// -*- mode: C++; c-file-style: "cc-mode" -*- //************************************************************************* // DESCRIPTION: Verilator: Graph optimizations // // Code available from: https://verilator.org // //************************************************************************* // // Copyright 2003-2021 by Wilson Snyder. This program is free software; you // can redistribute it and/or modify it under the terms of either the GNU // Lesser General Public License Version 3 or the Perl Artistic License // Version 2.0. // SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0 // //************************************************************************* #ifndef _V3GRAPH_H_ #define _V3GRAPH_H_ 1 #include "config_build.h" #include "verilatedos.h" #include "V3Error.h" #include "V3List.h" #include class FileLine; class V3Graph; class V3GraphVertex; class V3GraphEdge; class GraphAcycEdge; class OrderEitherVertex; class OrderLogicVertex; //============================================================================= // Most graph algorithms accept an arbitrary function that returns // True for those edges we should honor. typedef bool (*V3EdgeFuncP)(const V3GraphEdge* edgep); //============================================================================= // When the Graph represents a directional acyclical graph (DAG), following // the to() edges is forward, and back() is reverse. However, sometimes // it's useful to have algorithms that can walk in either direction, hence // some methods take GraphWay to programmatically select the direction. class GraphWay final { public: enum en : uint8_t { FORWARD = 0, REVERSE = 1, NUM_WAYS = 2 // NUM_WAYS is not an actual way, it's typically // // an array dimension or loop bound. }; enum en m_e; inline GraphWay() : m_e{FORWARD} {} // cppcheck-suppress noExplicitConstructor inline GraphWay(en _e) : m_e{_e} {} explicit inline GraphWay(int _e) : m_e(static_cast(_e)) {} // Need () or GCC 4.8 false warning operator en() const { return m_e; } const char* ascii() const { static const char* const names[] = {"FORWARD", "REVERSE"}; return names[m_e]; } // METHODS unique to this class GraphWay invert() const { return m_e == FORWARD ? REVERSE : FORWARD; } bool forward() const { return m_e == FORWARD; } bool reverse() const { return m_e != FORWARD; } }; inline bool operator==(const GraphWay& lhs, const GraphWay& rhs) { return lhs.m_e == rhs.m_e; } inline bool operator==(const GraphWay& lhs, GraphWay::en rhs) { return lhs.m_e == rhs; } inline bool operator==(GraphWay::en lhs, const GraphWay& rhs) { return lhs == rhs.m_e; } //============================================================================ class V3Graph VL_NOT_FINAL { private: // MEMBERS V3List m_vertices; // All vertices static int s_debug; protected: friend class V3GraphVertex; friend class V3GraphEdge; friend class GraphAcyc; // METHODS void acyclicDFS(); void acyclicDFSIterate(V3GraphVertex* vertexp, int depth, uint32_t currentRank); void acyclicCut(); void acyclicLoop(V3GraphVertex* vertexp, int depth); double orderDFSIterate(V3GraphVertex* vertexp); void dumpEdge(std::ostream& os, V3GraphVertex* vertexp, V3GraphEdge* edgep); void verticesUnlink() { m_vertices.reset(); } // ACCESSORS static int debug(); public: V3Graph(); virtual ~V3Graph(); static void debug(int level) { s_debug = level; } virtual string dotRankDir() const { return "TB"; } // rankdir for dot plotting // METHODS void clear(); // Empty it of all vertices/edges, as if making a new object void clearColors(); bool empty() const { return m_vertices.empty(); } V3GraphVertex* verticesBeginp() const { return m_vertices.begin(); } // METHODS - ALGORITHMS /// Assign same color to all vertices in the same weakly connected component /// Thus different color if there's no edges between the two subgraphs void weaklyConnected(V3EdgeFuncP edgeFuncp); /// Assign same color to all vertices that are strongly connected /// Thus different color if there's no directional circuit within the subgraphs. /// (I.E. all loops will occur within each color, not between them.) void stronglyConnected(V3EdgeFuncP edgeFuncp); /// Assign a ordering number to all vertexes in a tree. /// All nodes with no inputs will get rank 1 void rank(V3EdgeFuncP edgeFuncp); void rank(); /// Sort all vertices and edges using the V3GraphVertex::sortCmp() function void sortVertices(); /// Sort all edges and edges using the V3GraphEdge::sortCmp() function void sortEdges(); /// Order all vertices by rank and fanout, lowest first /// Sort all vertices by rank and fanout, lowest first /// Sort all edges by weight, lowest first /// Side-effect: assigns ranks to every node. void order(); // Similar to order() but does not assign ranks. Caller must // ensure that the graph has been ranked ahead of the call. void orderPreRanked(); /// Make acyclical (into a tree) by breaking a minimal subset of cutable edges. void acyclic(V3EdgeFuncP edgeFuncp); /// Remove any redundant edges, weights become MAX of any other weight void removeRedundantEdges(V3EdgeFuncP edgeFuncp); /// Remove any redundant edges, weights become SUM of any other weight void removeRedundantEdgesSum(V3EdgeFuncP edgeFuncp); /// Remove any transitive edges. E.g. if have edges A->B, B->C, and A->C /// then A->C is a "transitive" edge; it's implied by the first two /// (assuming the DAG is a dependency graph.) /// This algorithm can be expensive. void removeTransitiveEdges(); /// Call loopsVertexCb on any one loop starting where specified void reportLoops(V3EdgeFuncP edgeFuncp, V3GraphVertex* vertexp); /// Build a subgraph of all loops starting where specified void subtreeLoops(V3EdgeFuncP edgeFuncp, V3GraphVertex* vertexp, V3Graph* loopGraphp); /// Debugging void dump(std::ostream& os = std::cout); void dumpDotFile(const string& filename, bool colorAsSubgraph) const; void dumpDotFilePrefixed(const string& nameComment, bool colorAsSubgraph = false) const; void dumpDotFilePrefixedAlways(const string& nameComment, bool colorAsSubgraph = false) const; void userClearVertices(); void userClearEdges(); static void selfTest(); // CALLBACKS virtual void loopsMessageCb(V3GraphVertex* vertexp); virtual void loopsVertexCb(V3GraphVertex* vertexp); }; //============================================================================ class V3GraphVertex VL_NOT_FINAL { // Vertices may be a 'gate'/wire statement OR a variable protected: friend class V3Graph; friend class V3GraphEdge; friend class GraphAcyc; friend class GraphAlgRank; V3ListEnt m_vertices; // All vertices, linked list V3List m_outs; // Outbound edges,linked list V3List m_ins; // Inbound edges, linked list double m_fanout; // Order fanout uint32_t m_color; // Color of the node uint32_t m_rank; // Rank of edge union { void* m_userp; // Marker for some algorithms uint32_t m_user; // Marker for some algorithms }; // METHODS void verticesPushBack(V3Graph* graphp); // ACCESSORS void fanout(double fanout) { m_fanout = fanout; } void inUnlink() { m_ins.reset(); } // Low level; normally unlinkDelete is what you want void outUnlink() { m_outs.reset(); } // Low level; normally unlinkDelete is what you want protected: // CONSTRUCTORS V3GraphVertex(V3Graph* graphp, const V3GraphVertex& old); public: explicit V3GraphVertex(V3Graph* graphp); //! Clone copy constructor. Doesn't copy edges or user/userp. virtual V3GraphVertex* clone(V3Graph* graphp) const { return new V3GraphVertex(graphp, *this); } virtual ~V3GraphVertex() = default; void unlinkEdges(V3Graph* graphp); void unlinkDelete(V3Graph* graphp); // ACCESSORS virtual string name() const { return ""; } virtual string dotColor() const { return "black"; } virtual string dotShape() const { return ""; } virtual string dotStyle() const { return ""; } virtual string dotName() const { return ""; } virtual uint32_t rankAdder() const { return 1; } virtual FileLine* fileline() const { return nullptr; } // nullptr for unknown virtual int sortCmp(const V3GraphVertex* rhsp) const { // LHS goes first if of lower rank, or lower fanout if (m_rank < rhsp->m_rank) return -1; if (m_rank > rhsp->m_rank) return 1; if (m_fanout < rhsp->m_fanout) return -1; if (m_fanout > rhsp->m_fanout) return 1; return 0; } uint32_t color() const { return m_color; } void color(uint32_t color) { m_color = color; } uint32_t rank() const { return m_rank; } void rank(uint32_t rank) { m_rank = rank; } double fanout() const { return m_fanout; } void user(uint32_t user) { m_user = user; } uint32_t user() const { return m_user; } void userp(void* userp) { m_userp = userp; } void* userp() const { return m_userp; } // ITERATORS V3GraphVertex* verticesNextp() const { return m_vertices.nextp(); } V3GraphEdge* inBeginp() const { return m_ins.begin(); } bool inEmpty() const { return inBeginp() == nullptr; } bool inSize1() const; uint32_t inHash() const; V3GraphEdge* outBeginp() const { return m_outs.begin(); } bool outEmpty() const { return outBeginp() == nullptr; } bool outSize1() const; uint32_t outHash() const; V3GraphEdge* beginp(GraphWay way) const { return way.forward() ? outBeginp() : inBeginp(); } // METHODS /// Error reporting void v3errorEnd(std::ostringstream& str) const; void v3errorEndFatal(std::ostringstream& str) const; /// Edges are routed around this vertex to point from "from" directly to "to" void rerouteEdges(V3Graph* graphp); /// Find the edge connecting ap and bp, where bp is wayward from ap. /// If edge is not found returns nullptr. O(edges) performance. V3GraphEdge* findConnectingEdgep(GraphWay way, const V3GraphVertex* waywardp); }; std::ostream& operator<<(std::ostream& os, V3GraphVertex* vertexp); //============================================================================ class V3GraphEdge VL_NOT_FINAL { // Wires/variables aren't edges. Edges have only a single to/from vertex public: // ENUMS enum Cutable : uint8_t { NOT_CUTABLE = false, CUTABLE = true }; // For passing to V3GraphEdge protected: friend class V3Graph; friend class V3GraphVertex; friend class GraphAcyc; friend class GraphAcycEdge; V3ListEnt m_outs; // Next Outbound edge for same vertex (linked list) V3ListEnt m_ins; // Next Inbound edge for same vertex (linked list) // V3GraphVertex* m_fromp; // Vertices pointing to this edge V3GraphVertex* m_top; // Vertices this edge points to int m_weight; // Weight of the connection bool m_cutable; // Interconnect may be broken in order sorting union { void* m_userp; // Marker for some algorithms uint32_t m_user; // Marker for some algorithms }; // METHODS void init(V3Graph* graphp, V3GraphVertex* fromp, V3GraphVertex* top, int weight, bool cutable = false); void cut() { m_weight = 0; } // 0 weight is same as disconnected void outPushBack(); void inPushBack(); // CONSTRUCTORS protected: V3GraphEdge(V3Graph* graphp, V3GraphVertex* fromp, V3GraphVertex* top, const V3GraphEdge& old) { init(graphp, fromp, top, old.m_weight, old.m_cutable); } public: //! Add DAG from one node to the specified node V3GraphEdge(V3Graph* graphp, V3GraphVertex* fromp, V3GraphVertex* top, int weight, bool cutable = false) { init(graphp, fromp, top, weight, cutable); } //! Clone copy constructor. Doesn't copy existing vertices or user/userp. virtual V3GraphEdge* clone(V3Graph* graphp, V3GraphVertex* fromp, V3GraphVertex* top) const { return new V3GraphEdge(graphp, fromp, top, *this); } virtual ~V3GraphEdge() = default; // METHODS virtual string name() const { return m_fromp->name() + "->" + m_top->name(); } virtual string dotLabel() const { return ""; } virtual string dotColor() const { return cutable() ? "yellowGreen" : "red"; } virtual string dotStyle() const { return cutable() ? "dashed" : ""; } virtual int sortCmp(const V3GraphEdge* rhsp) const { if (!m_weight || !rhsp->m_weight) return 0; return top()->sortCmp(rhsp->top()); } void unlinkDelete(); V3GraphEdge* relinkFromp(V3GraphVertex* newFromp); // ACCESSORS int weight() const { return m_weight; } void weight(int weight) { m_weight = weight; } bool cutable() const { return m_cutable; } void cutable(bool cutable) { m_cutable = cutable; } void userp(void* user) { m_userp = user; } void* userp() const { return m_userp; } void user(uint32_t user) { m_user = user; } uint32_t user() const { return m_user; } V3GraphVertex* fromp() const { return m_fromp; } V3GraphVertex* top() const { return m_top; } V3GraphVertex* closerp(GraphWay way) const { return way.forward() ? fromp() : top(); } V3GraphVertex* furtherp(GraphWay way) const { return way.forward() ? top() : fromp(); } // STATIC ACCESSORS static bool followNotCutable(const V3GraphEdge* edgep) { return !edgep->m_cutable; } static bool followAlwaysTrue(const V3GraphEdge*) { return true; } // ITERATORS V3GraphEdge* outNextp() const { return m_outs.nextp(); } V3GraphEdge* inNextp() const { return m_ins.nextp(); } V3GraphEdge* nextp(GraphWay way) const { return way.forward() ? outNextp() : inNextp(); } }; //============================================================================ #endif // Guard