verilator/include/verilated.cpp

2103 lines
72 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
//
// Copyright 2003-2018 by Wilson Snyder. This program is free software; you can
// redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License.
// Version 2.0.
//
// Verilator is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
//=========================================================================
///
/// \file
/// \brief Verilator: Linked against all applications using Verilated source.
///
/// This file must be compiled and linked against all objects
/// created from Verilator.
///
/// Code available from: http://www.veripool.org/verilator
///
//=========================================================================
#define _VERILATED_CPP_
#include "verilatedos.h"
#include "verilated_imp.h"
#include "verilated_config.h"
#include <cctype>
#include <sys/stat.h> // mkdir
#if defined(WIN32) || defined(__MINGW32__)
# include <direct.h> // mkdir
#endif
#define VL_VALUE_STRING_MAX_WIDTH 8192 ///< Max static char array for VL_VALUE_STRING
//===========================================================================
// Global variables
// Slow path variables
VerilatedMutex Verilated::m_mutex;
VerilatedVoidCb Verilated::s_flushCb = NULL;
// Keep below together in one cache line
Verilated::Serialized Verilated::s_s;
Verilated::NonSerialized Verilated::s_ns;
VL_THREAD_LOCAL Verilated::ThreadLocal Verilated::t_s;
Verilated::CommandArgValues Verilated::s_args;
VerilatedImp VerilatedImp::s_s;
//===========================================================================
// User definable functions
#ifndef VL_USER_FINISH // Define this to override this function
void vl_finish(const char* filename, int linenum, const char* hier) VL_MT_UNSAFE {
if (0 && hier) {}
VL_PRINTF("- %s:%d: Verilog $finish\n", filename, linenum); // Not VL_PRINTF_MT, already on main thread
if (Verilated::gotFinish()) {
VL_PRINTF("- %s:%d: Second verilog $finish, exiting\n", filename, linenum); // Not VL_PRINTF_MT, already on main thread
Verilated::flushCall();
exit(0);
}
Verilated::gotFinish(true);
}
#endif
#ifndef VL_USER_STOP // Define this to override this function
void vl_stop(const char* filename, int linenum, const char* hier) VL_MT_UNSAFE {
Verilated::gotFinish(true);
Verilated::flushCall();
vl_fatal(filename,linenum,hier,"Verilog $stop");
}
#endif
#ifndef VL_USER_FATAL // Define this to override this function
void vl_fatal(const char* filename, int linenum, const char* hier, const char* msg) VL_MT_UNSAFE {
if (0 && hier) {}
Verilated::gotFinish(true);
VL_PRINTF("%%Error: %s:%d: %s\n", filename, linenum, msg); // Not VL_PRINTF_MT, already on main thread
Verilated::flushCall();
VL_PRINTF("Aborting...\n"); // Not VL_PRINTF_MT, already on main thread
Verilated::flushCall(); // Second flush in case VL_PRINTF does something needing a flush
abort();
}
#endif
//===========================================================================
// Wrapper to call certain functions via messages when multithreaded
void VL_FINISH_MT(const char* filename, int linenum, const char* hier) VL_MT_SAFE {
#ifdef VL_THREADED
VerilatedThreadMsgQueue::post(VerilatedMsg([=](){
vl_finish(filename, linenum, hier);
}));
#else
vl_finish(filename, linenum, hier);
#endif
}
void VL_STOP_MT(const char* filename, int linenum, const char* hier) VL_MT_SAFE {
#ifdef VL_THREADED
VerilatedThreadMsgQueue::post(VerilatedMsg([=](){
vl_stop(filename, linenum, hier);
}));
#else
vl_stop(filename, linenum, hier);
#endif
}
void VL_FATAL_MT(const char* filename, int linenum, const char* hier, const char* msg) VL_MT_SAFE {
#ifdef VL_THREADED
VerilatedThreadMsgQueue::post(VerilatedMsg([=](){
vl_fatal(filename, linenum, hier, msg);
}));
#else
vl_fatal(filename, linenum, hier, msg);
#endif
}
//===========================================================================
// Debug prints
/// sprintf but return as string (this isn't fast, for print messages only)
std::string _vl_string_vprintf(const char* formatp, va_list ap) VL_MT_SAFE {
va_list aq;
va_copy(aq, ap);
int len = VL_VSNPRINTF(NULL, 0, formatp, aq);
va_end(aq);
if (VL_UNLIKELY(len < 1)) {
return "";
}
char* bufp = new char[len+1];
VL_VSNPRINTF(bufp, len+1, formatp, ap);
std::string out = std::string(bufp, len);
delete[] bufp;
return out;
}
vluint64_t _vl_dbg_sequence_number() VL_MT_SAFE {
#ifdef VL_THREADED
static std::atomic<vluint64_t> sequence;
#else
static vluint64_t sequence = 0;
#endif
return ++sequence;
}
vluint32_t VL_THREAD_ID() VL_MT_SAFE {
#ifdef VL_THREADED
// Alternative is to use std::this_thread::get_id, but that returns a hard-to-read number and is very slow
static std::atomic<vluint32_t> s_nextId (0);
static VL_THREAD_LOCAL vluint32_t t_myId = ++s_nextId;
return t_myId;
#else
return 0;
#endif
}
void VL_DBG_MSGF(const char* formatp, ...) VL_MT_SAFE {
// We're still using c printf formats instead of operator<< so we can avoid the heavy
// includes that otherwise would be required in every Verilated module
va_list ap;
va_start(ap, formatp);
std::string out = _vl_string_vprintf(formatp, ap);
va_end(ap);
// printf("-imm-V{t%d,%" VL_PRI64 "d}%s", VL_THREAD_ID(), _vl_dbg_sequence_number(), out.c_str());
// Using VL_PRINTF not VL_PRINTF_MT so that we can call VL_DBG_MSGF
// from within the guts of the thread execution machinery (and it goes
// to the screen and not into the queues we're debugging)
VL_PRINTF("-V{t%d,%" VL_PRI64 "u}%s", VL_THREAD_ID(), _vl_dbg_sequence_number(), out.c_str());
}
#ifdef VL_THREADED
void VL_PRINTF_MT(const char* formatp, ...) VL_MT_SAFE {
va_list ap;
va_start(ap, formatp);
std::string out = _vl_string_vprintf(formatp, ap);
va_end(ap);
VerilatedThreadMsgQueue::post(VerilatedMsg([=](){
VL_PRINTF("%s", out.c_str());
}));
}
#endif
//===========================================================================
// Overall class init
Verilated::Serialized::Serialized() {
s_randReset = 0;
s_debug = 0;
s_calcUnusedSigs = false;
s_gotFinish = false;
s_assertOn = true;
s_fatalOnVpiError = true; // retains old default behaviour
}
Verilated::NonSerialized::NonSerialized() {
s_profThreadsStart = 1;
s_profThreadsWindow = 2;
s_profThreadsFilenamep = strdup("profile_threads.dat");
}
Verilated::NonSerialized::~NonSerialized() {
if (s_profThreadsFilenamep) {
free(const_cast<char*>(s_profThreadsFilenamep)); s_profThreadsFilenamep=NULL;
}
}
//===========================================================================
// Random -- Mostly called at init time, so not inline.
static vluint32_t vl_sys_rand32() VL_MT_UNSAFE {
// Return random 32-bits using system library.
// Used only to construct seed for Verilator's PNRG.
#if defined(_WIN32) && !defined(__CYGWIN__)
// Windows doesn't have lrand48(), although Cygwin does.
return (rand()<<16) ^ rand();
#else
return (lrand48()<<16) ^ lrand48();
#endif
}
vluint64_t vl_rand64() VL_MT_SAFE {
static VerilatedMutex s_mutex;
static VL_THREAD_LOCAL bool t_seeded = false;
static VL_THREAD_LOCAL vluint64_t t_state[2];
if (VL_UNLIKELY(!t_seeded)) {
t_seeded = true;
{
VerilatedLockGuard lock(s_mutex);
t_state[0] = ((static_cast<vluint64_t>(vl_sys_rand32()) << 32)
^ (static_cast<vluint64_t>(vl_sys_rand32())));
t_state[1] = ((static_cast<vluint64_t>(vl_sys_rand32()) << 32)
^ (static_cast<vluint64_t>(vl_sys_rand32())));
// Fix state as algorithm is slow to randomize if many zeros
// This causes a loss of ~ 1 bit of seed entropy, no big deal
if (VL_COUNTONES_I(t_state[0]) < 10) t_state[0] = ~t_state[0];
if (VL_COUNTONES_I(t_state[1]) < 10) t_state[1] = ~t_state[1];
}
}
// Xoroshiro128+ algorithm
vluint64_t result = t_state[0] + t_state[1];
t_state[1] ^= t_state[0];
t_state[0] = (((t_state[0] << 55) | (t_state[0] >> 9))
^ t_state[1] ^ (t_state[1] << 14));
t_state[1] = (t_state[1] << 36) | (t_state[1] >> 28);
return result;
}
IData VL_RANDOM_I(int obits) VL_MT_SAFE {
return vl_rand64() & VL_MASK_I(obits);
}
QData VL_RANDOM_Q(int obits) VL_MT_SAFE {
return vl_rand64() & VL_MASK_Q(obits);
}
WDataOutP VL_RANDOM_W(int obits, WDataOutP outwp) VL_MT_SAFE {
for (int i=0; i<VL_WORDS_I(obits); ++i) {
if (i<(VL_WORDS_I(obits)-1)) {
outwp[i] = vl_rand64();
} else {
outwp[i] = vl_rand64() & VL_MASK_I(obits);
}
}
return outwp;
}
IData VL_RAND_RESET_I(int obits) VL_MT_SAFE {
if (Verilated::randReset()==0) return 0;
IData data = ~0;
if (Verilated::randReset()!=1) { // if 2, randomize
data = VL_RANDOM_I(obits);
}
if (obits<32) data &= VL_MASK_I(obits);
return data;
}
QData VL_RAND_RESET_Q(int obits) VL_MT_SAFE {
if (Verilated::randReset()==0) return 0;
QData data = VL_ULL(~0);
if (Verilated::randReset()!=1) { // if 2, randomize
data = VL_RANDOM_Q(obits);
}
if (obits<64) data &= VL_MASK_Q(obits);
return data;
}
WDataOutP VL_RAND_RESET_W(int obits, WDataOutP outwp) VL_MT_SAFE {
for (int i=0; i<VL_WORDS_I(obits); ++i) {
if (i<(VL_WORDS_I(obits)-1)) {
outwp[i] = VL_RAND_RESET_I(32);
} else {
outwp[i] = VL_RAND_RESET_I(32) & VL_MASK_I(obits);
}
}
return outwp;
}
WDataOutP VL_ZERO_RESET_W(int obits, WDataOutP outwp) VL_MT_SAFE {
for (int i=0; i<VL_WORDS_I(obits); ++i) outwp[i] = 0;
return outwp;
}
//===========================================================================
// Debug
void _VL_DEBUG_PRINT_W(int lbits, WDataInP iwp) VL_MT_SAFE {
VL_PRINTF_MT(" Data: w%d: ", lbits);
for (int i=VL_WORDS_I(lbits)-1; i>=0; --i) { VL_PRINTF_MT("%08x ",iwp[i]); }
VL_PRINTF_MT("\n");
}
//===========================================================================
// Slow math
WDataOutP _vl_moddiv_w(int lbits, WDataOutP owp, WDataInP lwp, WDataInP rwp, bool is_modulus) VL_MT_SAFE {
// See Knuth Algorithm D. Computes u/v = q.r
// This isn't massively tuned, as wide division is rare
// for debug see V3Number version
// Requires clean input
int words = VL_WORDS_I(lbits);
for (int i=0; i<words; ++i) owp[i]=0;
// Find MSB and check for zero.
int umsbp1 = VL_MOSTSETBITP1_W(words,lwp); // dividend
int vmsbp1 = VL_MOSTSETBITP1_W(words,rwp); // divisor
if (VL_UNLIKELY(vmsbp1==0) // rwp==0 so division by zero. Return 0.
|| VL_UNLIKELY(umsbp1==0)) { // 0/x so short circuit and return 0
return owp;
}
int uw = VL_WORDS_I(umsbp1); // aka "m" in the algorithm
int vw = VL_WORDS_I(vmsbp1); // aka "n" in the algorithm
if (vw == 1) { // Single divisor word breaks rest of algorithm
vluint64_t k = 0;
for (int j = uw-1; j >= 0; --j) {
vluint64_t unw64 = ((k<<VL_ULL(32)) + static_cast<vluint64_t>(lwp[j]));
owp[j] = unw64 / static_cast<vluint64_t>(rwp[0]);
k = unw64 - static_cast<vluint64_t>(owp[j])*static_cast<vluint64_t>(rwp[0]);
}
if (is_modulus) {
owp[0] = k;
for (int i=1; i<words; ++i) owp[i]=0;
}
return owp;
}
// +1 word as we may shift during normalization
vluint32_t un[VL_MULS_MAX_WORDS+1]; // Fixed size, as MSVC++ doesn't allow [words] here
vluint32_t vn[VL_MULS_MAX_WORDS+1]; // v normalized
// Zero for ease of debugging and to save having to zero for shifts
// Note +1 as loop will use extra word
for (int i=0; i<words+1; ++i) { un[i]=vn[i]=0; }
// Algorithm requires divisor MSB to be set
// Copy and shift to normalize divisor so MSB of vn[vw-1] is set
int s = 31-VL_BITBIT_I(vmsbp1-1); // shift amount (0...31)
vluint32_t shift_mask = s ? 0xffffffff : 0; // otherwise >> 32 won't mask the value
for (int i = vw-1; i>0; --i) {
vn[i] = (rwp[i] << s) | (shift_mask & (rwp[i-1] >> (32-s)));
}
vn[0] = rwp[0] << s;
// Copy and shift dividend by same amount; may set new upper word
if (s) un[uw] = lwp[uw-1] >> (32-s);
else un[uw] = 0;
for (int i=uw-1; i>0; --i) {
un[i] = (lwp[i] << s) | (shift_mask & (lwp[i-1] >> (32-s)));
}
un[0] = lwp[0] << s;
// Main loop
for (int j = uw - vw; j >= 0; --j) {
// Estimate
vluint64_t unw64 = (static_cast<vluint64_t>(un[j+vw])<<VL_ULL(32) | static_cast<vluint64_t>(un[j+vw-1]));
vluint64_t qhat = unw64 / static_cast<vluint64_t>(vn[vw-1]);
vluint64_t rhat = unw64 - qhat*static_cast<vluint64_t>(vn[vw-1]);
again:
if (qhat >= VL_ULL(0x100000000)
|| ((qhat*vn[vw-2]) > ((rhat<<VL_ULL(32)) + un[j+vw-2]))) {
qhat = qhat - 1;
rhat = rhat + vn[vw-1];
if (rhat < VL_ULL(0x100000000)) goto again;
}
vlsint64_t t = 0; // Must be signed
vluint64_t k = 0;
for (int i=0; i<vw; ++i) {
vluint64_t p = qhat*vn[i]; // Multiply by estimate
t = un[i+j] - k - (p & VL_ULL(0xFFFFFFFF)); // Subtract
un[i+j] = t;
k = (p >> VL_ULL(32)) - (t >> VL_ULL(32));
}
t = un[j+vw] - k;
un[j+vw] = t;
owp[j] = qhat; // Save quotient digit
if (t < 0) {
// Over subtracted; correct by adding back
owp[j]--;
k = 0;
for (int i=0; i<vw; ++i) {
t = static_cast<vluint64_t>(un[i+j]) + static_cast<vluint64_t>(vn[i]) + k;
un[i+j] = t;
k = t >> VL_ULL(32);
}
un[j+vw] = un[j+vw] + k;
}
}
if (is_modulus) { // modulus
// Need to reverse normalization on copy to output
for (int i=0; i<vw; ++i) {
owp[i] = (un[i] >> s) | (shift_mask & (un[i+1] << (32-s)));
}
for (int i=vw; i<words; ++i) owp[i] = 0;
return owp;
} else { // division
return owp;
}
}
WDataOutP VL_POW_WWW(int obits, int, int rbits, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
// obits==lbits, rbits can be different
owp[0] = 1;
for (int i=1; i < VL_WORDS_I(obits); i++) owp[i] = 0;
// cppcheck-suppress variableScope
WData powstore[VL_MULS_MAX_WORDS]; // Fixed size, as MSVC++ doesn't allow [words] here
WData lastpowstore[VL_MULS_MAX_WORDS]; // Fixed size, as MSVC++ doesn't allow [words] here
WData lastoutstore[VL_MULS_MAX_WORDS]; // Fixed size, as MSVC++ doesn't allow [words] here
// cppcheck-suppress variableScope
VL_ASSIGN_W(obits, powstore, lwp);
for (int bit=0; bit<rbits; bit++) {
if (bit>0) { // power = power*power
VL_ASSIGN_W(obits, lastpowstore, powstore);
VL_MUL_W(VL_WORDS_I(obits), powstore, lastpowstore, lastpowstore);
}
if (VL_BITISSET_W(rwp,bit)) { // out *= power
VL_ASSIGN_W(obits, lastoutstore, owp);
VL_MUL_W(VL_WORDS_I(obits), owp, lastoutstore, powstore);
}
}
return owp;
}
WDataOutP VL_POW_WWQ(int obits, int lbits, int rbits, WDataOutP owp, WDataInP lwp, QData rhs) VL_MT_SAFE {
WData rhsw[2]; VL_SET_WQ(rhsw, rhs);
return VL_POW_WWW(obits,lbits,rbits,owp,lwp,rhsw);
}
QData VL_POW_QQW(int, int, int rbits, QData lhs, WDataInP rwp) VL_MT_SAFE {
// Skip check for rhs == 0, as short-circuit doesn't save time
if (VL_UNLIKELY(lhs==0)) return 0;
QData power = lhs;
QData out = VL_ULL(1);
for (int bit=0; bit<rbits; ++bit) {
if (bit>0) power = power*power;
if (VL_BITISSET_W(rwp,bit)) out *= power;
}
return out;
}
WDataOutP VL_POWSS_WWW(int obits, int, int rbits, WDataOutP owp, WDataInP lwp, WDataInP rwp,
bool lsign, bool rsign) VL_MT_SAFE {
// obits==lbits, rbits can be different
if (rsign && VL_SIGN_W(rbits, rwp)) {
int words = VL_WORDS_I(obits);
VL_ZERO_W(obits, owp);
IData lor = 0; // 0=all zeros, ~0=all ones, else mix
for (int i=1; i < (words-1); ++i) {
lor |= lwp[i];
}
lor |= ( (lwp[words-1] == VL_MASK_I(rbits)) ? ~VL_UL(0) : 0);
if (lor==0 && lwp[0]==0) { return owp; } // "X" so return 0
else if (lor==0 && lwp[0]==1) { owp[0] = 1; return owp; } // 1
else if (lsign && lor == ~VL_UL(0) && lwp[0]==~VL_UL(0)) { // -1
if (rwp[0] & 1) { return VL_ALLONES_W(obits, owp); } // -1^odd=-1
else { owp[0] = 1; return owp; } // -1^even=1
}
return 0;
}
return VL_POW_WWW(obits, rbits, rbits, owp, lwp, rwp);
}
WDataOutP VL_POWSS_WWQ(int obits, int lbits, int rbits,
WDataOutP owp, WDataInP lwp, QData rhs,
bool lsign, bool rsign) VL_MT_SAFE {
WData rhsw[2]; VL_SET_WQ(rhsw, rhs);
return VL_POWSS_WWW(obits,lbits,rbits,owp,lwp,rhsw,lsign,rsign);
}
QData VL_POWSS_QQW(int obits, int, int rbits, QData lhs, WDataInP rwp, bool lsign, bool rsign) VL_MT_SAFE {
// Skip check for rhs == 0, as short-circuit doesn't save time
if (rsign && VL_SIGN_W(rbits, rwp)) {
if (lhs==0) return 0; // "X"
else if (lhs==1) return 1;
else if (lsign && lhs==VL_MASK_I(obits)) { // -1
if (rwp[0] & 1) return VL_MASK_I(obits); // -1^odd=-1
else return 1; // -1^even=1
}
return 0;
}
return VL_POW_QQW(obits, rbits, rbits, lhs, rwp);
}
//===========================================================================
// Formatting
/// Output a string representation of a wide number
std::string VL_DECIMAL_NW(int width, WDataInP lwp) VL_MT_SAFE {
int maxdecwidth = (width+3)*4/3;
// Or (maxdecwidth+7)/8], but can't have more than 4 BCD bits per word
WData bcd[VL_VALUE_STRING_MAX_WIDTH/4+2];
VL_ZERO_RESET_W(maxdecwidth, bcd);
WData tmp[VL_VALUE_STRING_MAX_WIDTH/4+2];
WData tmp2[VL_VALUE_STRING_MAX_WIDTH/4+2];
int from_bit = width-1;
// Skip all leading zeros
for (; from_bit >= 0 && !(VL_BITRSHIFT_W(lwp, from_bit) & 1); --from_bit);
// Double-dabble algorithm
for (; from_bit >= 0; --from_bit) {
// Any digits >= 5 need an add 3 (via tmp)
for (int nibble_bit = 0; nibble_bit < maxdecwidth; nibble_bit+=4) {
if ((VL_BITRSHIFT_W(bcd, nibble_bit) & 0xf) >= 5) {
VL_ZERO_RESET_W(maxdecwidth, tmp2);
tmp2[VL_BITWORD_I(nibble_bit)] |= 0x3 << VL_BITBIT_I(nibble_bit);
VL_ASSIGN_W(maxdecwidth, tmp, bcd);
VL_ADD_W(VL_WORDS_I(maxdecwidth), bcd, tmp, tmp2);
}
}
// Shift; bcd = bcd << 1
VL_ASSIGN_W(maxdecwidth, tmp, bcd);
VL_SHIFTL_WWI(maxdecwidth, maxdecwidth, 32, bcd, tmp, 1);
// bcd[0] = lwp[from_bit]
if (VL_BITISSET_W(lwp, from_bit)) bcd[0] |= 1;
}
std::string output;
int lsb = (maxdecwidth-1) & ~3;
for (; lsb>0; lsb-=4) { // Skip leading zeros
if (VL_BITRSHIFT_W(bcd, lsb) & 0xf) break;
}
for (; lsb>=0; lsb-=4) {
output += ('0' + (VL_BITRSHIFT_W(bcd, lsb) & 0xf)); // 0..9
}
return output;
}
// Do a va_arg returning a quad, assuming input argument is anything less than wide
#define _VL_VA_ARG_Q(ap, bits) (((bits) <= VL_WORDSIZE) ? va_arg(ap,IData) : va_arg(ap,QData))
void _vl_vsformat(std::string& output, const char* formatp, va_list ap) VL_MT_SAFE {
// Format a Verilog $write style format into the output list
// The format must be pre-processed (and lower cased) by Verilator
// Arguments are in "width, arg-value (or WDataIn* if wide)" form
//
// Note uses a single buffer internally; presumes only one usage per printf
// Note also assumes variables < 64 are not wide, this assumption is
// sometimes not true in low-level routines written here in verilated.cpp
static VL_THREAD_LOCAL char tmp[VL_VALUE_STRING_MAX_WIDTH];
static VL_THREAD_LOCAL char tmpf[VL_VALUE_STRING_MAX_WIDTH];
const char* pctp = NULL; // Most recent %##.##g format
bool inPct = false;
bool widthSet = false;
int width = 0;
for (const char* pos = formatp; *pos; ++pos) {
if (!inPct && pos[0]=='%') {
pctp = pos;
inPct = true;
widthSet = false;
width = 0;
} else if (!inPct) { // Normal text
// Fast-forward to next escape and add to output
const char *ep = pos;
while (ep[0] && ep[0]!='%') ep++;
if (ep != pos) {
output.append(pos, ep-pos);
pos += ep-pos-1;
}
} else { // Format character
inPct = false;
char fmt = pos[0];
switch (fmt) {
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
inPct = true; // Get more digits
widthSet = true;
width = width*10 + (fmt - '0');
break;
case '.':
inPct = true; // Get more digits
break;
case '%':
output += '%';
break;
case 'N': { // "C" string with name of module, add . if needed
const char* cstrp = va_arg(ap, const char*);
if (VL_LIKELY(*cstrp)) { output += cstrp; output += '.'; }
break;
}
case 'S': { // "C" string
const char* cstrp = va_arg(ap, const char*);
output += cstrp;
break;
}
case '@': { // Verilog/C++ string
va_arg(ap, int); // # bits is ignored
const std::string* cstrp = va_arg(ap, const std::string*);
output += *cstrp;
break;
}
case 'e':
case 'f':
case 'g': {
const int lbits = va_arg(ap, int);
double d = va_arg(ap, double);
if (lbits) {} // UNUSED - always 64
strncpy(tmpf, pctp, pos-pctp+1);
tmpf[pos-pctp+1] = '\0';
sprintf(tmp, tmpf, d);
output += tmp;
break;
}
default: {
// Deal with all read-and-print somethings
const int lbits = va_arg(ap, int);
QData ld = 0;
WData qlwp[2];
WDataInP lwp;
if (lbits <= VL_QUADSIZE) {
ld = _VL_VA_ARG_Q(ap, lbits);
VL_SET_WQ(qlwp,ld);
lwp = qlwp;
} else {
lwp = va_arg(ap,WDataInP);
ld = lwp[0];
}
int lsb=lbits-1;
if (widthSet && width==0) while (lsb && !VL_BITISSET_W(lwp,lsb)) --lsb;
switch (fmt) {
case 'c': {
IData charval = ld & 0xff;
output += charval;
break;
}
case 's':
for (; lsb>=0; --lsb) {
lsb = (lsb / 8) * 8; // Next digit
IData charval = VL_BITRSHIFT_W(lwp, lsb) & 0xff;
output += (charval==0)?' ':charval;
}
break;
case 'd': { // Signed decimal
int digits;
std::string append;
if (lbits <= VL_QUADSIZE) {
digits = sprintf(tmp,"%" VL_PRI64 "d",
static_cast<vlsint64_t>(VL_EXTENDS_QQ(lbits,lbits,ld)));
append = tmp;
} else {
if (VL_SIGN_I(lbits, lwp[VL_WORDS_I(lbits)-1])) {
WData neg[VL_VALUE_STRING_MAX_WIDTH/4+2];
VL_NEGATE_W(VL_WORDS_I(lbits), neg, lwp);
append = std::string("-") + VL_DECIMAL_NW(lbits, neg);
} else {
append = VL_DECIMAL_NW(lbits, lwp);
}
digits = append.length();
}
int needmore = width-digits;
if (needmore>0) {
if (pctp && pctp[0] && pctp[1]=='0') { //%0
output.append(needmore,'0'); // Pre-pad zero
} else {
output.append(needmore,' '); // Pre-pad spaces
}
}
output += append;
break;
}
case '#': { // Unsigned decimal
int digits;
std::string append;
if (lbits <= VL_QUADSIZE) {
digits = sprintf(tmp,"%" VL_PRI64 "u",ld);
append = tmp;
} else {
append = VL_DECIMAL_NW(lbits, lwp);
digits = append.length();
}
int needmore = width-digits;
if (needmore>0) {
if (pctp && pctp[0] && pctp[1]=='0') { //%0
output.append(needmore,'0'); // Pre-pad zero
} else {
output.append(needmore,' '); // Pre-pad spaces
}
}
output += append;
break;
}
case 't': { // Time
int digits;
if (VL_TIME_MULTIPLIER==1) {
digits=sprintf(tmp,"%" VL_PRI64 "u",ld);
} else if (VL_TIME_MULTIPLIER==1000) {
digits=sprintf(tmp,"%" VL_PRI64 "u.%03" VL_PRI64 "u",
static_cast<QData>(ld/VL_TIME_MULTIPLIER),
static_cast<QData>(ld%VL_TIME_MULTIPLIER));
} else {
VL_FATAL_MT(__FILE__,__LINE__,"","Unsupported VL_TIME_MULTIPLIER");
}
int needmore = width-digits;
if (needmore>0) output.append(needmore,' '); // Pre-pad spaces
output += tmp;
break;
}
case 'b':
for (; lsb>=0; --lsb) {
output += (VL_BITRSHIFT_W(lwp, lsb) & 1) + '0';
}
break;
case 'o':
for (; lsb>=0; --lsb) {
lsb = (lsb / 3) * 3; // Next digit
// Octal numbers may span more than one wide word,
// so we need to grab each bit separately and check for overrun
// Octal is rare, so we'll do it a slow simple way
output += ('0'
+ ((VL_BITISSETLIMIT_W(lwp, lbits, lsb+0)) ? 1 : 0)
+ ((VL_BITISSETLIMIT_W(lwp, lbits, lsb+1)) ? 2 : 0)
+ ((VL_BITISSETLIMIT_W(lwp, lbits, lsb+2)) ? 4 : 0));
}
break;
case 'u': // Packed 2-state
output.reserve(output.size() + 4*VL_WORDS_I(lbits));
for (int i=0; i<VL_WORDS_I(lbits); ++i) {
output += static_cast<char>((lwp[i] ) & 0xff);
output += static_cast<char>((lwp[i] >> 8) & 0xff);
output += static_cast<char>((lwp[i] >> 16) & 0xff);
output += static_cast<char>((lwp[i] >> 24) & 0xff);
}
break;
case 'z': // Packed 4-state
output.reserve(output.size() + 8*VL_WORDS_I(lbits));
for (int i=0; i<VL_WORDS_I(lbits); ++i) {
output += static_cast<char>((lwp[i] ) & 0xff);
output += static_cast<char>((lwp[i] >> 8) & 0xff);
output += static_cast<char>((lwp[i] >> 16) & 0xff);
output += static_cast<char>((lwp[i] >> 24) & 0xff);
output += "\0\0\0\0"; // No tristate
}
break;
case 'v': // Strength; assume always strong
for (lsb=lbits-1; lsb>=0; --lsb) {
if (VL_BITRSHIFT_W(lwp, lsb) & 1) output += "St1 ";
else output += "St0 ";
}
break;
case 'x':
for (; lsb>=0; --lsb) {
lsb = (lsb / 4) * 4; // Next digit
IData charval = VL_BITRSHIFT_W(lwp, lsb) & 0xf;
output += "0123456789abcdef"[charval];
}
break;
default:
std::string msg = std::string("Unknown _vl_vsformat code: ")+pos[0];
VL_FATAL_MT(__FILE__,__LINE__,"",msg.c_str());
break;
} // switch
}
} // switch
}
}
}
static inline bool _vl_vsss_eof(FILE* fp, int& floc) VL_MT_SAFE {
if (fp) return feof(fp) ? 1 : 0; // 1:0 to prevent MSVC++ warning
else return (floc<0);
}
static inline void _vl_vsss_advance(FILE* fp, int& floc) VL_MT_SAFE {
if (fp) fgetc(fp);
else floc -= 8;
}
static inline int _vl_vsss_peek(FILE* fp, int& floc, WDataInP fromp, const std::string& fstr) VL_MT_SAFE {
// Get a character without advancing
if (fp) {
int data = fgetc(fp);
if (data == EOF) return EOF;
ungetc(data,fp);
return data;
} else {
if (floc < 0) return EOF;
floc = floc & ~7; // Align to closest character
if (fromp == NULL) {
return fstr[fstr.length()-1 - (floc>>3)];
} else {
return VL_BITRSHIFT_W(fromp, floc) & 0xff;
}
}
}
static inline void _vl_vsss_skipspace(FILE* fp, int& floc, WDataInP fromp, const std::string& fstr) VL_MT_SAFE {
while (1) {
int c = _vl_vsss_peek(fp, floc, fromp, fstr);
if (c==EOF || !isspace(c)) return;
_vl_vsss_advance(fp, floc);
}
}
static inline void _vl_vsss_read(FILE* fp, int& floc, WDataInP fromp, const std::string& fstr,
char* tmpp, const char* acceptp) VL_MT_SAFE {
// Read into tmp, consisting of characters from acceptp list
char* cp = tmpp;
while (1) {
int c = _vl_vsss_peek(fp, floc, fromp, fstr);
if (c==EOF || isspace(c)) break;
if (acceptp!=NULL // String - allow anything
&& NULL==strchr(acceptp, c)) break;
if (acceptp!=NULL) c = tolower(c); // Non-strings we'll simplify
*cp++ = c;
_vl_vsss_advance(fp, floc);
}
*cp++ = '\0';
//VL_DBG_MSGF(" _read got='"<<tmpp<<"'\n");
}
static inline void _vl_vsss_setbit(WDataOutP owp, int obits, int lsb, int nbits, IData ld) VL_MT_SAFE {
for (; nbits && lsb<obits; nbits--, lsb++, ld>>=1) {
VL_ASSIGNBIT_WI(0, lsb, owp, ld & 1);
}
}
static inline void _vl_vsss_based(WDataOutP owp, int obits, int baseLog2,
const char* strp, size_t posstart, size_t posend) VL_MT_SAFE {
// Read in base "2^^baseLog2" digits from strp[posstart..posend-1] into owp of size obits.
int lsb = 0;
for (int i=0, pos=static_cast<int>(posend)-1; i<obits && pos>=static_cast<int>(posstart); --pos) {
switch (tolower (strp[pos])) {
case 'x': case 'z': case '?': //FALLTHRU
case '0': lsb += baseLog2; break;
case '1': _vl_vsss_setbit(owp,obits,lsb, baseLog2, 1); lsb+=baseLog2; break;
case '2': _vl_vsss_setbit(owp,obits,lsb, baseLog2, 2); lsb+=baseLog2; break;
case '3': _vl_vsss_setbit(owp,obits,lsb, baseLog2, 3); lsb+=baseLog2; break;
case '4': _vl_vsss_setbit(owp,obits,lsb, baseLog2, 4); lsb+=baseLog2; break;
case '5': _vl_vsss_setbit(owp,obits,lsb, baseLog2, 5); lsb+=baseLog2; break;
case '6': _vl_vsss_setbit(owp,obits,lsb, baseLog2, 6); lsb+=baseLog2; break;
case '7': _vl_vsss_setbit(owp,obits,lsb, baseLog2, 7); lsb+=baseLog2; break;
case '8': _vl_vsss_setbit(owp,obits,lsb, baseLog2, 8); lsb+=baseLog2; break;
case '9': _vl_vsss_setbit(owp,obits,lsb, baseLog2, 9); lsb+=baseLog2; break;
case 'a': _vl_vsss_setbit(owp,obits,lsb, baseLog2, 10); lsb+=baseLog2; break;
case 'b': _vl_vsss_setbit(owp,obits,lsb, baseLog2, 11); lsb+=baseLog2; break;
case 'c': _vl_vsss_setbit(owp,obits,lsb, baseLog2, 12); lsb+=baseLog2; break;
case 'd': _vl_vsss_setbit(owp,obits,lsb, baseLog2, 13); lsb+=baseLog2; break;
case 'e': _vl_vsss_setbit(owp,obits,lsb, baseLog2, 14); lsb+=baseLog2; break;
case 'f': _vl_vsss_setbit(owp,obits,lsb, baseLog2, 15); lsb+=baseLog2; break;
case '_': break;
}
}
}
IData _vl_vsscanf(FILE* fp, // If a fscanf
int fbits, WDataInP fromp, // Else if a sscanf
const std::string& fstr, // if a sscanf to string
const char* formatp, va_list ap) VL_MT_SAFE {
// Read a Verilog $sscanf/$fscanf style format into the output list
// The format must be pre-processed (and lower cased) by Verilator
// Arguments are in "width, arg-value (or WDataIn* if wide)" form
static VL_THREAD_LOCAL char tmp[VL_VALUE_STRING_MAX_WIDTH];
int floc = fbits - 1;
IData got = 0;
bool inPct = false;
const char* pos = formatp;
for (; *pos && !_vl_vsss_eof(fp,floc); ++pos) {
//VL_DBG_MSGF("_vlscan fmt='"<<pos[0]<<"' floc="<<floc<<" file='"<<_vl_vsss_peek(fp,floc,fromp,fstr)<<"'"<<endl);
if (!inPct && pos[0]=='%') {
inPct = true;
} else if (!inPct && isspace(pos[0])) { // Format spaces
while (isspace(pos[1])) pos++;
_vl_vsss_skipspace(fp,floc,fromp,fstr);
} else if (!inPct) { // Expected Format
_vl_vsss_skipspace(fp,floc,fromp,fstr);
int c = _vl_vsss_peek(fp,floc,fromp,fstr);
if (c != pos[0]) goto done;
else _vl_vsss_advance(fp,floc);
} else { // Format character
// Skip loading spaces
inPct = false;
char fmt = pos[0];
switch (fmt) {
case '%': {
int c = _vl_vsss_peek(fp,floc,fromp,fstr);
if (c != '%') goto done;
else _vl_vsss_advance(fp,floc);
break;
}
default: {
// Deal with all read-and-scan somethings
// Note LSBs are preserved if there's an overflow
const int obits = va_arg(ap, int);
WData qowp[2] = {0, 0};
WDataOutP owp = qowp;
if (obits > VL_QUADSIZE) {
owp = va_arg(ap,WDataOutP);
}
for (int i=0; i<VL_WORDS_I(obits); ++i) owp[i] = 0;
switch (fmt) {
case 'c': {
int c = _vl_vsss_peek(fp,floc,fromp,fstr);
if (c==EOF) goto done;
else _vl_vsss_advance(fp,floc);
owp[0] = c;
break;
}
case 's': {
_vl_vsss_skipspace(fp,floc,fromp,fstr);
_vl_vsss_read(fp,floc,fromp,fstr, tmp, NULL);
if (!tmp[0]) goto done;
int lpos = (static_cast<int>(strlen(tmp)))-1;
int lsb = 0;
for (int i=0; i<obits && lpos>=0; --lpos) {
_vl_vsss_setbit(owp,obits,lsb, 8, tmp[lpos]); lsb+=8;
}
break;
}
case 'd': { // Signed decimal
_vl_vsss_skipspace(fp,floc,fromp,fstr);
_vl_vsss_read(fp,floc,fromp,fstr, tmp, "0123456789+-xXzZ?_");
if (!tmp[0]) goto done;
vlsint64_t ld;
sscanf(tmp,"%30" VL_PRI64 "d",&ld);
VL_SET_WQ(owp,ld);
break;
}
case 'f':
case 'e':
case 'g': { // Real number
_vl_vsss_skipspace(fp,floc,fromp,fstr);
_vl_vsss_read(fp,floc,fromp,fstr, tmp, "+-.0123456789eE");
if (!tmp[0]) goto done;
// cppcheck-suppress unusedStructMember // It's used
union { double r; vlsint64_t ld; } u;
u.r = strtod(tmp, NULL);
VL_SET_WQ(owp,u.ld);
break;
}
case 't': // FALLTHRU // Time
case '#': { // Unsigned decimal
_vl_vsss_skipspace(fp,floc,fromp,fstr);
_vl_vsss_read(fp,floc,fromp,fstr, tmp, "0123456789+-xXzZ?_");
if (!tmp[0]) goto done;
QData ld;
sscanf(tmp,"%30" VL_PRI64 "u",&ld);
VL_SET_WQ(owp,ld);
break;
}
case 'b': {
_vl_vsss_skipspace(fp,floc,fromp,fstr);
_vl_vsss_read(fp,floc,fromp,fstr, tmp, "01xXzZ?_");
if (!tmp[0]) goto done;
_vl_vsss_based(owp,obits, 1, tmp, 0, strlen(tmp));
break;
}
case 'o': {
_vl_vsss_skipspace(fp,floc,fromp,fstr);
_vl_vsss_read(fp,floc,fromp,fstr, tmp, "01234567xXzZ?_");
if (!tmp[0]) goto done;
_vl_vsss_based(owp,obits, 3, tmp, 0, strlen(tmp));
break;
}
case 'x': {
_vl_vsss_skipspace(fp,floc,fromp,fstr);
_vl_vsss_read(fp,floc,fromp,fstr, tmp, "0123456789abcdefABCDEFxXzZ?_");
if (!tmp[0]) goto done;
_vl_vsss_based(owp,obits, 4, tmp, 0, strlen(tmp));
break;
}
default:
std::string msg = std::string("Unknown _vl_vsscanf code: ")+pos[0];
VL_FATAL_MT(__FILE__,__LINE__,"",msg.c_str());
break;
} // switch
got++;
// Reload data if non-wide (if wide, we put it in the right place directly)
if (obits <= VL_BYTESIZE) {
CData* p = va_arg(ap,CData*); *p = owp[0];
} else if (obits <= VL_SHORTSIZE) {
SData* p = va_arg(ap,SData*); *p = owp[0];
} else if (obits <= VL_WORDSIZE) {
IData* p = va_arg(ap,IData*); *p = owp[0];
} else if (obits <= VL_QUADSIZE) {
QData* p = va_arg(ap,QData*); *p = VL_SET_QW(owp);
}
}
} // switch
}
}
done:
return got;
}
//===========================================================================
// File I/O
FILE* VL_CVT_I_FP(IData lhs) VL_MT_SAFE {
return VerilatedImp::fdToFp(lhs);
}
void _VL_VINT_TO_STRING(int obits, char* destoutp, WDataInP sourcep) VL_MT_SAFE {
// See also VL_DATA_TO_STRING_NW
int lsb=obits-1;
bool start=true;
char* destp = destoutp;
for (; lsb>=0; --lsb) {
lsb = (lsb / 8) * 8; // Next digit
IData charval = VL_BITRSHIFT_W(sourcep, lsb) & 0xff;
if (!start || charval) {
*destp++ = (charval==0)?' ':charval;
start = false; // Drop leading 0s
}
}
*destp = '\0'; // Terminate
// Drop trailing spaces
if (!start) while (isspace(*(destp-1)) && destp>destoutp) *--destp = '\0';
}
void _VL_STRING_TO_VINT(int obits, void* destp, size_t srclen, const char* srcp) VL_MT_SAFE {
// Convert C string to Verilog format
size_t bytes = VL_BYTES_I(obits);
char* op = reinterpret_cast<char*>(destp);
if (srclen > bytes) srclen = bytes; // Don't overflow destination
size_t i;
for (i=0; i<srclen; ++i) { *op++ = srcp[srclen-1-i]; }
for (; i<bytes; ++i) { *op++ = 0; }
}
IData VL_FGETS_IXI(int obits, void* destp, IData fpi) VL_MT_SAFE {
// While threadsafe, each thread can only access different file handles
FILE* fp = VL_CVT_I_FP(fpi);
if (VL_UNLIKELY(!fp)) return 0;
// The string needs to be padded with 0's in unused spaces in front of
// any read data. This means we can't know in what location the first
// character will finally live, so we need to copy. Yuk.
IData bytes = VL_BYTES_I(obits);
char buffer[VL_TO_STRING_MAX_WORDS*VL_WORDSIZE+1];
// V3Emit has static check that bytes < VL_TO_STRING_MAX_WORDS, but be safe
if (VL_UNLIKELY(bytes > VL_TO_STRING_MAX_WORDS*VL_WORDSIZE)) {
VL_FATAL_MT(__FILE__,__LINE__,"","Internal: fgets buffer overrun");
}
// We don't use fgets, as we must read \0s.
IData got = 0;
char* cp = buffer;
while (got < bytes) {
int c = getc(fp); // getc() is threadsafe
if (c==EOF) break;
*cp++ = c; got++;
if (c=='\n') break;
}
_VL_STRING_TO_VINT(obits, destp, got, buffer);
return got;
}
IData VL_FOPEN_NI(const std::string& filename, IData mode) VL_MT_SAFE {
// While threadsafe, each thread can only access different file handles
char modez[5];
_VL_VINT_TO_STRING(VL_WORDSIZE, modez, &mode);
return VL_FOPEN_S(filename.c_str(), modez);
}
IData VL_FOPEN_QI(QData filename, IData mode) VL_MT_SAFE {
// While threadsafe, each thread can only access different file handles
WData fnw[2]; VL_SET_WQ(fnw, filename);
return VL_FOPEN_WI(2, fnw, mode);
}
IData VL_FOPEN_WI(int fnwords, WDataInP filenamep, IData mode) VL_MT_SAFE {
// While threadsafe, each thread can only access different file handles
char filenamez[VL_TO_STRING_MAX_WORDS*VL_WORDSIZE+1];
_VL_VINT_TO_STRING(fnwords*VL_WORDSIZE, filenamez, filenamep);
char modez[5];
_VL_VINT_TO_STRING(VL_WORDSIZE, modez, &mode);
return VL_FOPEN_S(filenamez,modez);
}
IData VL_FOPEN_S(const char* filenamep, const char* modep) VL_MT_SAFE {
return VerilatedImp::fdNew(fopen(filenamep,modep));
}
void VL_FCLOSE_I(IData fdi) VL_MT_SAFE {
// While threadsafe, each thread can only access different file handles
FILE* fp = VL_CVT_I_FP(fdi);
if (VL_UNLIKELY(!fp)) return;
fclose(fp);
VerilatedImp::fdDelete(fdi);
}
void VL_SFORMAT_X(int obits, CData& destr, const char* formatp, ...) VL_MT_SAFE {
static VL_THREAD_LOCAL std::string output; // static only for speed
output = "";
va_list ap;
va_start(ap,formatp);
_vl_vsformat(output, formatp, ap);
va_end(ap);
_VL_STRING_TO_VINT(obits, &destr, output.length(), output.c_str());
}
void VL_SFORMAT_X(int obits, SData& destr, const char* formatp, ...) VL_MT_SAFE {
static VL_THREAD_LOCAL std::string output; // static only for speed
output = "";
va_list ap;
va_start(ap,formatp);
_vl_vsformat(output, formatp, ap);
va_end(ap);
_VL_STRING_TO_VINT(obits, &destr, output.length(), output.c_str());
}
void VL_SFORMAT_X(int obits, IData& destr, const char* formatp, ...) VL_MT_SAFE {
static VL_THREAD_LOCAL std::string output; // static only for speed
output = "";
va_list ap;
va_start(ap,formatp);
_vl_vsformat(output, formatp, ap);
va_end(ap);
_VL_STRING_TO_VINT(obits, &destr, output.length(), output.c_str());
}
void VL_SFORMAT_X(int obits, QData& destr, const char* formatp, ...) VL_MT_SAFE {
static VL_THREAD_LOCAL std::string output; // static only for speed
output = "";
va_list ap;
va_start(ap,formatp);
_vl_vsformat(output, formatp, ap);
va_end(ap);
_VL_STRING_TO_VINT(obits, &destr, output.length(), output.c_str());
}
void VL_SFORMAT_X(int obits, void* destp, const char* formatp, ...) VL_MT_SAFE {
static VL_THREAD_LOCAL std::string output; // static only for speed
output = "";
va_list ap;
va_start(ap,formatp);
_vl_vsformat(output, formatp, ap);
va_end(ap);
_VL_STRING_TO_VINT(obits, destp, output.length(), output.c_str());
}
void VL_SFORMAT_X(int obits_ignored, std::string &output, const char* formatp, ...) VL_MT_SAFE {
if (obits_ignored) {}
output = "";
va_list ap;
va_start(ap,formatp);
_vl_vsformat(output, formatp, ap);
va_end(ap);
}
std::string VL_SFORMATF_NX(const char* formatp, ...) VL_MT_SAFE {
static VL_THREAD_LOCAL std::string output; // static only for speed
output = "";
va_list ap;
va_start(ap,formatp);
_vl_vsformat(output, formatp, ap);
va_end(ap);
return output;
}
void VL_WRITEF(const char* formatp, ...) VL_MT_SAFE {
static VL_THREAD_LOCAL std::string output; // static only for speed
output = "";
va_list ap;
va_start(ap,formatp);
_vl_vsformat(output, formatp, ap);
va_end(ap);
VL_PRINTF_MT("%s", output.c_str());
}
void VL_FWRITEF(IData fpi, const char* formatp, ...) VL_MT_SAFE {
// While threadsafe, each thread can only access different file handles
static VL_THREAD_LOCAL std::string output; // static only for speed
output = "";
FILE* fp = VL_CVT_I_FP(fpi);
if (VL_UNLIKELY(!fp)) return;
va_list ap;
va_start(ap,formatp);
_vl_vsformat(output, formatp, ap);
va_end(ap);
fputs(output.c_str(), fp);
}
IData VL_FSCANF_IX(IData fpi, const char* formatp, ...) VL_MT_SAFE {
// While threadsafe, each thread can only access different file handles
FILE* fp = VL_CVT_I_FP(fpi);
if (VL_UNLIKELY(!fp)) return 0;
va_list ap;
va_start(ap,formatp);
IData got = _vl_vsscanf(fp, 0, NULL, "", formatp, ap);
va_end(ap);
return got;
}
IData VL_SSCANF_IIX(int lbits, IData ld, const char* formatp, ...) VL_MT_SAFE {
WData fnw[2]; VL_SET_WI(fnw, ld);
va_list ap;
va_start(ap,formatp);
IData got = _vl_vsscanf(NULL, lbits, fnw, "", formatp, ap);
va_end(ap);
return got;
}
IData VL_SSCANF_IQX(int lbits, QData ld, const char* formatp, ...) VL_MT_SAFE {
WData fnw[2]; VL_SET_WQ(fnw, ld);
va_list ap;
va_start(ap,formatp);
IData got = _vl_vsscanf(NULL, lbits, fnw, "", formatp, ap);
va_end(ap);
return got;
}
IData VL_SSCANF_IWX(int lbits, WDataInP lwp, const char* formatp, ...) VL_MT_SAFE {
va_list ap;
va_start(ap,formatp);
IData got = _vl_vsscanf(NULL, lbits, lwp, "", formatp, ap);
va_end(ap);
return got;
}
IData VL_SSCANF_INX(int, const std::string& ld, const char* formatp, ...) VL_MT_SAFE {
va_list ap;
va_start(ap,formatp);
IData got = _vl_vsscanf(NULL, ld.length()*8, NULL, ld, formatp, ap);
va_end(ap);
return got;
}
void VL_WRITEMEM_Q(bool hex, int width, int depth, int array_lsb, int,
QData filename, const void* memp, IData start,
IData end) VL_MT_SAFE {
WData fnw[2]; VL_SET_WQ(fnw, filename);
return VL_WRITEMEM_W(hex, width, depth, array_lsb,2, fnw, memp, start, end);
}
void VL_WRITEMEM_W(bool hex, int width, int depth, int array_lsb, int fnwords,
WDataInP filenamep, const void* memp, IData start,
IData end) VL_MT_SAFE {
char filenamez[VL_TO_STRING_MAX_WORDS*VL_WORDSIZE+1];
_VL_VINT_TO_STRING(fnwords*VL_WORDSIZE, filenamez, filenamep);
std::string filenames(filenamez);
return VL_WRITEMEM_N(hex, width, depth, array_lsb, filenames, memp, start, end);
}
const char* memhFormat(int nBits) {
assert((nBits >= 1) && (nBits <= 32));
static char buf[32];
switch ((nBits - 1) / 4) {
case 0: VL_SNPRINTF(buf, 32, "%%01x"); break;
case 1: VL_SNPRINTF(buf, 32, "%%02x"); break;
case 2: VL_SNPRINTF(buf, 32, "%%03x"); break;
case 3: VL_SNPRINTF(buf, 32, "%%04x"); break;
case 4: VL_SNPRINTF(buf, 32, "%%05x"); break;
case 5: VL_SNPRINTF(buf, 32, "%%06x"); break;
case 6: VL_SNPRINTF(buf, 32, "%%07x"); break;
case 7: VL_SNPRINTF(buf, 32, "%%08x"); break;
default: assert(false); break;
}
return buf;
}
void VL_WRITEMEM_N(
bool hex, // Hex format, else binary
int width, // Width of each array row
int depth, // Number of rows
int array_lsb, // Index of first row. Valid row addresses
// // range from array_lsb up to (array_lsb + depth - 1)
const std::string& filename, // Output file name
const void* memp, // Array state
IData start, // First array row address to write
IData end // Last address to write
) VL_MT_SAFE {
if (VL_UNLIKELY(!hex)) {
VL_FATAL_MT(filename.c_str(), 0, "",
"VL_WRITEMEM_N only supports hex format for now, sorry!");
return;
}
FILE* fp = fopen(filename.c_str(), "w");
if (VL_UNLIKELY(!fp)) {
VL_FATAL_MT(filename.c_str(), 0, "", "$writemem file not found");
return;
}
for (int row_addr = start; row_addr <= end; ++row_addr) {
if ((row_addr < array_lsb)
|| (row_addr > array_lsb + depth - 1)) {
vluint32_t endmax = ~0;
if (end != endmax) {
VL_FATAL_MT(filename.c_str(), 0, "",
"$writemem specified address out-of-bounds");
}
// else, it's not an error to overflow due to end == endmax,
// just return cleanly.
goto cleanup;
}
// Compute the offset into the memp array.
int row_offset = row_addr - array_lsb;
if (width <= 8) {
const CData* datap
= &(reinterpret_cast<const CData*>(memp))[row_offset];
fprintf(fp, memhFormat(width), VL_MASK_I(width) & *datap);
fprintf(fp, "\n");
} else if (width <= 16) {
const SData* datap
= &(reinterpret_cast<const SData*>(memp))[row_offset];
fprintf(fp, memhFormat(width), VL_MASK_I(width) & *datap);
fprintf(fp, "\n");
} else if (width <= 32) {
const IData* datap
= &(reinterpret_cast<const IData*>(memp))[row_offset];
fprintf(fp, memhFormat(width), VL_MASK_I(width) & *datap);
fprintf(fp, "\n");
} else if (width <= 64) {
const QData* datap
= &(reinterpret_cast<const QData*>(memp))[row_offset];
vluint64_t value = VL_MASK_Q(width) & *datap;
vluint32_t lo = value & 0xffffffff;
vluint32_t hi = value >> 32;
fprintf(fp, memhFormat(width - 32), hi);
fprintf(fp, "%08x\n", lo);
} else {
WDataInP memDatap = reinterpret_cast<WDataInP>(memp);
WDataInP datap = &memDatap[row_offset * VL_WORDS_I(width)];
// output as a sequence of VL_WORDSIZE'd words
// from MSB to LSB. Mask off the MSB word which could
// contain junk above the top of valid data.
int word_idx = ((width - 1) / VL_WORDSIZE);
bool first = true;
while (word_idx >= 0) {
IData data = datap[word_idx];
if (first) {
data &= VL_MASK_I(width);
int top_word_nbits = ((width - 1) & 0x1f) + 1;
fprintf(fp, memhFormat(top_word_nbits), data);
} else {
fprintf(fp, "%08x", data);
}
word_idx--;
first = false;
}
fprintf(fp, "\n");
}
}
cleanup:
fclose(fp);
}
void VL_READMEM_Q(bool hex, int width, int depth, int array_lsb, int,
QData filename, void* memp, IData start, IData end) VL_MT_SAFE {
WData fnw[2]; VL_SET_WQ(fnw, filename);
return VL_READMEM_W(hex, width, depth, array_lsb, 2, fnw, memp, start, end);
}
void VL_READMEM_W(bool hex, int width, int depth, int array_lsb, int fnwords,
WDataInP filenamep, void* memp, IData start, IData end) VL_MT_SAFE {
char filenamez[VL_TO_STRING_MAX_WORDS*VL_WORDSIZE+1];
_VL_VINT_TO_STRING(fnwords*VL_WORDSIZE, filenamez, filenamep);
std::string filenames(filenamez);
return VL_READMEM_N(hex, width, depth, array_lsb, filenames, memp, start, end);
}
void VL_READMEM_N(
bool hex, // Hex format, else binary
int width, // Width of each array row
int depth, // Number of rows
int array_lsb, // Index of first row. Valid row addresses
// // range from array_lsb up to (array_lsb + depth - 1)
const std::string& filename, // Input file name
void* memp, // Array state
IData start, // First array row address to read
IData end // Last row address to read
) VL_MT_SAFE {
FILE* fp = fopen(filename.c_str(), "r");
if (VL_UNLIKELY(!fp)) {
// We don't report the Verilog source filename as it slow to have to pass it down
VL_FATAL_MT(filename.c_str(), 0, "", "$readmem file not found");
return;
}
// Prep for reading
IData addr = start;
int linenum = 1;
bool innum = false;
bool ignore_to_eol = false;
bool ignore_to_cmt = false;
bool needinc = false;
bool reading_addr = false;
int lastc = ' ';
// Read the data
// We process a character at a time, as then we don't need to deal
// with changing buffer sizes dynamically, etc.
while (1) {
int c = fgetc(fp);
if (VL_UNLIKELY(c==EOF)) break;
//printf("%d: Got '%c' Addr%x IN%d IgE%d IgC%d ninc%d\n",
// linenum, c, addr, innum, ignore_to_eol, ignore_to_cmt, needinc);
if (c=='\n') { linenum++; ignore_to_eol=false; if (innum) reading_addr=false; innum=false; }
else if (c=='\t' || c==' ' || c=='\r' || c=='\f') { if (innum) reading_addr=false; innum=false; }
// Skip // comments and detect /* comments
else if (ignore_to_cmt && lastc=='*' && c=='/') {
ignore_to_cmt = false; if (innum) reading_addr=false; innum=false;
} else if (!ignore_to_eol && !ignore_to_cmt) {
if (lastc=='/' && c=='*') { ignore_to_cmt = true; }
else if (lastc=='/' && c=='/') { ignore_to_eol = true; }
else if (c=='/') {} // Part of /* or //
else if (c=='_') {}
else if (c=='@') { reading_addr = true; innum=false; needinc=false; }
// Check for hex or binary digits as file format requests
else if (isxdigit(c) || (!reading_addr && (c=='x' || c=='X'))) {
c = tolower(c);
int value = (c >= 'a' ? (c=='x' ? VL_RAND_RESET_I(4) : (c-'a'+10)) : (c-'0'));
if (!innum) { // Prep for next number
if (needinc) { addr++; needinc=false; }
}
if (reading_addr) {
// Decode @ addresses
if (!innum) addr=0;
addr = (addr<<4) + value;
} else {
needinc = true;
//printf(" Value width=%d @%x = %c\n", width, addr, c);
if (VL_UNLIKELY(addr >= static_cast<IData>(depth+array_lsb)
|| addr < static_cast<IData>(array_lsb))) {
VL_FATAL_MT(filename.c_str(), linenum, "",
"$readmem file address beyond bounds of array");
} else {
int entry = addr - array_lsb;
QData shift = hex ? VL_ULL(4) : VL_ULL(1);
// Shift value in
if (width<=8) {
CData* datap = &(reinterpret_cast<CData*>(memp))[entry];
if (!innum) { *datap = 0; }
*datap = ((*datap << shift) + value) & VL_MASK_I(width);
} else if (width<=16) {
SData* datap = &(reinterpret_cast<SData*>(memp))[entry];
if (!innum) { *datap = 0; }
*datap = ((*datap << shift) + value) & VL_MASK_I(width);
} else if (width<=VL_WORDSIZE) {
IData* datap = &(reinterpret_cast<IData*>(memp))[entry];
if (!innum) { *datap = 0; }
*datap = ((*datap << shift) + value) & VL_MASK_I(width);
} else if (width<=VL_QUADSIZE) {
QData* datap = &(reinterpret_cast<QData*>(memp))[entry];
if (!innum) { *datap = 0; }
*datap = ((*datap << static_cast<QData>(shift))
+ static_cast<QData>(value)) & VL_MASK_Q(width);
} else {
WDataOutP datap = &(reinterpret_cast<WDataOutP>(memp))[ entry*VL_WORDS_I(width) ];
if (!innum) { VL_ZERO_RESET_W(width, datap); }
_VL_SHIFTL_INPLACE_W(width, datap, static_cast<IData>(shift));
datap[0] |= value;
}
if (VL_UNLIKELY(value>=(1<<shift))) {
VL_FATAL_MT(filename.c_str(), linenum, "",
"$readmemb (binary) file contains hex characters");
}
}
}
innum = true;
}
else {
VL_FATAL_MT(filename.c_str(), linenum, "", "$readmem file syntax error");
}
}
lastc = c;
}
if (needinc) { addr++; }
// Final checks
fclose(fp);
if (VL_UNLIKELY(end != VL_UL(0xffffffff) && addr != (end+1))) {
VL_FATAL_MT(filename.c_str(), linenum, "",
"$readmem file ended before specified ending-address");
}
}
IData VL_SYSTEM_IQ(QData lhs) VL_MT_SAFE {
WData lhsw[2]; VL_SET_WQ(lhsw, lhs);
return VL_SYSTEM_IW(2, lhsw);
}
IData VL_SYSTEM_IW(int lhswords, WDataInP lhsp) VL_MT_SAFE {
char filenamez[VL_TO_STRING_MAX_WORDS*VL_WORDSIZE+1];
_VL_VINT_TO_STRING(lhswords*VL_WORDSIZE, filenamez, lhsp);
int code = system(filenamez); // Yes, system() is threadsafe
return code >> 8; // Want exit status
}
IData VL_TESTPLUSARGS_I(const char* formatp) VL_MT_SAFE {
const std::string& match = VerilatedImp::argPlusMatch(formatp);
if (match.empty()) return 0;
else return 1;
}
IData VL_VALUEPLUSARGS_INW(int rbits, const std::string& ld, WDataOutP rwp) VL_MT_SAFE {
std::string prefix;
bool inPct = false;
bool done = false;
char fmt = ' ';
for (const char* posp = ld.c_str(); !done && *posp; ++posp) {
if (!inPct && posp[0]=='%') {
inPct = true;
} else if (!inPct) { // Normal text
prefix += *posp;
} else { // Format character
switch (tolower(*posp)) {
case '%':
prefix += *posp;
inPct = false;
break;
default:
fmt = *posp;
done = true;
break;
}
}
}
const std::string& match = VerilatedImp::argPlusMatch(prefix.c_str());
const char* dp = match.c_str() + 1 /*leading + */ + prefix.length();
if (match.empty()) return 0;
VL_ZERO_RESET_W(rbits, rwp);
switch (tolower(fmt)) {
case 'd':
vlsint64_t lld;
sscanf(dp,"%30" VL_PRI64 "d",&lld);
VL_SET_WQ(rwp,lld);
break;
case 'b':
_vl_vsss_based(rwp,rbits, 1, dp, 0, strlen(dp));
break;
case 'o':
_vl_vsss_based(rwp,rbits, 3, dp, 0, strlen(dp));
break;
case 'h': //FALLTHRU
case 'x':
_vl_vsss_based(rwp,rbits, 4, dp, 0, strlen(dp));
break;
case 's': // string/no conversion
for (int i=0, lsb=0, posp=static_cast<int>(strlen(dp))-1; i<rbits && posp>=0; --posp) {
_vl_vsss_setbit(rwp,rbits,lsb, 8, dp[posp]); lsb+=8;
}
break;
case 'e': //FALLTHRU - Unsupported
case 'f': //FALLTHRU - Unsupported
case 'g': //FALLTHRU - Unsupported
default: // Other simulators simply return 0 in these cases and don't error out
return 0;
}
_VL_CLEAN_INPLACE_W(rbits,rwp);
return 1;
}
IData VL_VALUEPLUSARGS_INN(int, const std::string& ld, std::string& rdr) VL_MT_SAFE {
std::string prefix;
bool inPct = false;
bool done = false;
for (const char* posp = ld.c_str(); !done && *posp; ++posp) {
if (!inPct && posp[0]=='%') {
inPct = true;
} else if (!inPct) { // Normal text
prefix += *posp;
} else { // Format character
switch (tolower(*posp)) {
case '%':
prefix += *posp;
inPct = false;
break;
default:
done = true;
break;
}
}
}
const std::string& match = VerilatedImp::argPlusMatch(prefix.c_str());
const char* dp = match.c_str() + 1 /*leading + */ + prefix.length();
if (match.empty()) return 0;
rdr = std::string(dp);
return 1;
}
const char* vl_mc_scan_plusargs(const char* prefixp) VL_MT_SAFE {
const std::string& match = VerilatedImp::argPlusMatch(prefixp);
static VL_THREAD_LOCAL char outstr[VL_VALUE_STRING_MAX_WIDTH];
if (match.empty()) return NULL;
strncpy(outstr, match.c_str()+strlen(prefixp)+1, // +1 to skip the "+"
VL_VALUE_STRING_MAX_WIDTH);
outstr[VL_VALUE_STRING_MAX_WIDTH-1] = '\0';
return outstr;
}
//===========================================================================
// Heavy functions
std::string VL_CVT_PACK_STR_NW(int lwords, WDataInP lwp) VL_MT_SAFE {
// See also _VL_VINT_TO_STRING
char destout[VL_TO_STRING_MAX_WORDS*VL_WORDSIZE+1];
int obits = lwords * VL_WORDSIZE;
int lsb=obits-1;
bool start=true;
char* destp = destout;
int len = 0;
for (; lsb>=0; --lsb) {
lsb = (lsb / 8) * 8; // Next digit
IData charval = VL_BITRSHIFT_W(lwp, lsb) & 0xff;
if (!start || charval) {
*destp++ = (charval==0)?' ':charval;
len++;
start = false; // Drop leading 0s
}
}
return std::string(destout, len);
}
//===========================================================================
// Verilated:: Methods
Verilated::ThreadLocal::ThreadLocal()
:
#ifdef VL_THREADED
t_mtaskId(0),
t_endOfEvalReqd(0),
#endif
t_dpiScopep(NULL), t_dpiFilename(0), t_dpiLineno(0) {
}
Verilated::ThreadLocal::~ThreadLocal() {
}
void Verilated::debug(int level) VL_MT_SAFE {
VerilatedLockGuard lock(m_mutex);
s_s.s_debug = level;
if (level) {
#ifdef VL_DEBUG
VL_DEBUG_IF(VL_DBG_MSGF("- Verilated::debug is on. Message prefix indicates {<thread>,<sequence_number>}.\n"););
#else
VL_PRINTF_MT("- Verilated::debug attempted, but compiled without VL_DEBUG, so messages suppressed.\n");
#endif
}
}
void Verilated::randReset(int val) VL_MT_SAFE {
VerilatedLockGuard lock(m_mutex);
s_s.s_randReset = val;
}
void Verilated::calcUnusedSigs(bool flag) VL_MT_SAFE {
VerilatedLockGuard lock(m_mutex);
s_s.s_calcUnusedSigs = flag;
}
void Verilated::gotFinish(bool flag) VL_MT_SAFE {
VerilatedLockGuard lock(m_mutex);
s_s.s_gotFinish = flag;
}
void Verilated::assertOn(bool flag) VL_MT_SAFE {
VerilatedLockGuard lock(m_mutex);
s_s.s_assertOn = flag;
}
void Verilated::fatalOnVpiError(bool flag) VL_MT_SAFE {
VerilatedLockGuard lock(m_mutex);
s_s.s_fatalOnVpiError = flag;
}
void Verilated::profThreadsStart(vluint64_t flag) VL_MT_SAFE {
VerilatedLockGuard lock(m_mutex);
s_ns.s_profThreadsStart = flag;
}
void Verilated::profThreadsWindow(vluint64_t flag) VL_MT_SAFE {
VerilatedLockGuard lock(m_mutex);
s_ns.s_profThreadsWindow = flag;
}
void Verilated::profThreadsFilenamep(const char* flagp) VL_MT_SAFE {
VerilatedLockGuard lock(m_mutex);
if (s_ns.s_profThreadsFilenamep) free(const_cast<char*>(s_ns.s_profThreadsFilenamep));
s_ns.s_profThreadsFilenamep = strdup(flagp);
}
const char* Verilated::catName(const char* n1, const char* n2) VL_MT_SAFE {
// Returns new'ed data
// Used by symbol table creation to make module names
static VL_THREAD_LOCAL char* strp = NULL;
static VL_THREAD_LOCAL size_t len = 0;
size_t newlen = strlen(n1)+strlen(n2)+2;
if (!strp || newlen > len) {
if (strp) delete [] strp;
strp = new char[newlen];
len = newlen;
}
strcpy(strp,n1);
if (*n1) strcat(strp,".");
strcat(strp,n2);
return strp;
}
void Verilated::flushCb(VerilatedVoidCb cb) VL_MT_SAFE {
VerilatedLockGuard lock(m_mutex);
if (s_flushCb == cb) {} // Ok - don't duplicate
else if (!s_flushCb) { s_flushCb=cb; }
else {
// Someday we may allow multiple callbacks ala atexit(), but until then
VL_FATAL_MT("unknown",0,"", "Verilated::flushCb called twice with different callbacks");
}
}
void Verilated::flushCall() VL_MT_SAFE {
VerilatedLockGuard lock(m_mutex);
if (s_flushCb) (*s_flushCb)();
fflush(stderr);
fflush(stdout);
}
const char* Verilated::productName() VL_PURE {
return VERILATOR_PRODUCT;
}
const char* Verilated::productVersion() VL_PURE {
return VERILATOR_VERSION;
}
void Verilated::commandArgs(int argc, const char** argv) VL_MT_SAFE {
VerilatedLockGuard lock(s_args.m_argMutex);
s_args.argc = argc;
s_args.argv = argv;
VerilatedImp::commandArgs(argc,argv);
}
const char* Verilated::commandArgsPlusMatch(const char* prefixp) VL_MT_SAFE {
const std::string& match = VerilatedImp::argPlusMatch(prefixp);
static VL_THREAD_LOCAL char outstr[VL_VALUE_STRING_MAX_WIDTH];
if (match.empty()) return "";
strncpy(outstr, match.c_str(), VL_VALUE_STRING_MAX_WIDTH);
outstr[VL_VALUE_STRING_MAX_WIDTH-1] = '\0';
return outstr;
}
void Verilated::overWidthError(const char* signame) VL_MT_SAFE {
// Slowpath - Called only when signal sets too high of a bit
std::string msg = (std::string("Testbench C set input '")
+ signame
+ "' to value that overflows what the signal's width can fit");
VL_FATAL_MT("unknown",0,"", msg.c_str());
}
void Verilated::mkdir(const char* dirname) VL_MT_UNSAFE {
#if defined(_WIN32) || defined(__MINGW32__)
::mkdir(dirname);
#else
::mkdir(dirname, 0777);
#endif
}
void Verilated::quiesce() VL_MT_SAFE {
#ifdef VL_THREADED
// Wait until all threads under this evaluation are quiet
// THREADED-TODO
#endif
}
void Verilated::internalsDump() VL_MT_SAFE {
VerilatedImp::internalsDump();
}
void Verilated::scopesDump() VL_MT_SAFE {
VerilatedImp::scopesDump();
}
const VerilatedScope* Verilated::scopeFind(const char* namep) VL_MT_SAFE {
return VerilatedImp::scopeFind(namep);
}
int Verilated::exportFuncNum(const char* namep) VL_MT_SAFE {
return VerilatedImp::exportFind(namep);
}
const VerilatedScopeNameMap* Verilated::scopeNameMap() VL_MT_SAFE {
return VerilatedImp::scopeNameMap();
}
#ifdef VL_THREADED
void Verilated::endOfThreadMTaskGuts(VerilatedEvalMsgQueue* evalMsgQp) VL_MT_SAFE {
VL_DEBUG_IF(VL_DBG_MSGF("End of thread mtask\n"););
VerilatedThreadMsgQueue::flush(evalMsgQp);
}
void Verilated::endOfEvalGuts(VerilatedEvalMsgQueue* evalMsgQp) VL_MT_SAFE {
VL_DEBUG_IF(VL_DBG_MSGF("End-of-eval cleanup\n"););
evalMsgQp->process();
}
#endif
//===========================================================================
// VerilatedImp:: Methods
void VerilatedImp::internalsDump() VL_MT_SAFE {
VerilatedLockGuard lock(s_s.m_argMutex);
VL_PRINTF_MT("internalsDump:\n");
versionDump();
VL_PRINTF_MT(" Argv:");
for (ArgVec::const_iterator it=s_s.m_argVec.begin(); it!=s_s.m_argVec.end(); ++it) {
VL_PRINTF_MT(" %s",it->c_str());
}
VL_PRINTF_MT("\n");
scopesDump();
exportsDump();
userDump();
}
void VerilatedImp::versionDump() VL_MT_SAFE {
VL_PRINTF_MT(" Version: %s %s\n",
Verilated::productName(), Verilated::productVersion());
}
void VerilatedImp::commandArgs(int argc, const char** argv) VL_EXCLUDES(s_s.m_argMutex) {
VerilatedLockGuard lock(s_s.m_argMutex);
s_s.m_argVec.clear(); // Always clear
commandArgsAddGuts(argc, argv);
}
void VerilatedImp::commandArgsAdd(int argc, const char** argv) VL_EXCLUDES(s_s.m_argMutex) {
VerilatedLockGuard lock(s_s.m_argMutex);
commandArgsAddGuts(argc, argv);
}
void VerilatedImp::commandArgsAddGuts(int argc, const char** argv) VL_REQUIRES(s_s.m_argMutex) {
if (!s_s.m_argVecLoaded) s_s.m_argVec.clear();
for (int i=0; i<argc; ++i) {
s_s.m_argVec.push_back(argv[i]);
commandArgVl(argv[i]);
}
s_s.m_argVecLoaded = true; // Can't just test later for empty vector, no arguments is ok
}
void VerilatedImp::commandArgVl(const std::string& arg) {
if (0 == strncmp(arg.c_str(), "+verilator+", strlen("+verilator+"))) {
std::string value;
if (0) {
}
else if (arg == "+verilator+debug") {
Verilated::debug(4);
}
else if (commandArgVlValue(arg, "+verilator+debugi+", value/*ref*/)) {
Verilated::debug(atoi(value.c_str()));
}
else if (arg == "+verilator+help") {
versionDump();
VL_PRINTF_MT("For help, please see 'verilator --help'\n");
VL_FATAL_MT("COMMAND_LINE", 0, "", "Exiting due to command line argument (not an error)");
}
else if (commandArgVlValue(arg, "+verilator+prof+threads+start+", value/*ref*/)) {
Verilated::profThreadsStart(atoll(value.c_str()));
}
else if (commandArgVlValue(arg, "+verilator+prof+threads+window+", value/*ref*/)) {
Verilated::profThreadsWindow(atol(value.c_str()));
}
else if (commandArgVlValue(arg, "+verilator+prof+threads+file+", value/*ref*/)) {
Verilated::profThreadsFilenamep(value.c_str());
}
else if (commandArgVlValue(arg, "+verilator+rand+reset+", value/*ref*/)) {
Verilated::randReset(atoi(value.c_str()));
}
else if (arg == "+verilator+V") {
versionDump(); // Someday more info too
VL_FATAL_MT("COMMAND_LINE", 0, "", "Exiting due to command line argument (not an error)");
}
else if (arg == "+verilator+version") {
versionDump();
VL_FATAL_MT("COMMAND_LINE", 0, "", "Exiting due to command line argument (not an error)");
}
else {
VL_PRINTF_MT("%%Warning: Unknown +verilator runtime argument: '%s'\n", arg.c_str());
}
}
}
bool VerilatedImp::commandArgVlValue(const std::string& arg,
const std::string& prefix, std::string& valuer) {
size_t len = prefix.length();
if (0==strncmp(prefix.c_str(), arg.c_str(), len)) {
valuer = arg.substr(len);
return true;
} else {
return false;
}
}
//======================================================================
// VerilatedSyms:: Methods
VerilatedSyms::VerilatedSyms() {
#ifdef VL_THREADED
__Vm_evalMsgQp = new VerilatedEvalMsgQueue;
#endif
}
VerilatedSyms::~VerilatedSyms() {
#ifdef VL_THREADED
delete __Vm_evalMsgQp;
#endif
}
//===========================================================================
// VerilatedModule:: Methods
VerilatedModule::VerilatedModule(const char* namep)
: m_namep(strdup(namep)) {
}
VerilatedModule::~VerilatedModule() {
// Memory cleanup - not called during normal operation
// NOLINTNEXTLINE(google-readability-casting)
if (m_namep) { free((void*)(m_namep)); m_namep=NULL; }
}
//======================================================================
// VerilatedVar:: Methods
// cppcheck-suppress unusedFunction // Used by applications
vluint32_t VerilatedVarProps::entSize() const {
vluint32_t size = 1;
switch (vltype()) {
case VLVT_PTR: size=sizeof(void*); break;
case VLVT_UINT8: size=sizeof(CData); break;
case VLVT_UINT16: size=sizeof(SData); break;
case VLVT_UINT32: size=sizeof(IData); break;
case VLVT_UINT64: size=sizeof(QData); break;
case VLVT_WDATA: size=VL_WORDS_I(packed().elements())*sizeof(IData); break;
default: size=0; break;
}
return size;
}
size_t VerilatedVarProps::totalSize() const {
size_t size = entSize();
for (int dim=1; dim<=dims(); ++dim) {
size *= m_unpacked[dim].elements();
}
return size;
}
void* VerilatedVarProps::datapAdjustIndex(void* datap, int dim, int indx) const {
if (VL_UNLIKELY(dim <=0 || dim > m_udims || dim > 3)) return NULL;
if (VL_UNLIKELY(indx < low(dim) || indx > high(dim))) return NULL;
int indxAdj = indx - low(dim);
vluint8_t* bytep = reinterpret_cast<vluint8_t*>(datap);
// If on index 1 of a 2 index array, then each index 1 is index2sz*entsz
size_t slicesz = entSize();
for (int d=dim+1; d<=m_udims; ++d) slicesz *= elements(d);
bytep += indxAdj*slicesz;
return bytep;
}
//======================================================================
// VerilatedScope:: Methods
VerilatedScope::VerilatedScope() {
m_callbacksp = NULL;
m_namep = NULL;
m_funcnumMax = 0;
m_symsp = NULL;
m_varsp = NULL;
}
VerilatedScope::~VerilatedScope() {
// Memory cleanup - not called during normal operation
VerilatedImp::scopeErase(this);
if (m_namep) { delete [] m_namep; m_namep = NULL; }
if (m_callbacksp) { delete [] m_callbacksp; m_callbacksp = NULL; }
if (m_varsp) { delete m_varsp; m_varsp = NULL; }
m_funcnumMax = 0; // Force callback table to empty
}
void VerilatedScope::configure(VerilatedSyms* symsp, const char* prefixp, const char* suffixp) VL_MT_UNSAFE {
// Slowpath - called once/scope at construction
// We don't want the space and reference-count access overhead of strings.
m_symsp = symsp;
char* namep = new char[strlen(prefixp)+strlen(suffixp)+2];
strcpy(namep, prefixp);
if (*prefixp && *suffixp) strcat(namep,".");
strcat(namep, suffixp);
m_namep = namep;
VerilatedImp::scopeInsert(this);
}
void VerilatedScope::exportInsert(int finalize, const char* namep, void* cb) VL_MT_UNSAFE {
// Slowpath - called once/scope*export at construction
// Insert a exported function into scope table
int funcnum = VerilatedImp::exportInsert(namep);
if (!finalize) {
// Need two passes so we know array size to create
// Alternative is to dynamically stretch the array, which is more code, and slower.
if (funcnum >= m_funcnumMax) { m_funcnumMax = funcnum+1; }
} else {
if (VL_UNLIKELY(funcnum >= m_funcnumMax)) {
VL_FATAL_MT(__FILE__,__LINE__,"","Internal: Bad funcnum vs. pre-finalize maximum");
}
if (VL_UNLIKELY(!m_callbacksp)) { // First allocation
m_callbacksp = new void* [m_funcnumMax];
memset(m_callbacksp, 0, m_funcnumMax*sizeof(void*));
}
m_callbacksp[funcnum] = cb;
}
}
void VerilatedScope::varInsert(int finalize, const char* namep, void* datap,
VerilatedVarType vltype, int vlflags, int dims, ...) VL_MT_UNSAFE {
// Grab dimensions
// In the future we may just create a large table at emit time and statically construct from that.
if (!finalize) return;
if (!m_varsp) m_varsp = new VerilatedVarNameMap();
VerilatedVar var(namep, datap, vltype, static_cast<VerilatedVarFlags>(vlflags), dims);
va_list ap;
va_start(ap,dims);
for (int i=0; i<dims; ++i) {
int msb = va_arg(ap,int);
int lsb = va_arg(ap,int);
if (i==0) {
var.m_packed.m_left = msb;
var.m_packed.m_right = lsb;
} else if (i>=1 && i<=3) {
var.m_unpacked[i-1].m_left = msb;
var.m_unpacked[i-1].m_right = lsb;
} else {
// We could have a linked list of ranges, but really this whole thing needs
// to be generalized to support structs and unions, etc.
VL_FATAL_MT(__FILE__,__LINE__,"",
(std::string("Unsupported multi-dimensional public varInsert: ")
+ namep).c_str());
}
}
va_end(ap);
m_varsp->insert(std::make_pair(namep,var));
}
// cppcheck-suppress unusedFunction // Used by applications
VerilatedVar* VerilatedScope::varFind(const char* namep) const VL_MT_SAFE_POSTINIT {
if (VL_LIKELY(m_varsp)) {
VerilatedVarNameMap::iterator it = m_varsp->find(namep);
if (VL_LIKELY(it != m_varsp->end())) {
return &(it->second);
}
}
return NULL;
}
void* VerilatedScope::exportFindNullError(int funcnum) VL_MT_SAFE {
// Slowpath - Called only when find has failed
std::string msg = (std::string("Testbench C called '")
+VerilatedImp::exportName(funcnum)
+"' but scope wasn't set, perhaps due to dpi import call without 'context'");
VL_FATAL_MT("unknown",0,"", msg.c_str());
return NULL;
}
void* VerilatedScope::exportFindError(int funcnum) const {
// Slowpath - Called only when find has failed
std::string msg = (std::string("Testbench C called '")
+VerilatedImp::exportName(funcnum)
+"' but this DPI export function exists only in other scopes, not scope '"
+name()+"'");
VL_FATAL_MT("unknown",0,"", msg.c_str());
return NULL;
}
void VerilatedScope::scopeDump() const {
VL_PRINTF_MT(" SCOPE %p: %s\n", this, name());
for (int i=0; i<m_funcnumMax; ++i) {
if (m_callbacksp && m_callbacksp[i]) {
VL_PRINTF_MT(" DPI-EXPORT %p: %s\n",
m_callbacksp[i], VerilatedImp::exportName(i));
}
}
if (VerilatedVarNameMap* varsp = this->varsp()) {
for (VerilatedVarNameMap::const_iterator it = varsp->begin();
it != varsp->end(); ++it) {
VL_PRINTF_MT(" VAR %p: %s\n", &(it->second), it->first);
}
}
}
//===========================================================================
// VerilatedOneThreaded:: Methods
#if defined(VL_THREADED) && defined(VL_DEBUG)
void VerilatedAssertOneThread::fatal_different() VL_MT_SAFE {
VL_FATAL_MT(__FILE__, __LINE__, "", "Routine called that is single threaded, but called from"
" a different thread then the expected constructing thread");
}
#endif
//===========================================================================