmtsp()) {
AstNode* const itemp = tempp->stmtsp()->unlinkFrBack();
const int stmts = itemp->nodeCount();
if ((func_stmts + stmts) > v3Global.opt.outputSplitCFuncs()) {
finishSubFuncp(funcp);
funcp = splitCheckCreateNewSubFunc(ofuncp);
func_stmts = 0;
}
funcp->addStmtsp(itemp);
func_stmts += stmts;
}
finishSubFuncp(funcp);
VL_DO_DANGLING(tempp->deleteTree(), tempp);
}
//============================================================================
// Collect and classify all logic in the design
LogicClasses gatherLogicClasses(AstNetlist* netlistp) {
LogicClasses result;
netlistp->foreach([&](AstScope* scopep) {
scopep->foreach([&](AstActive* activep) {
AstSenTree* const senTreep = activep->sensesp();
if (senTreep->hasStatic()) {
UASSERT_OBJ(!senTreep->sensesp()->nextp(), activep,
"static initializer with additional sensitivities");
result.m_static.emplace_back(scopep, activep);
} else if (senTreep->hasInitial()) {
UASSERT_OBJ(!senTreep->sensesp()->nextp(), activep,
"'initial' logic with additional sensitivities");
result.m_initial.emplace_back(scopep, activep);
} else if (senTreep->hasFinal()) {
UASSERT_OBJ(!senTreep->sensesp()->nextp(), activep,
"'final' logic with additional sensitivities");
result.m_final.emplace_back(scopep, activep);
} else if (senTreep->hasCombo()) {
UASSERT_OBJ(!senTreep->sensesp()->nextp(), activep,
"combinational logic with additional sensitivities");
if (VN_IS(activep->stmtsp(), AlwaysPostponed)) {
result.m_postponed.emplace_back(scopep, activep);
} else {
result.m_comb.emplace_back(scopep, activep);
}
} else {
UASSERT_OBJ(senTreep->hasClocked(), activep, "What else could it be?");
if (VN_IS(activep->stmtsp(), AlwaysObserved)) {
result.m_observed.emplace_back(scopep, activep);
} else if (VN_IS(activep->stmtsp(), AlwaysReactive)) {
result.m_reactive.emplace_back(scopep, activep);
} else {
result.m_clocked.emplace_back(scopep, activep);
}
}
});
});
return result;
}
//============================================================================
// Simple ordering in source order
void orderSequentially(AstCFunc* funcp, const LogicByScope& lbs) {
// Create new subfunc for scope
const auto createNewSubFuncp = [&](AstScope* const scopep) {
const string subName{funcp->name() + "__" + scopep->nameDotless()};
AstCFunc* const subFuncp = new AstCFunc{scopep->fileline(), subName, scopep};
subFuncp->isLoose(true);
subFuncp->isConst(false);
subFuncp->declPrivate(true);
subFuncp->slow(funcp->slow());
scopep->addBlocksp(subFuncp);
// Call it from the top function
funcp->addStmtsp(callVoidFunc(subFuncp));
return subFuncp;
};
const VNUser1InUse user1InUse; // AstScope -> AstCFunc: the sub-function for the scope
const VNUser2InUse user2InUse; // AstScope -> int: sub-function counter used for names
for (const auto& pair : lbs) {
AstScope* const scopep = pair.first;
AstActive* const activep = pair.second;
// Create a sub-function per scope so we can V3Combine them later
if (!scopep->user1p()) scopep->user1p(createNewSubFuncp(scopep));
// Add statements to sub-function
for (AstNode *logicp = activep->stmtsp(), *nextp; logicp; logicp = nextp) {
auto* subFuncp = VN_AS(scopep->user1p(), CFunc);
nextp = logicp->nextp();
if (AstNodeProcedure* const procp = VN_CAST(logicp, NodeProcedure)) {
if (AstNode* bodyp = procp->stmtsp()) {
bodyp->unlinkFrBackWithNext();
// If the process is suspendable, we need a separate function (a coroutine)
if (procp->isSuspendable()) {
funcp->slow(false);
subFuncp = createNewSubFuncp(scopep);
subFuncp->name(subFuncp->name() + "__Vtiming__"
+ cvtToStr(scopep->user2Inc()));
subFuncp->rtnType("VlCoroutine");
if (VN_IS(procp, Always)) {
subFuncp->slow(false);
FileLine* const flp = procp->fileline();
bodyp
= new AstWhile{flp, new AstConst{flp, AstConst::BitTrue{}}, bodyp};
}
}
subFuncp->addStmtsp(bodyp);
if (procp->needProcess()) subFuncp->setNeedProcess();
splitCheck(subFuncp);
}
} else {
logicp->unlinkFrBack();
subFuncp->addStmtsp(logicp);
}
}
if (activep->backp()) activep->unlinkFrBack();
VL_DO_DANGLING(activep->deleteTree(), activep);
}
}
//============================================================================
// Create simply ordered functions
void createStatic(AstNetlist* netlistp, const LogicClasses& logicClasses) {
AstCFunc* const funcp = makeTopFunction(netlistp, "_eval_static", /* slow: */ true);
orderSequentially(funcp, logicClasses.m_static);
splitCheck(funcp);
}
AstCFunc* createInitial(AstNetlist* netlistp, const LogicClasses& logicClasses) {
AstCFunc* const funcp = makeTopFunction(netlistp, "_eval_initial", /* slow: */ true);
orderSequentially(funcp, logicClasses.m_initial);
return funcp; // Not splitting yet as it is not final
}
AstCFunc* createPostponed(AstNetlist* netlistp, const LogicClasses& logicClasses) {
if (logicClasses.m_postponed.empty()) return nullptr;
AstCFunc* const funcp = makeTopFunction(netlistp, "_eval_postponed", /* slow: */ true);
orderSequentially(funcp, logicClasses.m_postponed);
splitCheck(funcp);
return funcp;
}
void createFinal(AstNetlist* netlistp, const LogicClasses& logicClasses) {
AstCFunc* const funcp = makeTopFunction(netlistp, "_eval_final", /* slow: */ true);
orderSequentially(funcp, logicClasses.m_final);
splitCheck(funcp);
}
//============================================================================
// A TriggerKit holds all the components related to a TRIGGERVEC variable
struct TriggerKit final {
// The TRIGGERVEC AstVarScope representing these trigger flags
AstVarScope* const m_vscp;
// The AstCFunc that computes the current active triggers
AstCFunc* const m_funcp;
// The AstCFunc that dumps the current active triggers
AstCFunc* const m_dumpp;
// The map from input sensitivity list to trigger sensitivity list
const std::unordered_map<const AstSenTree*, AstSenTree*> m_map;
// No VL_UNCOPYABLE(TriggerKit) as causes C++20 errors on MSVC
// Utility that assigns the given index trigger to fire when the given variable is zero
void addFirstIterationTriggerAssignment(AstVarScope* flagp, uint32_t index) const {
FileLine* const flp = flagp->fileline();
AstVarRef* const vrefp = new AstVarRef{flp, m_vscp, VAccess::WRITE};
AstCMethodHard* const callp = new AstCMethodHard{flp, vrefp, "set"};
callp->addPinsp(new AstConst{flp, index});
callp->addPinsp(new AstVarRef{flp, flagp, VAccess::READ});
callp->dtypeSetVoid();
m_funcp->stmtsp()->addHereThisAsNext(callp->makeStmt());
}
// Utility to set then clear an extra trigger
void addExtraTriggerAssignment(AstVarScope* extraTriggerVscp, uint32_t index) const {
FileLine* const flp = extraTriggerVscp->fileline();
AstVarRef* const vrefp = new AstVarRef{flp, m_vscp, VAccess::WRITE};
AstCMethodHard* const callp = new AstCMethodHard{flp, vrefp, "set"};
callp->addPinsp(new AstConst{flp, index});
callp->addPinsp(new AstVarRef{flp, extraTriggerVscp, VAccess::READ});
callp->dtypeSetVoid();
AstNode* const stmtp = callp->makeStmt();
stmtp->addNext(new AstAssign{flp, new AstVarRef{flp, extraTriggerVscp, VAccess::WRITE},
new AstConst{flp, AstConst::BitFalse{}}});
m_funcp->stmtsp()->addHereThisAsNext(stmtp);
}
};
//============================================================================
// EvalKit groups items that have to be passed to createEval() for a given eval region
struct EvalKit final {
// The TRIGGERVEC AstVarScope representing the region's trigger flags
AstVarScope* const m_vscp = nullptr;
// The AstCFunc that computes the region's active triggers
AstCFunc* const m_triggerComputep = nullptr;
// The AstCFunc that dumps the region's active triggers
AstCFunc* const m_dumpp = nullptr;
// The AstCFunc that evaluates the region's logic
AstCFunc* const m_funcp = nullptr;
// Is this kit used/required?
bool empty() const { return !m_funcp; }
};
// Create an AstSenTree that is sensitive to the given trigger index. Must not exist yet!
AstSenTree* createTriggerSenTree(AstNetlist* netlistp, AstVarScope* const vscp, uint32_t index) {
UASSERT_OBJ(index != std::numeric_limits<unsigned>::max(), netlistp, "Invalid trigger index");
AstTopScope* const topScopep = netlistp->topScopep();
FileLine* const flp = topScopep->fileline();
AstVarRef* const vrefp = new AstVarRef{flp, vscp, VAccess::READ};
const uint32_t wordIndex = index / 64;
const uint32_t bitIndex = index % 64;
AstCMethodHard* const callp
= new AstCMethodHard{flp, vrefp, "word", new AstConst{flp, wordIndex}};
callp->dtypeSetUInt64();
AstNodeExpr* const termp
= new AstAnd{flp, new AstConst{flp, AstConst::Unsized64{}, 1ULL << bitIndex}, callp};
AstSenItem* const senItemp = new AstSenItem{flp, VEdgeType::ET_TRUE, termp};
AstSenTree* const resultp = new AstSenTree{flp, senItemp};
topScopep->addSenTreesp(resultp);
return resultp;
}
//============================================================================
// Utility for extra trigger allocation
class ExtraTriggers final {
std::vector<string> m_descriptions; // Human readable description of extra triggers
public:
ExtraTriggers() = default;
size_t allocate(const string& description) {
const size_t index = m_descriptions.size();
m_descriptions.push_back(description);
return index;
}
size_t size() const { return m_descriptions.size(); }
const string& description(size_t index) const { return m_descriptions[index]; }
};
//============================================================================
// Helper that creates virtual interface trigger resets
void addVirtIfaceTriggerAssignments(const VirtIfaceTriggers& virtIfaceTriggers,
size_t vifTriggerIndex, const TriggerKit& actTrig) {
for (const auto& p : virtIfaceTriggers) {
actTrig.addExtraTriggerAssignment(p.second, vifTriggerIndex);
++vifTriggerIndex;
}
}
//============================================================================
// Create a TRIGGERVEC and the related TriggerKit for the given AstSenTree vector
const TriggerKit createTriggers(AstNetlist* netlistp, AstCFunc* const initFuncp,
SenExprBuilder& senExprBuilder,
const std::vector<const AstSenTree*>& senTreeps,
const string& name, const ExtraTriggers& extraTriggers,
bool slow = false) {
AstTopScope* const topScopep = netlistp->topScopep();
AstScope* const scopeTopp = topScopep->scopep();
FileLine* const flp = scopeTopp->fileline();
// Gather all the unique SenItems under the SenTrees
// List of unique SenItems used by all 'senTreeps'
std::vector<const AstSenItem*> senItemps;
// Map from SenItem to the equivalent index in 'senItemps'
std::unordered_map<const AstSenItem*, size_t> senItemp2Index;
{
// Set of unique SenItems
std::unordered_set<VNRef<const AstSenItem>> uniqueSenItemps;
for (const AstSenTree* const senTreep : senTreeps) {
for (const AstSenItem *itemp = senTreep->sensesp(), *nextp; itemp; itemp = nextp) {
nextp = VN_AS(itemp->nextp(), SenItem);
const auto pair = uniqueSenItemps.emplace(*itemp);
if (pair.second) {
senItemp2Index.emplace(itemp, senItemps.size());
senItemps.push_back(itemp);
}
senItemp2Index.emplace(itemp, senItemp2Index.at(&(pair.first->get())));
}
}
}
std::unordered_map<const AstSenTree*, AstSenTree*> map;
const uint32_t nTriggers = senItemps.size() + extraTriggers.size();
// Create the TRIGGERVEC variable
AstBasicDType* const tDtypep
= new AstBasicDType{flp, VBasicDTypeKwd::TRIGGERVEC, VSigning::UNSIGNED,
static_cast<int>(nTriggers), static_cast<int>(nTriggers)};
netlistp->typeTablep()->addTypesp(tDtypep);
AstVarScope* const vscp = scopeTopp->createTemp("__V" + name + "Triggered", tDtypep);
// Create the trigger computation function
AstCFunc* const funcp = makeSubFunction(netlistp, "_eval_triggers__" + name, slow);
if (v3Global.opt.profExec()) funcp->addStmtsp(profExecSectionPush(flp, "trig " + name));
// Create the trigger dump function (for debugging, always 'slow')
AstCFunc* const dumpp = makeSubFunction(netlistp, "_dump_triggers__" + name, true);
dumpp->ifdef("VL_DEBUG");
// Add a print to the dumping function if there are no triggers pending
{
AstCMethodHard* const callp
= new AstCMethodHard{flp, new AstVarRef{flp, vscp, VAccess::READ}, "any"};
callp->dtypeSetBit();
AstIf* const ifp = new AstIf{flp, callp};
dumpp->addStmtsp(ifp);
ifp->addElsesp(
new AstText{flp, "VL_DBG_MSGF(\" No triggers active\\n\");\n", true});
}
// Set the given trigger to the given value
const auto setTrig = [&](uint32_t index, AstNodeExpr* valp) {
AstVarRef* const vrefp = new AstVarRef{flp, vscp, VAccess::WRITE};
AstCMethodHard* const callp = new AstCMethodHard{flp, vrefp, "set"};
callp->addPinsp(new AstConst{flp, index});
callp->addPinsp(valp);
callp->dtypeSetVoid();
return callp->makeStmt();
};
// Create a reference to a trigger flag
const auto getTrig = [&](uint32_t index) {
AstVarRef* const vrefp = new AstVarRef{flp, vscp, VAccess::READ};
const uint32_t wordIndex = index / 64;
const uint32_t bitIndex = index % 64;
AstCMethodHard* const callp
= new AstCMethodHard{flp, vrefp, "word", new AstConst{flp, wordIndex}};
callp->dtypeSetUInt64();
AstNodeExpr* const termp
= new AstAnd{flp, new AstConst{flp, AstConst::Unsized64{}, 1ULL << bitIndex}, callp};
return termp;
};
// Add a debug dumping statement for this trigger
const auto addDebug = [&](uint32_t index, const string& text = "") {
std::stringstream ss;
ss << "VL_DBG_MSGF(\" '" << name << "' region trigger index " << cvtToStr(index)
<< " is active";
if (!text.empty()) ss << ": " << text;
ss << "\\n\");\n";
const string message{ss.str()};
AstIf* const ifp = new AstIf{flp, getTrig(index)};
dumpp->addStmtsp(ifp);
ifp->addThensp(new AstText{flp, message, true});
};
// Add a print for each of the extra triggers
for (unsigned i = 0; i < extraTriggers.size(); ++i) {
addDebug(i, "Internal '" + name + "' trigger - " + extraTriggers.description(i));
}
// Add trigger computation
uint32_t triggerNumber = extraTriggers.size();
AstNodeStmt* initialTrigsp = nullptr;
std::vector<uint32_t> senItemIndex2TriggerIndex;
senItemIndex2TriggerIndex.reserve(senItemps.size());
for (const AstSenItem* const senItemp : senItemps) {
UASSERT_OBJ(senItemp->isClocked() || senItemp->isHybrid(), senItemp,
"Cannot create trigger expression for non-clocked sensitivity");
// Store the trigger number
senItemIndex2TriggerIndex.push_back(triggerNumber);
// Add the trigger computation
const auto& pair = senExprBuilder.build(senItemp);
funcp->addStmtsp(setTrig(triggerNumber, pair.first));
// Add initialization time trigger
if (pair.second || v3Global.opt.xInitialEdge()) {
initialTrigsp
= AstNode::addNext(initialTrigsp, setTrig(triggerNumber, new AstConst{flp, 1}));
}
// Add a debug statement for this trigger
std::stringstream ss;
ss << "@(";
V3EmitV::verilogForTree(senItemp, ss);
ss << ")";
addDebug(triggerNumber, ss.str());
//
++triggerNumber;
}
// Construct the map from old SenTrees to new SenTrees
for (const AstSenTree* const senTreep : senTreeps) {
AstSenTree* const trigpSenp = new AstSenTree{flp, nullptr};
for (const AstSenItem *itemp = senTreep->sensesp(), *nextp; itemp; itemp = nextp) {
nextp = VN_AS(itemp->nextp(), SenItem);
const uint32_t tiggerIndex = senItemIndex2TriggerIndex.at(senItemp2Index.at(itemp));
trigpSenp->addSensesp(new AstSenItem{flp, VEdgeType::ET_TRUE, getTrig(tiggerIndex)});
}
topScopep->addSenTreesp(trigpSenp);
map[senTreep] = trigpSenp;
}
// Add the init and update statements
for (AstNodeStmt* const nodep : senExprBuilder.getAndClearInits()) {
initFuncp->addStmtsp(nodep);
}
for (AstNodeStmt* const nodep : senExprBuilder.getAndClearPostUpdates()) {
funcp->addStmtsp(nodep);
}
const auto& preUpdates = senExprBuilder.getAndClearPreUpdates();
if (!preUpdates.empty()) {
for (AstNodeStmt* const nodep : vlstd::reverse_view(preUpdates)) {
UASSERT_OBJ(funcp->stmtsp(), funcp,
"No statements in trigger eval function, but there are pre updates");
funcp->stmtsp()->addHereThisAsNext(nodep);
}
}
const auto& locals = senExprBuilder.getAndClearLocals();
if (!locals.empty()) {
UASSERT_OBJ(funcp->stmtsp(), funcp,
"No statements in trigger eval function, but there are locals");
for (AstVar* const nodep : vlstd::reverse_view(locals)) {
funcp->stmtsp()->addHereThisAsNext(nodep);
}
}
// Add the initialization statements
if (initialTrigsp) {
AstVarScope* const tempVscp = scopeTopp->createTemp("__V" + name + "DidInit", 1);
AstVarRef* const condp = new AstVarRef{flp, tempVscp, VAccess::READ};
AstIf* const ifp = new AstIf{flp, new AstNot{flp, condp}};
funcp->addStmtsp(ifp);
ifp->branchPred(VBranchPred::BP_UNLIKELY);
ifp->addThensp(setVar(tempVscp, 1));
ifp->addThensp(initialTrigsp);
}
// Add a call to the dumping function if debug is enabled
{
AstTextBlock* const blockp = new AstTextBlock{flp};
funcp->addStmtsp(blockp);
const auto add = [&](const string& text) { blockp->addText(flp, text, true); };
add("#ifdef VL_DEBUG\n");
add("if (VL_UNLIKELY(vlSymsp->_vm_contextp__->debug())) {\n");
blockp->addNodesp(callVoidFunc(dumpp));
add("}\n");
add("#endif\n");
}
if (v3Global.opt.profExec()) funcp->addStmtsp(profExecSectionPop(flp));
// The debug code might leak signal names, so simply delete it when using --protect-ids
if (v3Global.opt.protectIds()) dumpp->stmtsp()->unlinkFrBackWithNext()->deleteTree();
return {vscp, funcp, dumpp, map};
}
// Order the combinational logic to create the settle loop
void createSettle(AstNetlist* netlistp, AstCFunc* const initFuncp, SenExprBuilder& senExprBulider,
LogicClasses& logicClasses) {
AstCFunc* const funcp = makeTopFunction(netlistp, "_eval_settle", true);
// Clone, because ordering is destructive, but we still need them for "_eval"
LogicByScope comb = logicClasses.m_comb.clone();
LogicByScope hybrid = logicClasses.m_hybrid.clone();
// Nothing to do if there is no logic.
// While this is rare in real designs, it reduces noise in small tests.
if (comb.empty() && hybrid.empty()) return;
// We have an extra trigger denoting this is the first iteration of the settle loop
ExtraTriggers extraTriggers;
const size_t firstIterationTrigger = extraTriggers.allocate("first iteration");
// Gather the relevant sensitivity expressions and create the trigger kit
const auto& senTreeps = getSenTreesUsedBy({&comb, &hybrid});
const TriggerKit& trig = createTriggers(netlistp, initFuncp, senExprBulider, senTreeps, "stl",
extraTriggers, true);
// Remap sensitivities (comb has none, so only do the hybrid)
remapSensitivities(hybrid, trig.m_map);
// Create the inverse map from trigger ref AstSenTree to original AstSenTree
V3Order::TrigToSenMap trigToSen;
invertAndMergeSenTreeMap(trigToSen, trig.m_map);
// First trigger is for pure combinational triggers (first iteration)
AstSenTree* const inputChanged
= createTriggerSenTree(netlistp, trig.m_vscp, firstIterationTrigger);
// Create and the body function
AstCFunc* const stlFuncp = V3Order::order(
netlistp, {&comb, &hybrid}, trigToSen, "stl", false, true,
[=](const AstVarScope*, std::vector<AstSenTree*>& out) { out.push_back(inputChanged); });
splitCheck(stlFuncp);
// Create the eval loop
const EvalLoop stlLoop = createEvalLoop( //
netlistp, "stl", "Settle", /* slow: */ true, trig.m_vscp, trig.m_dumpp,
// Inner loop statements
nullptr,
// Prep statements: Compute the current 'stl' triggers
callVoidFunc(trig.m_funcp),
// Work statements: Invoke the 'stl' function
callVoidFunc(stlFuncp));
// Add the first iteration trigger to the trigger computation function
trig.addFirstIterationTriggerAssignment(stlLoop.firstIterp, firstIterationTrigger);
// Add the eval loop to the top function
funcp->addStmtsp(stlLoop.stmtsp);
}
//============================================================================
// Order the replicated combinational logic to create the 'ico' region
AstNode* createInputCombLoop(AstNetlist* netlistp, AstCFunc* const initFuncp,
SenExprBuilder& senExprBuilder, LogicByScope& logic,
const VirtIfaceTriggers& virtIfaceTriggers) {
// Nothing to do if no combinational logic is sensitive to top level inputs
if (logic.empty()) return nullptr;
// SystemC only: Any top level inputs feeding a combinational logic must be marked,
// so we can make them sc_sensitive
if (v3Global.opt.systemC()) {
logic.foreachLogic([](AstNode* logicp) {
logicp->foreach([](AstVarRef* refp) {
if (refp->access().isWriteOnly()) return;
AstVarScope* const vscp = refp->varScopep();
if (vscp->scopep()->isTop() && vscp->varp()->isNonOutput()) {
vscp->varp()->scSensitive(true);
}
});
});
}
// We have some extra trigger denoting external conditions
AstVarScope* const dpiExportTriggerVscp = netlistp->dpiExportTriggerp();
ExtraTriggers extraTriggers;
const size_t firstIterationTrigger = extraTriggers.allocate("first iteration");
const size_t dpiExportTriggerIndex = dpiExportTriggerVscp
? extraTriggers.allocate("DPI export trigger")
: std::numeric_limits<unsigned>::max();
const size_t firstVifTriggerIndex = extraTriggers.size();
for (const auto& p : virtIfaceTriggers) {
extraTriggers.allocate("virtual interface: " + p.first->name());
}
// Gather the relevant sensitivity expressions and create the trigger kit
const auto& senTreeps = getSenTreesUsedBy({&logic});
const TriggerKit& trig
= createTriggers(netlistp, initFuncp, senExprBuilder, senTreeps, "ico", extraTriggers);
if (dpiExportTriggerVscp) {
trig.addExtraTriggerAssignment(dpiExportTriggerVscp, dpiExportTriggerIndex);
}
addVirtIfaceTriggerAssignments(virtIfaceTriggers, firstVifTriggerIndex, trig);
// Remap sensitivities
remapSensitivities(logic, trig.m_map);
// Create the inverse map from trigger ref AstSenTree to original AstSenTree
V3Order::TrigToSenMap trigToSen;
invertAndMergeSenTreeMap(trigToSen, trig.m_map);
// The trigger top level inputs (first iteration)
AstSenTree* const inputChanged
= createTriggerSenTree(netlistp, trig.m_vscp, firstIterationTrigger);
// The DPI Export trigger
AstSenTree* const dpiExportTriggered
= dpiExportTriggerVscp ? createTriggerSenTree(netlistp, trig.m_vscp, dpiExportTriggerIndex)
: nullptr;
const auto& vifTriggered
= virtIfaceTriggers.makeIfaceToSensMap(netlistp, firstVifTriggerIndex, trig.m_vscp);
// Create and Order the body function
AstCFunc* const icoFuncp
= V3Order::order(netlistp, {&logic}, trigToSen, "ico", false, false,
[=](const AstVarScope* vscp, std::vector<AstSenTree*>& out) {
AstVar* const varp = vscp->varp();
if (varp->isPrimaryInish() || varp->isSigUserRWPublic()) {
out.push_back(inputChanged);
}
if (varp->isWrittenByDpi()) out.push_back(dpiExportTriggered);
if (vscp->varp()->sensIfacep()) {
const auto it = vifTriggered.find(vscp->varp()->sensIfacep());
if (it != vifTriggered.end()) out.push_back(it->second);
}
});
splitCheck(icoFuncp);
// Create the eval loop
const EvalLoop icoLoop = createEvalLoop( //
netlistp, "ico", "Input combinational", /* slow: */ false, trig.m_vscp, trig.m_dumpp,
// Inner loop statements
nullptr,
// Prep statements: Compute the current 'ico' triggers
callVoidFunc(trig.m_funcp),
// Work statements: Invoke the 'ico' function
callVoidFunc(icoFuncp));
// Add the first iteration trigger to the trigger computation function
trig.addFirstIterationTriggerAssignment(icoLoop.firstIterp, firstIterationTrigger);
return icoLoop.stmtsp;
}
//============================================================================
// Helpers for 'createEval'
AstStmtExpr* createTriggerClearCall(FileLine* const flp, AstVarScope* const vscp) { // Trigger
AstVarRef* const refp = new AstVarRef{flp, vscp, VAccess::WRITE};
AstCMethodHard* const callp = new AstCMethodHard{flp, refp, "clear"};
callp->dtypeSetVoid();
return callp->makeStmt();
}
AstStmtExpr* createTriggerSetCall(FileLine* const flp, AstVarScope* const toVscp,
AstVarScope* const fromVscp) {
AstVarRef* const lhsp = new AstVarRef{flp, toVscp, VAccess::WRITE};
AstVarRef* const argp = new AstVarRef{flp, fromVscp, VAccess::READ};
AstCMethodHard* const callp = new AstCMethodHard{flp, lhsp, "thisOr", argp};
callp->dtypeSetVoid();
return callp->makeStmt();
}
AstStmtExpr* createTriggerAndNotCall(FileLine* const flp, AstVarScope* const lhsVscp,
AstVarScope* const aVscp, AstVarScope* const bVscp) {
AstVarRef* const lhsp = new AstVarRef{flp, lhsVscp, VAccess::WRITE};
AstVarRef* const opap = new AstVarRef{flp, aVscp, VAccess::READ};
AstVarRef* const opbp = new AstVarRef{flp, bVscp, VAccess::READ};
opap->addNext(opbp);
AstCMethodHard* const callp = new AstCMethodHard{flp, lhsp, "andNot", opap};
callp->dtypeSetVoid();
return callp->makeStmt();
}
//============================================================================
// Bolt together parts to create the top level _eval function
void createEval(AstNetlist* netlistp, //
AstNode* icoLoop, //
const EvalKit& actKit, //
AstVarScope* preTrigsp, //
const EvalKit& nbaKit, //
const EvalKit& obsKit, //
const EvalKit& reactKit, //
AstCFunc* postponedFuncp, //
TimingKit& timingKit //
) {
FileLine* const flp = netlistp->fileline();
// Create the active eval loop
const EvalLoop actLoop = createEvalLoop( //
netlistp, "act", "Active", /* slow: */ false, actKit.m_vscp, actKit.m_dumpp,
// Inner loop statements
nullptr,
// Prep statements
[&]() {
// Compute the current 'act' triggers
AstNodeStmt* const stmtsp = callVoidFunc(actKit.m_triggerComputep);
// Commit trigger awaits from the previous iteration
if (AstCCall* const commitp = timingKit.createCommit(netlistp)) {
stmtsp->addNext(commitp->makeStmt());
}
//
return stmtsp;
}(),
// Work statements
[&]() {
// Compute the 'pre' triggers
AstNodeStmt* const workp
= createTriggerAndNotCall(flp, preTrigsp, actKit.m_vscp, nbaKit.m_vscp);
// Latch the 'act' triggers under the 'nba' triggers
workp->addNext(createTriggerSetCall(flp, nbaKit.m_vscp, actKit.m_vscp));
// Resume triggered timing schedulers
if (AstCCall* const resumep = timingKit.createResume(netlistp)) {
workp->addNext(resumep->makeStmt());
}
// Invoke the 'act' function
workp->addNext(callVoidFunc(actKit.m_funcp));
//
return workp;
}());
// Create the NBA eval loop, which is the default top level loop.
EvalLoop topLoop = createEvalLoop( //
netlistp, "nba", "NBA", /* slow: */ false, nbaKit.m_vscp, nbaKit.m_dumpp,
// Inner loop statements
actLoop.stmtsp,
// Prep statements
nullptr,
// Work statements
[&]() {
AstNodeStmt* workp = nullptr;
// Latch the 'nba' trigger flags under the following region's trigger flags
if (!obsKit.empty()) {
workp = createTriggerSetCall(flp, obsKit.m_vscp, nbaKit.m_vscp);
} else if (!reactKit.empty()) {
workp = createTriggerSetCall(flp, reactKit.m_vscp, nbaKit.m_vscp);
}
// Invoke the 'nba' function
workp = AstNode::addNext(workp, callVoidFunc(nbaKit.m_funcp));
// Clear the 'nba' triggers
workp->addNext(createTriggerClearCall(flp, nbaKit.m_vscp));
//
return workp;
}(),
// Extra work (not conditional on having had a fired trigger)
[&](AstVarScope* continuep) -> AstNodeStmt* {
// Check if any dynamic NBAs are pending, if there are any in the design
if (!netlistp->nbaEventp()) return nullptr;
AstVarScope* const nbaEventp = netlistp->nbaEventp();
AstVarScope* const nbaEventTriggerp = netlistp->nbaEventTriggerp();
UASSERT(nbaEventTriggerp, "NBA event trigger var should exist");
netlistp->nbaEventp(nullptr);
netlistp->nbaEventTriggerp(nullptr);
// If a dynamic NBA is pending, clear the pending flag and fire the commit event
AstIf* const ifp = new AstIf{flp, new AstVarRef{flp, nbaEventTriggerp, VAccess::READ}};
ifp->addThensp(setVar(continuep, 1));
ifp->addThensp(setVar(nbaEventTriggerp, 0));
AstCMethodHard* const firep
= new AstCMethodHard{flp, new AstVarRef{flp, nbaEventp, VAccess::WRITE}, "fire"};
firep->dtypeSetVoid();
ifp->addThensp(firep->makeStmt());
return ifp;
});
if (!obsKit.empty()) {
// Create the Observed eval loop, which becomes the top level loop.
topLoop = createEvalLoop( //
netlistp, "obs", "Observed", /* slow: */ false, obsKit.m_vscp, obsKit.m_dumpp,
// Inner loop statements
topLoop.stmtsp,
// Prep statements
nullptr,
// Work statements
[&]() {
AstNodeStmt* workp = nullptr;
// Latch the Observed trigger flags under the Reactive trigger flags
if (!reactKit.empty()) {
workp = createTriggerSetCall(flp, reactKit.m_vscp, obsKit.m_vscp);
}
// Invoke the 'obs' function
workp = AstNode::addNext(workp, callVoidFunc(obsKit.m_funcp));
// Clear the 'obs' triggers
workp->addNext(createTriggerClearCall(flp, obsKit.m_vscp));
//
return workp;
}());
}
if (!reactKit.empty()) {
// Create the Reactive eval loop, which becomes the top level loop.
topLoop = createEvalLoop( //
netlistp, "react", "Reactive", /* slow: */ false, reactKit.m_vscp, reactKit.m_dumpp,
// Inner loop statements
topLoop.stmtsp,
// Prep statements
nullptr,
// Work statements
[&]() {
// Invoke the 'react' function
AstNodeStmt* const workp = callVoidFunc(reactKit.m_funcp);
// Clear the 'react' triggers
workp->addNext(createTriggerClearCall(flp, reactKit.m_vscp));
return workp;
}());
}
// Now that we have build the loops, create the main 'eval' function
AstCFunc* const funcp = makeTopFunction(netlistp, "_eval", false);
netlistp->evalp(funcp);
if (v3Global.opt.profExec()) funcp->addStmtsp(profExecSectionPush(flp, "eval"));
// Start with the ico loop, if any
if (icoLoop) funcp->addStmtsp(icoLoop);
// Execute the top level eval loop
funcp->addStmtsp(topLoop.stmtsp);
// Add the Postponed eval call
if (postponedFuncp) funcp->addStmtsp(callVoidFunc(postponedFuncp));
if (v3Global.opt.profExec()) funcp->addStmtsp(profExecSectionPop(flp));
}
} // namespace
//============================================================================
// Helper that builds virtual interface trigger sentrees
VirtIfaceTriggers::IfaceSensMap
VirtIfaceTriggers::makeIfaceToSensMap(AstNetlist* const netlistp, size_t vifTriggerIndex,
AstVarScope* trigVscp) const {
std::map<const AstIface*, AstSenTree*> ifaceToSensMap;
for (const auto& p : *this) {
ifaceToSensMap.emplace(
std::make_pair(p.first, createTriggerSenTree(netlistp, trigVscp, vifTriggerIndex)));
++vifTriggerIndex;
}
return ifaceToSensMap;
}
//============================================================================
// Top level entry-point to scheduling
void schedule(AstNetlist* netlistp) {
const auto addSizeStat = [](const string& name, const LogicByScope& lbs) {
uint64_t size = 0;
lbs.foreachLogic([&](AstNode* nodep) { size += nodep->nodeCount(); });
V3Stats::addStat("Scheduling, " + name, size);
};
// Step 0. Prepare external domains for timing and virtual interfaces
// Create extra triggers for virtual interfaces
const auto& virtIfaceTriggers = makeVirtIfaceTriggers(netlistp);
// Prepare timing-related logic and external domains
TimingKit timingKit = prepareTiming(netlistp);
// Step 1. Gather and classify all logic in the design
LogicClasses logicClasses = gatherLogicClasses(netlistp);
if (v3Global.opt.stats()) {
V3Stats::statsStage("sched-gather");
addSizeStat("size of class: static", logicClasses.m_static);
addSizeStat("size of class: initial", logicClasses.m_initial);
addSizeStat("size of class: final", logicClasses.m_final);
}
// Step 2. Schedule static, initial and final logic classes in source order
createStatic(netlistp, logicClasses);
if (v3Global.opt.stats()) V3Stats::statsStage("sched-static");
AstCFunc* const initp = createInitial(netlistp, logicClasses);
if (v3Global.opt.stats()) V3Stats::statsStage("sched-initial");
createFinal(netlistp, logicClasses);
if (v3Global.opt.stats()) V3Stats::statsStage("sched-final");
// Step 3: Break combinational cycles by introducing hybrid logic
// Note: breakCycles also removes corresponding logic from logicClasses.m_comb;
logicClasses.m_hybrid = breakCycles(netlistp, logicClasses.m_comb);
if (v3Global.opt.stats()) {
addSizeStat("size of class: clocked", logicClasses.m_clocked);
addSizeStat("size of class: combinational", logicClasses.m_comb);
addSizeStat("size of class: hybrid", logicClasses.m_hybrid);
V3Stats::statsStage("sched-break-cycles");
}
// We pass around a single SenExprBuilder instance, as we only need one set of 'prev' variables
// for edge/change detection in sensitivity expressions, which this keeps track of.
AstTopScope* const topScopep = netlistp->topScopep();
AstScope* const scopeTopp = topScopep->scopep();
SenExprBuilder senExprBuilder{scopeTopp};
// Step 4: Create 'settle' region that restores the combinational invariant
createSettle(netlistp, initp, senExprBuilder, logicClasses);
if (v3Global.opt.stats()) V3Stats::statsStage("sched-settle");
// Step 5: Partition the clocked and combinational (including hybrid) logic into pre/act/nba.
// All clocks (signals referenced in an AstSenTree) generated via a blocking assignment
// (including combinationally generated signals) are computed within the act region.
LogicRegions logicRegions
= partition(logicClasses.m_clocked, logicClasses.m_comb, logicClasses.m_hybrid);
logicRegions.m_obs = logicClasses.m_observed;
logicRegions.m_react = logicClasses.m_reactive;
if (v3Global.opt.stats()) {
addSizeStat("size of region: Active Pre", logicRegions.m_pre);
addSizeStat("size of region: Active", logicRegions.m_act);
addSizeStat("size of region: NBA", logicRegions.m_nba);
addSizeStat("size of region: Observed", logicRegions.m_obs);
addSizeStat("size of region: Reactive", logicRegions.m_react);
V3Stats::statsStage("sched-partition");
}
// Step 6: Replicate combinational logic
LogicReplicas logicReplicas = replicateLogic(logicRegions);
if (v3Global.opt.stats()) {
addSizeStat("size of replicated logic: Input", logicReplicas.m_ico);
addSizeStat("size of replicated logic: Active", logicReplicas.m_act);
addSizeStat("size of replicated logic: NBA", logicReplicas.m_nba);
addSizeStat("size of replicated logic: Observed", logicReplicas.m_obs);
addSizeStat("size of replicated logic: Reactive", logicReplicas.m_react);
V3Stats::statsStage("sched-replicate");
}
// Step 7: Create input combinational logic loop
AstNode* const icoLoopp = createInputCombLoop(netlistp, initp, senExprBuilder,
logicReplicas.m_ico, virtIfaceTriggers);
if (v3Global.opt.stats()) V3Stats::statsStage("sched-create-ico");
// Step 8: Create the pre/act/nba triggers
AstVarScope* const dpiExportTriggerVscp = netlistp->dpiExportTriggerp();
// We may have an extra trigger for variable updated in DPI exports
ExtraTriggers extraTriggers;
const size_t dpiExportTriggerIndex = dpiExportTriggerVscp
? extraTriggers.allocate("DPI export trigger")
: std::numeric_limits<unsigned>::max();
const size_t firstVifTriggerIndex = extraTriggers.size();
for (const auto& p : virtIfaceTriggers) {
extraTriggers.allocate("virtual interface: " + p.first->name());
}
const auto& senTreeps = getSenTreesUsedBy({&logicRegions.m_pre, //
&logicRegions.m_act, //
&logicRegions.m_nba, //
&logicRegions.m_obs, //
&logicRegions.m_react, //
&timingKit.m_lbs});
const TriggerKit& actTrig
= createTriggers(netlistp, initp, senExprBuilder, senTreeps, "act", extraTriggers);
// Add post updates from the timing kit
if (timingKit.m_postUpdates) actTrig.m_funcp->addStmtsp(timingKit.m_postUpdates);
if (dpiExportTriggerVscp) {
actTrig.addExtraTriggerAssignment(dpiExportTriggerVscp, dpiExportTriggerIndex);
}
addVirtIfaceTriggerAssignments(virtIfaceTriggers, firstVifTriggerIndex, actTrig);
AstVarScope* const actTrigVscp = actTrig.m_vscp;
AstVarScope* const preTrigVscp = scopeTopp->createTempLike("__VpreTriggered", actTrigVscp);
const auto cloneMapWithNewTriggerReferences
= [=](const std::unordered_map<const AstSenTree*, AstSenTree*>& map, AstVarScope* vscp) {
// Copy map
auto newMap{map};
// Replace references in each mapped value with a reference to the given vscp
for (auto& pair : newMap) {
pair.second = pair.second->cloneTree(false);
pair.second->foreach([&](AstVarRef* refp) {
UASSERT_OBJ(refp->varScopep() == actTrigVscp, refp, "Unexpected reference");
UASSERT_OBJ(refp->access() == VAccess::READ, refp, "Should be read ref");
refp->replaceWith(new AstVarRef{refp->fileline(), vscp, VAccess::READ});
VL_DO_DANGLING(refp->deleteTree(), refp);
});
topScopep->addSenTreesp(pair.second);
}
return newMap;
};
const auto& actTrigMap = actTrig.m_map;
const auto preTrigMap = cloneMapWithNewTriggerReferences(actTrigMap, preTrigVscp);
if (v3Global.opt.stats()) V3Stats::statsStage("sched-create-triggers");
// Note: Experiments so far show that running the Act (or Ico) regions on
// multiple threads is always a net loss, so only use multi-threading for
// NBA for now. This can be revised if evidence is available that it would
// be beneficial
// Step 9: Create the 'act' region evaluation function
// Remap sensitivities of the input logic to the triggers
remapSensitivities(logicRegions.m_pre, preTrigMap);
remapSensitivities(logicRegions.m_act, actTrigMap);
remapSensitivities(logicReplicas.m_act, actTrigMap);
remapSensitivities(timingKit.m_lbs, actTrigMap);
const auto& actTimingDomains = timingKit.remapDomains(actTrigMap);
// Create the inverse map from trigger ref AstSenTree to original AstSenTree
V3Order::TrigToSenMap trigToSenAct;
invertAndMergeSenTreeMap(trigToSenAct, preTrigMap);
invertAndMergeSenTreeMap(trigToSenAct, actTrigMap);
// The DPI Export trigger AstSenTree
AstSenTree* const dpiExportTriggeredAct
= dpiExportTriggerVscp
? createTriggerSenTree(netlistp, actTrig.m_vscp, dpiExportTriggerIndex)
: nullptr;
const auto& vifTriggeredAct
= virtIfaceTriggers.makeIfaceToSensMap(netlistp, firstVifTriggerIndex, actTrig.m_vscp);
AstCFunc* const actFuncp = V3Order::order(
netlistp, {&logicRegions.m_pre, &logicRegions.m_act, &logicReplicas.m_act}, trigToSenAct,
"act", false, false, [&](const AstVarScope* vscp, std::vector<AstSenTree*>& out) {
auto it = actTimingDomains.find(vscp);
if (it != actTimingDomains.end()) out = it->second;
if (vscp->varp()->isWrittenByDpi()) out.push_back(dpiExportTriggeredAct);
if (vscp->varp()->sensIfacep()) {
const auto sit = vifTriggeredAct.find(vscp->varp()->sensIfacep());
if (sit != vifTriggeredAct.end()) out.push_back(sit->second);
}
});
splitCheck(actFuncp);
if (v3Global.opt.stats()) V3Stats::statsStage("sched-create-act");
const EvalKit& actKit = {actTrig.m_vscp, actTrig.m_funcp, actTrig.m_dumpp, actFuncp};
// Orders a region's logic and creates the region eval function
const auto order = [&](const std::string& name,
const std::vector<V3Sched::LogicByScope*>& logic) -> EvalKit {
UINFO(2, "Scheduling " << name << " #logic = " << logic.size() << endl);
AstVarScope* const trigVscp
= scopeTopp->createTempLike("__V" + name + "Triggered", actTrigVscp);
const auto trigMap = cloneMapWithNewTriggerReferences(actTrigMap, trigVscp);
// Remap sensitivities of the input logic to the triggers
for (LogicByScope* lbs : logic) remapSensitivities(*lbs, trigMap);
// Create the inverse map from trigger ref AstSenTree to original AstSenTree
V3Order::TrigToSenMap trigToSen;
invertAndMergeSenTreeMap(trigToSen, trigMap);
AstSenTree* const dpiExportTriggered
= dpiExportTriggerVscp
? createTriggerSenTree(netlistp, trigVscp, dpiExportTriggerIndex)
: nullptr;
const auto& vifTriggered
= virtIfaceTriggers.makeIfaceToSensMap(netlistp, firstVifTriggerIndex, trigVscp);
const auto& timingDomains = timingKit.remapDomains(trigMap);
AstCFunc* const funcp = V3Order::order(
netlistp, logic, trigToSen, name, name == "nba" && v3Global.opt.mtasks(), false,
[&](const AstVarScope* vscp, std::vector<AstSenTree*>& out) {
auto it = timingDomains.find(vscp);
if (it != timingDomains.end()) out = it->second;
if (vscp->varp()->isWrittenByDpi()) out.push_back(dpiExportTriggered);
if (vscp->varp()->sensIfacep()) {
const auto sit = vifTriggered.find(vscp->varp()->sensIfacep());
if (sit != vifTriggered.end()) out.push_back(sit->second);
}
});
// Create the trigger dumping function, which is the same as act trigger
// dumping function, but referencing this region's trigger vector.
AstCFunc* const dumpp = actTrig.m_dumpp->cloneTree(false);
actTrig.m_dumpp->addNextHere(dumpp);
dumpp->name("_dump_triggers__" + name);
dumpp->foreach([&](AstVarRef* refp) {
UASSERT_OBJ(refp->access().isReadOnly(), refp, "Should only read state");
if (refp->varScopep() == actTrig.m_vscp) {
refp->replaceWith(new AstVarRef{refp->fileline(), trigVscp, VAccess::READ});
VL_DO_DANGLING(refp->deleteTree(), refp);
}
});
dumpp->foreach([&](AstText* textp) { //
textp->text(VString::replaceWord(textp->text(), "act", name));
});
return {trigVscp, nullptr, dumpp, funcp};
};
// Step 10: Create the 'nba' region evaluation function
const EvalKit& nbaKit = order("nba", {&logicRegions.m_nba, &logicReplicas.m_nba});
splitCheck(nbaKit.m_funcp);
netlistp->evalNbap(nbaKit.m_funcp); // Remember for V3LifePost
if (v3Global.opt.stats()) V3Stats::statsStage("sched-create-nba");
// Orders a region's logic and creates the region eval function (only if there is any logic in
// the region)
const auto orderIfNonEmpty
= [&](const std::string& name, const std::vector<LogicByScope*>& logic) -> EvalKit {
if (logic[0]->empty())
return {}; // if region is empty, replica is supposed to be empty as well
const auto& kit = order(name, logic);
if (v3Global.opt.stats()) V3Stats::statsStage("sched-create-" + name);
return kit;
};
// Step 11: Create the 'obs' region evaluation function
const EvalKit& obsKit = orderIfNonEmpty("obs", {&logicRegions.m_obs, &logicReplicas.m_obs});
// Step 12: Create the 're' region evaluation function
const EvalKit& reactKit
= orderIfNonEmpty("react", {&logicRegions.m_react, &logicReplicas.m_react});
// Step 13: Create the 'postponed' region evaluation function
auto* const postponedFuncp = createPostponed(netlistp, logicClasses);
// Step 14: Bolt it all together to create the '_eval' function
createEval(netlistp, icoLoopp, actKit, preTrigVscp, nbaKit, obsKit, reactKit, postponedFuncp,
timingKit);
transformForks(netlistp);
splitCheck(initp);
netlistp->dpiExportTriggerp(nullptr);
V3Global::dumpCheckGlobalTree("sched", 0, dumpTreeEitherLevel() >= 3);
}
} // namespace V3Sched