// -*- mode: C++; c-file-style: "cc-mode" -*- //************************************************************************* // // Code available from: https://verilator.org // // Copyright 2003-2023 by Wilson Snyder. This program is free software; you can // redistribute it and/or modify it under the terms of either the GNU // Lesser General Public License Version 3 or the Perl Artistic License // Version 2.0. // SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0 // //========================================================================= /// /// \file /// \brief Verilated general routine implementation code /// /// This file must be compiled and linked against all Verilated objects /// (all code created from Verilator). /// /// Verilator always adds this file to the Makefile for the linker. /// /// Those macro/function/variable starting or ending in _ are internal, /// however many of the other function/macros here are also internal. /// //========================================================================= // Internal note: // // verilated.o may exist both in --lib-create (incrementally linked .a/.so) // and the main module. Both refer the same instance of static // variables/thread_local in verilated.o such as Verilated, or // VerilatedImpData. This is important to share that state, but the // sharing may cause a double-free error when shutting down because the // loader will insert a constructor/destructor at each reference to // verilated.o, resulting in at runtime constructors/destructors being // called multiple times. // // To avoid the trouble: // * Statics declared inside functions. The compiler will wrap // the construction in must-be-one-time checks. // * Or, use only C++20 constinit types. (TODO: Make a VL_CONSTINIT). // * Or, use types that are multi-constructor safe. // * Or, the static should be of a union, which will avoid compiler // construction, and appropriately check for duplicate construction. // * Or, code is not linked in protected library. e.g. the VPI // and DPI libraries are not needed there. //========================================================================= #define VERILATOR_VERILATED_CPP_ #include "verilated_config.h" #include "verilatedos.h" #include "verilated_imp.h" #include #include #include #include #include #include #include #include #include // mkdir // clang-format off #if defined(_WIN32) || defined(__MINGW32__) # include // mkdir #endif #ifdef __GLIBC__ # include # define _VL_HAVE_STACKTRACE #endif #include "verilated_threads.h" // clang-format on #include "verilated_trace.h" // Max characters in static char string for VL_VALUE_STRING constexpr unsigned VL_VALUE_STRING_MAX_WIDTH = 8192; //=========================================================================== // Static sanity checks static_assert(sizeof(uint8_t) == 1, "uint8_t is missized"); static_assert(sizeof(uint16_t) == 2, "uint8_t is missized"); static_assert(sizeof(uint32_t) == 4, "uint8_t is missized"); static_assert(sizeof(uint64_t) == 8, "uint8_t is missized"); //=========================================================================== // Global variables // Internal note: Globals may multi-construct, see verilated.cpp top. // Fast path, keep together int Verilated::s_debug = 0; VerilatedContext* Verilated::s_lastContextp = nullptr; // Keep below together in one cache line // Internal note: Globals may multi-construct, see verilated.cpp top. thread_local Verilated::ThreadLocal Verilated::t_s; //=========================================================================== // User definable functions // Note a TODO is a future version of the API will pass a structure so that // the calling arguments allow for extension #ifndef VL_USER_FINISH ///< Define this to override the vl_finish function void vl_finish(const char* filename, int linenum, const char* hier) VL_MT_UNSAFE { if (false && hier) {} VL_PRINTF( // Not VL_PRINTF_MT, already on main thread "- %s:%d: Verilog $finish\n", filename, linenum); if (Verilated::threadContextp()->gotFinish()) { VL_PRINTF( // Not VL_PRINTF_MT, already on main thread "- %s:%d: Second verilog $finish, exiting\n", filename, linenum); Verilated::runFlushCallbacks(); Verilated::runExitCallbacks(); std::exit(0); } Verilated::threadContextp()->gotFinish(true); } #endif #ifndef VL_USER_STOP ///< Define this to override the vl_stop function void vl_stop(const char* filename, int linenum, const char* hier) VL_MT_UNSAFE { const char* const msg = "Verilog $stop"; Verilated::threadContextp()->gotError(true); Verilated::threadContextp()->gotFinish(true); if (Verilated::threadContextp()->fatalOnError()) { vl_fatal(filename, linenum, hier, msg); } else { if (filename && filename[0]) { // Not VL_PRINTF_MT, already on main thread VL_PRINTF("%%Error: %s:%d: %s\n", filename, linenum, msg); } else { VL_PRINTF("%%Error: %s\n", msg); } Verilated::runFlushCallbacks(); } } #endif #ifndef VL_USER_FATAL ///< Define this to override the vl_fatal function void vl_fatal(const char* filename, int linenum, const char* hier, const char* msg) VL_MT_UNSAFE { if (false && hier) {} Verilated::threadContextp()->gotError(true); Verilated::threadContextp()->gotFinish(true); if (filename && filename[0]) { // Not VL_PRINTF_MT, already on main thread VL_PRINTF("%%Error: %s:%d: %s\n", filename, linenum, msg); } else { VL_PRINTF("%%Error: %s\n", msg); } Verilated::runFlushCallbacks(); VL_PRINTF("Aborting...\n"); // Not VL_PRINTF_MT, already on main thread // Second flush in case VL_PRINTF does something needing a flush Verilated::runFlushCallbacks(); // Callbacks prior to termination Verilated::runExitCallbacks(); std::abort(); } #endif #ifndef VL_USER_STOP_MAYBE ///< Define this to override the vl_stop_maybe function void vl_stop_maybe(const char* filename, int linenum, const char* hier, bool maybe) VL_MT_UNSAFE { Verilated::threadContextp()->errorCountInc(); if (maybe && Verilated::threadContextp()->errorCount() < Verilated::threadContextp()->errorLimit()) { VL_PRINTF( // Not VL_PRINTF_MT, already on main thread "-Info: %s:%d: %s\n", filename, linenum, "Verilog $stop, ignored due to +verilator+error+limit"); } else { vl_stop(filename, linenum, hier); } } #endif #ifndef VL_USER_WARN ///< Define this to override the vl_warn function void vl_warn(const char* filename, int linenum, const char* hier, const char* msg) VL_MT_UNSAFE { if (false && hier) {} if (filename && filename[0]) { // Not VL_PRINTF_MT, already on main thread VL_PRINTF("%%Warning: %s:%d: %s\n", filename, linenum, msg); } else { VL_PRINTF("%%Warning: %s\n", msg); } Verilated::runFlushCallbacks(); } #endif //=========================================================================== // Wrapper to call certain functions via messages when multithreaded void VL_FINISH_MT(const char* filename, int linenum, const char* hier) VL_MT_SAFE { VerilatedThreadMsgQueue::post(VerilatedMsg{[=]() { // vl_finish(filename, linenum, hier); }}); } void VL_STOP_MT(const char* filename, int linenum, const char* hier, bool maybe) VL_MT_SAFE { VerilatedThreadMsgQueue::post(VerilatedMsg{[=]() { // vl_stop_maybe(filename, linenum, hier, maybe); }}); } void VL_FATAL_MT(const char* filename, int linenum, const char* hier, const char* msg) VL_MT_SAFE { VerilatedThreadMsgQueue::post(VerilatedMsg{[=]() { // vl_fatal(filename, linenum, hier, msg); }}); } void VL_WARN_MT(const char* filename, int linenum, const char* hier, const char* msg) VL_MT_SAFE { VerilatedThreadMsgQueue::post(VerilatedMsg{[=]() { // vl_warn(filename, linenum, hier, msg); }}); } //=========================================================================== // Debug prints // sprintf but return as string (this isn't fast, for print messages only) std::string _vl_string_vprintf(const char* formatp, va_list ap) VL_MT_SAFE { va_list aq; va_copy(aq, ap); const size_t len = VL_VSNPRINTF(nullptr, 0, formatp, aq); va_end(aq); if (VL_UNLIKELY(len < 1)) return ""; char* const bufp = new char[len + 1]; VL_VSNPRINTF(bufp, len + 1, formatp, ap); std::string result{bufp, len}; // Not const to allow move optimization delete[] bufp; return result; } uint64_t _vl_dbg_sequence_number() VL_MT_SAFE { static std::atomic sequence; return ++sequence; } uint32_t VL_THREAD_ID() VL_MT_SAFE { // Alternative is to use std::this_thread::get_id, but that returns a // hard-to-read number and is very slow static std::atomic s_nextId(0); static thread_local uint32_t t_myId = ++s_nextId; return t_myId; } void VL_DBG_MSGF(const char* formatp, ...) VL_MT_SAFE { // We're still using c printf formats instead of operator<< so we can avoid the heavy // includes that otherwise would be required in every Verilated module va_list ap; va_start(ap, formatp); const std::string result = _vl_string_vprintf(formatp, ap); va_end(ap); // printf("-imm-V{t%d,%" PRId64 "}%s", VL_THREAD_ID(), _vl_dbg_sequence_number(), // result.c_str()); // Using VL_PRINTF not VL_PRINTF_MT so that we can call VL_DBG_MSGF // from within the guts of the thread execution machinery (and it goes // to the screen and not into the queues we're debugging) VL_PRINTF("-V{t%u,%" PRIu64 "}%s", VL_THREAD_ID(), _vl_dbg_sequence_number(), result.c_str()); } void VL_PRINTF_MT(const char* formatp, ...) VL_MT_SAFE { va_list ap; va_start(ap, formatp); const std::string result = _vl_string_vprintf(formatp, ap); va_end(ap); VerilatedThreadMsgQueue::post(VerilatedMsg{[=]() { // VL_PRINTF("%s", result.c_str()); }}); } //=========================================================================== // Random -- Mostly called at init time, so not inline. VlRNG::VlRNG() VL_MT_SAFE { // Starting point for this new class comes from the global RNG VlRNG& fromr = vl_thread_rng(); m_state = fromr.m_state; // Advance the *source* so it can later generate a new number // Xoroshiro128+ algorithm fromr.m_state[1] ^= fromr.m_state[0]; fromr.m_state[0] = (((fromr.m_state[0] << 55) | (fromr.m_state[0] >> 9)) ^ fromr.m_state[1] ^ (fromr.m_state[1] << 14)); fromr.m_state[1] = (fromr.m_state[1] << 36) | (fromr.m_state[1] >> 28); } uint64_t VlRNG::rand64() VL_MT_UNSAFE { // Xoroshiro128+ algorithm const uint64_t result = m_state[0] + m_state[1]; m_state[1] ^= m_state[0]; m_state[0] = (((m_state[0] << 55) | (m_state[0] >> 9)) ^ m_state[1] ^ (m_state[1] << 14)); m_state[1] = (m_state[1] << 36) | (m_state[1] >> 28); return result; } uint64_t VlRNG::vl_thread_rng_rand64() VL_MT_SAFE { VlRNG& fromr = vl_thread_rng(); const uint64_t result = fromr.m_state[0] + fromr.m_state[1]; fromr.m_state[1] ^= fromr.m_state[0]; fromr.m_state[0] = (((fromr.m_state[0] << 55) | (fromr.m_state[0] >> 9)) ^ fromr.m_state[1] ^ (fromr.m_state[1] << 14)); fromr.m_state[1] = (fromr.m_state[1] << 36) | (fromr.m_state[1] >> 28); return result; } void VlRNG::srandom(uint64_t n) VL_MT_UNSAFE { m_state[0] = n; m_state[1] = m_state[0]; // Fix state as algorithm is slow to randomize if many zeros // This causes a loss of ~ 1 bit of seed entropy, no big deal if (VL_COUNTONES_I(m_state[0]) < 10) m_state[0] = ~m_state[0]; if (VL_COUNTONES_I(m_state[1]) < 10) m_state[1] = ~m_state[1]; } std::string VlRNG::get_randstate() const VL_MT_UNSAFE { // Though not stated in IEEE, assumption is the string must be printable const char* const stateCharsp = reinterpret_cast(&m_state); static_assert(sizeof(m_state) == 16, ""); std::string result{"R00112233445566770011223344556677"}; for (int i = 0; i < sizeof(m_state); ++i) { result[1 + i * 2] = 'a' + ((stateCharsp[i] >> 4) & 15); result[1 + i * 2 + 1] = 'a' + (stateCharsp[i] & 15); } return result; } void VlRNG::set_randstate(const std::string& state) VL_MT_UNSAFE { if (VL_UNLIKELY((state.length() != 1 + 2 * sizeof(m_state)) || (state[0] != 'R'))) { VL_PRINTF_MT("%%Warning: set_randstate ignored as state string not from get_randstate\n"); return; } char* const stateCharsp = reinterpret_cast(&m_state); for (int i = 0; i < sizeof(m_state); ++i) { stateCharsp[i] = (((state[1 + i * 2] - 'a') & 15) << 4) | ((state[1 + i * 2 + 1] - 'a') & 15); } } static uint32_t vl_sys_rand32() VL_MT_SAFE { // Return random 32-bits using system library. // Used only to construct seed for Verilator's PRNG. static VerilatedMutex s_mutex; const VerilatedLockGuard lock{s_mutex}; // Otherwise rand is unsafe #if defined(_WIN32) && !defined(__CYGWIN__) // Windows doesn't have lrand48(), although Cygwin does. return (std::rand() << 16) ^ std::rand(); #else return (lrand48() << 16) ^ lrand48(); #endif } VlRNG& VlRNG::vl_thread_rng() VL_MT_SAFE { static thread_local VlRNG t_rng{0}; static thread_local uint32_t t_seedEpoch = 0; // For speed, we use a thread-local epoch number to know when to reseed // A thread always belongs to a single context, so this works out ok if (VL_UNLIKELY(t_seedEpoch != VerilatedContextImp::randSeedEpoch())) { // Set epoch before state, to avoid race case with new seeding t_seedEpoch = VerilatedContextImp::randSeedEpoch(); // Same as srandom() but here as needs to be VL_MT_SAFE t_rng.m_state[0] = Verilated::threadContextp()->impp()->randSeedDefault64(); t_rng.m_state[1] = t_rng.m_state[0]; // Fix state as algorithm is slow to randomize if many zeros // This causes a loss of ~ 1 bit of seed entropy, no big deal if (VL_COUNTONES_I(t_rng.m_state[0]) < 10) t_rng.m_state[0] = ~t_rng.m_state[0]; if (VL_COUNTONES_I(t_rng.m_state[1]) < 10) t_rng.m_state[1] = ~t_rng.m_state[1]; } return t_rng; } WDataOutP VL_RANDOM_W(int obits, WDataOutP outwp) VL_MT_SAFE { for (int i = 0; i < VL_WORDS_I(obits); ++i) outwp[i] = vl_rand64(); // Last word is unclean return outwp; } WDataOutP VL_RANDOM_RNG_W(VlRNG& rngr, int obits, WDataOutP outwp) VL_MT_UNSAFE { for (int i = 0; i < VL_WORDS_I(obits); ++i) outwp[i] = rngr.rand64(); // Last word is unclean return outwp; } IData VL_RANDOM_SEEDED_II(IData& seedr) VL_MT_SAFE { // $random - seed is a new seed to apply, then we return new seed Verilated::threadContextp()->randSeed(static_cast(seedr)); seedr = VL_RANDOM_I(); return VL_RANDOM_I(); } IData VL_URANDOM_SEEDED_II(IData seed) VL_MT_SAFE { // $urandom - seed is a new seed to apply Verilated::threadContextp()->randSeed(static_cast(seed)); return VL_RANDOM_I(); } IData VL_RAND_RESET_I(int obits) VL_MT_SAFE { if (Verilated::threadContextp()->randReset() == 0) return 0; IData data = ~0; if (Verilated::threadContextp()->randReset() != 1) { // if 2, randomize data = VL_RANDOM_I(); } data &= VL_MASK_I(obits); return data; } QData VL_RAND_RESET_Q(int obits) VL_MT_SAFE { if (Verilated::threadContextp()->randReset() == 0) return 0; QData data = ~0ULL; if (Verilated::threadContextp()->randReset() != 1) { // if 2, randomize data = VL_RANDOM_Q(); } data &= VL_MASK_Q(obits); return data; } WDataOutP VL_RAND_RESET_W(int obits, WDataOutP outwp) VL_MT_SAFE { for (int i = 0; i < VL_WORDS_I(obits) - 1; ++i) outwp[i] = VL_RAND_RESET_I(32); outwp[VL_WORDS_I(obits) - 1] = VL_RAND_RESET_I(32) & VL_MASK_E(obits); return outwp; } WDataOutP VL_ZERO_RESET_W(int obits, WDataOutP outwp) VL_MT_SAFE { // Not inlined to speed up compilation of slowpath code return VL_ZERO_W(obits, outwp); } //=========================================================================== // Debug void _vl_debug_print_w(int lbits, const WDataInP iwp) VL_MT_SAFE { VL_PRINTF_MT(" Data: w%d: ", lbits); for (int i = VL_WORDS_I(lbits) - 1; i >= 0; --i) VL_PRINTF_MT("%08x ", iwp[i]); VL_PRINTF_MT("\n"); } //=========================================================================== // Slow expressions WDataOutP _vl_moddiv_w(int lbits, WDataOutP owp, const WDataInP lwp, const WDataInP rwp, bool is_modulus) VL_MT_SAFE { // See Knuth Algorithm D. Computes u/v = q.r // This isn't massively tuned, as wide division is rare // for debug see V3Number version // Requires clean input const int words = VL_WORDS_I(lbits); for (int i = 0; i < words; ++i) owp[i] = 0; // Find MSB and check for zero. const int umsbp1 = VL_MOSTSETBITP1_W(words, lwp); // dividend const int vmsbp1 = VL_MOSTSETBITP1_W(words, rwp); // divisor if (VL_UNLIKELY(vmsbp1 == 0) // rwp==0 so division by zero. Return 0. || VL_UNLIKELY(umsbp1 == 0)) { // 0/x so short circuit and return 0 return owp; } const int uw = VL_WORDS_I(umsbp1); // aka "m" in the algorithm const int vw = VL_WORDS_I(vmsbp1); // aka "n" in the algorithm if (vw == 1) { // Single divisor word breaks rest of algorithm uint64_t k = 0; for (int j = uw - 1; j >= 0; --j) { const uint64_t unw64 = ((k << 32ULL) + static_cast(lwp[j])); owp[j] = unw64 / static_cast(rwp[0]); k = unw64 - static_cast(owp[j]) * static_cast(rwp[0]); } if (is_modulus) { owp[0] = k; for (int i = 1; i < words; ++i) owp[i] = 0; } return owp; } // +1 word as we may shift during normalization uint32_t un[VL_MULS_MAX_WORDS + 1]; // Fixed size, as MSVC++ doesn't allow [words] here uint32_t vn[VL_MULS_MAX_WORDS + 1]; // v normalized // Zero for ease of debugging and to save having to zero for shifts // Note +1 as loop will use extra word for (int i = 0; i < words + 1; ++i) { un[i] = vn[i] = 0; } // Algorithm requires divisor MSB to be set // Copy and shift to normalize divisor so MSB of vn[vw-1] is set const int s = 31 - VL_BITBIT_I(vmsbp1 - 1); // shift amount (0...31) const uint32_t shift_mask = s ? 0xffffffff : 0; // otherwise >> 32 won't mask the value for (int i = vw - 1; i > 0; --i) { vn[i] = (rwp[i] << s) | (shift_mask & (rwp[i - 1] >> (32 - s))); } vn[0] = rwp[0] << s; // Copy and shift dividend by same amount; may set new upper word if (s) { un[uw] = lwp[uw - 1] >> (32 - s); } else { un[uw] = 0; } for (int i = uw - 1; i > 0; --i) { un[i] = (lwp[i] << s) | (shift_mask & (lwp[i - 1] >> (32 - s))); } un[0] = lwp[0] << s; // Main loop for (int j = uw - vw; j >= 0; --j) { // Estimate const uint64_t unw64 = (static_cast(un[j + vw]) << 32ULL | static_cast(un[j + vw - 1])); uint64_t qhat = unw64 / static_cast(vn[vw - 1]); uint64_t rhat = unw64 - qhat * static_cast(vn[vw - 1]); again: if (qhat >= 0x100000000ULL || ((qhat * vn[vw - 2]) > ((rhat << 32ULL) + un[j + vw - 2]))) { qhat = qhat - 1; rhat = rhat + vn[vw - 1]; if (rhat < 0x100000000ULL) goto again; } int64_t t = 0; // Must be signed uint64_t k = 0; for (int i = 0; i < vw; ++i) { const uint64_t p = qhat * vn[i]; // Multiply by estimate t = un[i + j] - k - (p & 0xFFFFFFFFULL); // Subtract un[i + j] = t; k = (p >> 32ULL) - (t >> 32ULL); } t = un[j + vw] - k; un[j + vw] = t; owp[j] = qhat; // Save quotient digit if (t < 0) { // Over subtracted; correct by adding back owp[j]--; k = 0; for (int i = 0; i < vw; ++i) { t = static_cast(un[i + j]) + static_cast(vn[i]) + k; un[i + j] = t; k = t >> 32ULL; } un[j + vw] = un[j + vw] + k; } } if (is_modulus) { // modulus // Need to reverse normalization on copy to output for (int i = 0; i < vw; ++i) { owp[i] = (un[i] >> s) | (shift_mask & (un[i + 1] << (32 - s))); } for (int i = vw; i < words; ++i) owp[i] = 0; return owp; } else { // division return owp; } } WDataOutP VL_POW_WWW(int obits, int, int rbits, WDataOutP owp, const WDataInP lwp, const WDataInP rwp) VL_MT_SAFE { // obits==lbits, rbits can be different owp[0] = 1; for (int i = 1; i < VL_WORDS_I(obits); i++) owp[i] = 0; // cppcheck-has-bug-suppress variableScope VlWide powstore; // Fixed size, as MSVC++ doesn't allow [words] here VlWide lastpowstore; // Fixed size, as MSVC++ doesn't allow [words] here VlWide lastoutstore; // Fixed size, as MSVC++ doesn't allow [words] here // cppcheck-has-bug-suppress variableScope VL_ASSIGN_W(obits, powstore, lwp); for (int bit = 0; bit < rbits; bit++) { if (bit > 0) { // power = power*power VL_ASSIGN_W(obits, lastpowstore, powstore); VL_MUL_W(VL_WORDS_I(obits), powstore, lastpowstore, lastpowstore); } if (VL_BITISSET_W(rwp, bit)) { // out *= power VL_ASSIGN_W(obits, lastoutstore, owp); VL_MUL_W(VL_WORDS_I(obits), owp, lastoutstore, powstore); } } return owp; } WDataOutP VL_POW_WWQ(int obits, int lbits, int rbits, WDataOutP owp, const WDataInP lwp, QData rhs) VL_MT_SAFE { VlWide rhsw; VL_SET_WQ(rhsw, rhs); return VL_POW_WWW(obits, lbits, rbits, owp, lwp, rhsw); } QData VL_POW_QQW(int, int, int rbits, QData lhs, const WDataInP rwp) VL_MT_SAFE { // Skip check for rhs == 0, as short-circuit doesn't save time if (VL_UNLIKELY(lhs == 0)) return 0; QData power = lhs; QData result = 1ULL; for (int bit = 0; bit < rbits; ++bit) { if (bit > 0) power = power * power; if (VL_BITISSET_W(rwp, bit)) result *= power; } return result; } WDataOutP VL_POWSS_WWW(int obits, int, int rbits, WDataOutP owp, const WDataInP lwp, const WDataInP rwp, bool lsign, bool rsign) VL_MT_SAFE { // obits==lbits, rbits can be different if (rsign && VL_SIGN_W(rbits, rwp)) { const int words = VL_WORDS_I(obits); VL_ZERO_W(obits, owp); EData lor = 0; // 0=all zeros, ~0=all ones, else mix for (int i = 1; i < (words - 1); ++i) { lor |= lwp[i]; } lor |= ((lwp[words - 1] == VL_MASK_E(rbits)) ? ~VL_EUL(0) : 0); if (lor == 0 && lwp[0] == 0) { // "X" so return 0 return owp; } else if (lor == 0 && lwp[0] == 1) { // 1 owp[0] = 1; return owp; } else if (lsign && lor == ~VL_EUL(0) && lwp[0] == ~VL_EUL(0)) { // -1 if (rwp[0] & 1) { // -1^odd=-1 return VL_ALLONES_W(obits, owp); } else { // -1^even=1 owp[0] = 1; return owp; } } return owp; } return VL_POW_WWW(obits, rbits, rbits, owp, lwp, rwp); } WDataOutP VL_POWSS_WWQ(int obits, int lbits, int rbits, WDataOutP owp, const WDataInP lwp, QData rhs, bool lsign, bool rsign) VL_MT_SAFE { VlWide rhsw; VL_SET_WQ(rhsw, rhs); return VL_POWSS_WWW(obits, lbits, rbits, owp, lwp, rhsw, lsign, rsign); } QData VL_POWSS_QQW(int obits, int, int rbits, QData lhs, const WDataInP rwp, bool lsign, bool rsign) VL_MT_SAFE { // Skip check for rhs == 0, as short-circuit doesn't save time if (rsign && VL_SIGN_W(rbits, rwp)) { if (lhs == 0) { return 0; // "X" } else if (lhs == 1) { return 1; } else if (lsign && lhs == VL_MASK_Q(obits)) { // -1 if (rwp[0] & 1) { return VL_MASK_Q(obits); // -1^odd=-1 } else { return 1; // -1^even=1 } } return 0; } return VL_POW_QQW(obits, rbits, rbits, lhs, rwp); } double VL_ITOR_D_W(int lbits, const WDataInP lwp) VL_PURE { int ms_word = VL_WORDS_I(lbits) - 1; for (; !lwp[ms_word] && ms_word > 0;) --ms_word; if (ms_word == 0) return static_cast(lwp[0]); if (ms_word == 1) return static_cast(VL_SET_QW(lwp)); // We need 53 bits of mantissa, which might mean looking at 3 words // namely ms_word, ms_word-1 and ms_word-2 const EData ihi = lwp[ms_word]; const EData imid = lwp[ms_word - 1]; const EData ilo = lwp[ms_word - 2]; const double hi = static_cast(ihi) * std::exp2(2 * VL_EDATASIZE); const double mid = static_cast(imid) * std::exp2(VL_EDATASIZE); const double lo = static_cast(ilo); const double d = (hi + mid + lo) * std::exp2(VL_EDATASIZE * (ms_word - 2)); return d; } double VL_ISTOR_D_W(int lbits, const WDataInP lwp) VL_MT_SAFE { if (!VL_SIGN_W(lbits, lwp)) return VL_ITOR_D_W(lbits, lwp); uint32_t pos[VL_MULS_MAX_WORDS + 1]; // Fixed size, as MSVC++ doesn't allow [words] here VL_NEGATE_W(VL_WORDS_I(lbits), pos, lwp); _vl_clean_inplace_w(lbits, pos); return -VL_ITOR_D_W(lbits, pos); } //=========================================================================== // Formatting // Output a string representation of a wide number std::string VL_DECIMAL_NW(int width, const WDataInP lwp) VL_MT_SAFE { const int maxdecwidth = (width + 3) * 4 / 3; // Or (maxdecwidth+7)/8], but can't have more than 4 BCD bits per word VlWide bcd; VL_ZERO_W(maxdecwidth, bcd); VlWide tmp; VlWide tmp2; int from_bit = width - 1; // Skip all leading zeros for (; from_bit >= 0 && !(VL_BITRSHIFT_W(lwp, from_bit) & 1); --from_bit) {} // Double-dabble algorithm for (; from_bit >= 0; --from_bit) { // Any digits >= 5 need an add 3 (via tmp) for (int nibble_bit = 0; nibble_bit < maxdecwidth; nibble_bit += 4) { if ((VL_BITRSHIFT_W(bcd, nibble_bit) & 0xf) >= 5) { VL_ZERO_W(maxdecwidth, tmp2); tmp2[VL_BITWORD_E(nibble_bit)] |= VL_EUL(0x3) << VL_BITBIT_E(nibble_bit); VL_ASSIGN_W(maxdecwidth, tmp, bcd); VL_ADD_W(VL_WORDS_I(maxdecwidth), bcd, tmp, tmp2); } } // Shift; bcd = bcd << 1 VL_ASSIGN_W(maxdecwidth, tmp, bcd); VL_SHIFTL_WWI(maxdecwidth, maxdecwidth, 32, bcd, tmp, 1); // bcd[0] = lwp[from_bit] if (VL_BITISSET_W(lwp, from_bit)) bcd[0] |= 1; } std::string output; int lsb = (maxdecwidth - 1) & ~3; for (; lsb > 0; lsb -= 4) { // Skip leading zeros if (VL_BITRSHIFT_W(bcd, lsb) & 0xf) break; } for (; lsb >= 0; lsb -= 4) { output += ('0' + (VL_BITRSHIFT_W(bcd, lsb) & 0xf)); // 0..9 } return output; } template std::string _vl_vsformat_time(char* tmp, T ld, int timeunit, bool left, size_t width) VL_MT_SAFE { const VerilatedContextImp* const ctxImpp = Verilated::threadContextp()->impp(); const std::string suffix = ctxImpp->timeFormatSuffix(); const int userUnits = ctxImpp->timeFormatUnits(); // 0..-15 const int fracDigits = ctxImpp->timeFormatPrecision(); // 0..N const int shift = -userUnits + fracDigits + timeunit; // 0..-15 int digits = 0; if (std::numeric_limits::is_integer) { constexpr int b = 128; constexpr int w = VL_WORDS_I(b); VlWide tmp0; VlWide tmp1; VlWide tmp2; VlWide tmp3; WDataInP shifted = VL_EXTEND_WQ(b, 0, tmp0, static_cast(ld)); if (shift < 0) { const WDataInP pow10 = VL_EXTEND_WQ(b, 0, tmp1, vl_time_pow10(-shift)); shifted = VL_DIV_WWW(b, tmp2, shifted, pow10); } else { const WDataInP pow10 = VL_EXTEND_WQ(b, 0, tmp1, vl_time_pow10(shift)); shifted = VL_MUL_W(w, tmp2, shifted, pow10); } const WDataInP fracDigitsPow10 = VL_EXTEND_WQ(b, 0, tmp3, vl_time_pow10(fracDigits)); const WDataInP integer = VL_DIV_WWW(b, tmp0, shifted, fracDigitsPow10); const WDataInP frac = VL_MODDIV_WWW(b, tmp1, shifted, fracDigitsPow10); const WDataInP max64Bit = VL_EXTEND_WQ(b, 0, tmp2, std::numeric_limits::max()); // breaks shifted if (VL_GT_W(w, integer, max64Bit)) { WDataOutP v = VL_ASSIGN_W(b, tmp3, integer); // breaks fracDigitsPow10 VlWide zero; VlWide ten; VL_ZERO_W(b, zero); VL_EXTEND_WI(b, 0, ten, 10); char buf[128]; // 128B is obviously long enough to represent 128bit integer in decimal char* ptr = buf + sizeof(buf) - 1; *ptr = '\0'; while (VL_GT_W(w, v, zero)) { --ptr; const WDataInP mod = VL_MODDIV_WWW(b, tmp2, v, ten); // breaks max64Bit *ptr = "0123456789"[VL_SET_QW(mod)]; VlWide divided; VL_DIV_WWW(b, divided, v, ten); VL_ASSIGN_W(b, v, divided); } if (!fracDigits) { digits = VL_SNPRINTF(tmp, VL_VALUE_STRING_MAX_WIDTH, "%s%s", ptr, suffix.c_str()); } else { digits = VL_SNPRINTF(tmp, VL_VALUE_STRING_MAX_WIDTH, "%s.%0*" PRIu64 "%s", ptr, fracDigits, VL_SET_QW(frac), suffix.c_str()); } } else { const uint64_t integer64 = VL_SET_QW(integer); if (!fracDigits) { digits = VL_SNPRINTF(tmp, VL_VALUE_STRING_MAX_WIDTH, "%" PRIu64 "%s", integer64, suffix.c_str()); } else { digits = VL_SNPRINTF(tmp, VL_VALUE_STRING_MAX_WIDTH, "%" PRIu64 ".%0*" PRIu64 "%s", integer64, fracDigits, VL_SET_QW(frac), suffix.c_str()); } } } else { const double shiftd = vl_time_multiplier(shift); const double scaled = ld * shiftd; const double fracDiv = vl_time_multiplier(fracDigits); const double whole = scaled / fracDiv; if (!fracDigits) { digits = VL_SNPRINTF(tmp, VL_VALUE_STRING_MAX_WIDTH, "%.0f%s", whole, suffix.c_str()); } else { digits = VL_SNPRINTF(tmp, VL_VALUE_STRING_MAX_WIDTH, "%.*f%s", fracDigits, whole, suffix.c_str()); } } const int needmore = width - digits; std::string padding; if (needmore > 0) padding.append(needmore, ' '); // Pad with spaces return left ? (tmp + padding) : (padding + tmp); } // Do a va_arg returning a quad, assuming input argument is anything less than wide #define VL_VA_ARG_Q_(ap, bits) (((bits) <= VL_IDATASIZE) ? va_arg(ap, IData) : va_arg(ap, QData)) void _vl_vsformat(std::string& output, const char* formatp, va_list ap) VL_MT_SAFE { // Format a Verilog $write style format into the output list // The format must be pre-processed (and lower cased) by Verilator // Arguments are in "width, arg-value (or WDataIn* if wide)" form // // Note uses a single buffer internally; presumes only one usage per printf // Note also assumes variables < 64 are not wide, this assumption is // sometimes not true in low-level routines written here in verilated.cpp static thread_local char t_tmp[VL_VALUE_STRING_MAX_WIDTH]; const char* pctp = nullptr; // Most recent %##.##g format bool inPct = false; bool widthSet = false; bool left = false; size_t width = 0; for (const char* pos = formatp; *pos; ++pos) { if (!inPct && pos[0] == '%') { pctp = pos; inPct = true; widthSet = false; width = 0; } else if (!inPct) { // Normal text // Fast-forward to next escape and add to output const char* ep = pos; while (ep[0] && ep[0] != '%') ++ep; if (ep != pos) { output.append(pos, ep - pos); pos += ep - pos - 1; } } else { // Format character inPct = false; const char fmt = pos[0]; switch (fmt) { case '0': // FALLTHRU case '1': // FALLTHRU case '2': // FALLTHRU case '3': // FALLTHRU case '4': // FALLTHRU case '5': // FALLTHRU case '6': // FALLTHRU case '7': // FALLTHRU case '8': // FALLTHRU case '9': inPct = true; // Get more digits widthSet = true; width = width * 10 + (fmt - '0'); break; case '-': left = true; inPct = true; // Get more digits break; case '.': inPct = true; // Get more digits break; case '%': // output += '%'; break; case 'N': { // "C" string with name of module, add . if needed const char* const cstrp = va_arg(ap, const char*); if (VL_LIKELY(*cstrp)) { output += cstrp; output += '.'; } break; } case 'S': { // "C" string const char* const cstrp = va_arg(ap, const char*); output += cstrp; break; } case '@': { // Verilog/C++ string va_arg(ap, int); // # bits is ignored const std::string* const cstrp = va_arg(ap, const std::string*); std::string padding; if (width > cstrp->size()) padding.append(width - cstrp->size(), ' '); output += left ? (*cstrp + padding) : (padding + *cstrp); break; } case 'e': case 'f': case 'g': case '^': { // Realtime const int lbits = va_arg(ap, int); const double d = va_arg(ap, double); if (lbits) {} // UNUSED - always 64 if (fmt == '^') { // Realtime if (!widthSet) width = Verilated::threadContextp()->impp()->timeFormatWidth(); const int timeunit = va_arg(ap, int); output += _vl_vsformat_time(t_tmp, d, timeunit, left, width); } else { const size_t len = pos - pctp + 1; const std::string fmts{pctp, len}; VL_SNPRINTF(t_tmp, VL_VALUE_STRING_MAX_WIDTH, fmts.c_str(), d); output += t_tmp; } break; } default: { // Deal with all read-and-print somethings const int lbits = va_arg(ap, int); QData ld = 0; VlWide qlwp; WDataInP lwp = nullptr; if (lbits <= VL_QUADSIZE) { ld = VL_VA_ARG_Q_(ap, lbits); VL_SET_WQ(qlwp, ld); lwp = qlwp; } else { lwp = va_arg(ap, WDataInP); ld = lwp[0]; } int lsb = lbits - 1; if (widthSet && width == 0) { while (lsb && !VL_BITISSET_W(lwp, lsb)) --lsb; } switch (fmt) { case 'c': { const IData charval = ld & 0xff; output += static_cast(charval); break; } case 's': { std::string field; for (; lsb >= 0; --lsb) { lsb = (lsb / 8) * 8; // Next digit const IData charval = VL_BITRSHIFT_W(lwp, lsb) & 0xff; field += (charval == 0) ? ' ' : charval; } std::string padding; if (width > field.size()) padding.append(width - field.size(), ' '); output += left ? (field + padding) : (padding + field); break; } case 'd': { // Signed decimal int digits = 0; std::string append; if (lbits <= VL_QUADSIZE) { digits = VL_SNPRINTF(t_tmp, VL_VALUE_STRING_MAX_WIDTH, "%" PRId64, static_cast(VL_EXTENDS_QQ(lbits, lbits, ld))); append = t_tmp; } else { if (VL_SIGN_E(lbits, lwp[VL_WORDS_I(lbits) - 1])) { VlWide neg; VL_NEGATE_W(VL_WORDS_I(lbits), neg, lwp); append = std::string{"-"} + VL_DECIMAL_NW(lbits, neg); } else { append = VL_DECIMAL_NW(lbits, lwp); } digits = append.length(); } const int needmore = width - digits; if (needmore > 0) { std::string padding; if (left) { padding.append(needmore, ' '); // Pre-pad spaces output += append + padding; } else { if (pctp && pctp[0] && pctp[1] == '0') { // %0 padding.append(needmore, '0'); // Pre-pad zero } else { padding.append(needmore, ' '); // Pre-pad spaces } output += padding + append; } } else { output += append; } break; } case '#': { // Unsigned decimal int digits = 0; std::string append; if (lbits <= VL_QUADSIZE) { digits = VL_SNPRINTF(t_tmp, VL_VALUE_STRING_MAX_WIDTH, "%" PRIu64, ld); append = t_tmp; } else { append = VL_DECIMAL_NW(lbits, lwp); digits = append.length(); } const int needmore = width - digits; if (needmore > 0) { std::string padding; if (left) { padding.append(needmore, ' '); // Pre-pad spaces output += append + padding; } else { if (pctp && pctp[0] && pctp[1] == '0') { // %0 padding.append(needmore, '0'); // Pre-pad zero } else { padding.append(needmore, ' '); // Pre-pad spaces } output += padding + append; } } else { output += append; } break; } case 't': { // Time if (!widthSet) width = Verilated::threadContextp()->impp()->timeFormatWidth(); const int timeunit = va_arg(ap, int); output += _vl_vsformat_time(t_tmp, ld, timeunit, left, width); break; } case 'b': // FALLTHRU case 'o': // FALLTHRU case 'x': { if (widthSet || left) { lsb = VL_MOSTSETBITP1_W(VL_WORDS_I(lbits), lwp); lsb = (lsb < 1) ? 0 : (lsb - 1); } std::string append; int digits; switch (fmt) { case 'b': { digits = lsb + 1; for (; lsb >= 0; --lsb) append += (VL_BITRSHIFT_W(lwp, lsb) & 1) + '0'; break; } case 'o': { digits = (lsb + 1 + 2) / 3; for (; lsb >= 0; --lsb) { lsb = (lsb / 3) * 3; // Next digit // Octal numbers may span more than one wide word, // so we need to grab each bit separately and check for overrun // Octal is rare, so we'll do it a slow simple way append += static_cast( '0' + ((VL_BITISSETLIMIT_W(lwp, lbits, lsb + 0)) ? 1 : 0) + ((VL_BITISSETLIMIT_W(lwp, lbits, lsb + 1)) ? 2 : 0) + ((VL_BITISSETLIMIT_W(lwp, lbits, lsb + 2)) ? 4 : 0)); } break; } default: { // 'x' digits = (lsb + 1 + 3) / 4; for (; lsb >= 0; --lsb) { lsb = (lsb / 4) * 4; // Next digit const IData charval = VL_BITRSHIFT_W(lwp, lsb) & 0xf; append += "0123456789abcdef"[charval]; } break; } } // switch const int needmore = width - digits; if (needmore > 0) { std::string padding; if (left) { padding.append(needmore, ' '); // Pre-pad spaces output += append + padding; } else { padding.append(needmore, '0'); // Pre-pad zero output += padding + append; } } else { output += append; } break; } // b / o / x case 'u': case 'z': { // Packed 4-state const bool is_4_state = (fmt == 'z'); output.reserve(output.size() + ((is_4_state ? 2 : 1) * VL_WORDS_I(lbits))); int bytes_to_go = VL_BYTES_I(lbits); int bit = 0; while (bytes_to_go > 0) { const int wr_bytes = std::min(4, bytes_to_go); for (int byte = 0; byte < wr_bytes; byte++, bit += 8) output += static_cast(VL_BITRSHIFT_W(lwp, bit) & 0xff); output.append(4 - wr_bytes, static_cast(0)); if (is_4_state) output.append(4, static_cast(0)); bytes_to_go -= wr_bytes; } break; } case 'v': // Strength; assume always strong for (lsb = lbits - 1; lsb >= 0; --lsb) { if (VL_BITRSHIFT_W(lwp, lsb) & 1) { output += "St1 "; } else { output += "St0 "; } } break; default: { // LCOV_EXCL_START const std::string msg = std::string{"Unknown _vl_vsformat code: "} + pos[0]; VL_FATAL_MT(__FILE__, __LINE__, "", msg.c_str()); break; } // LCOV_EXCL_STOP } // switch } } // switch } } } static bool _vl_vsss_eof(FILE* fp, int floc) VL_MT_SAFE { if (VL_LIKELY(fp)) { return std::feof(fp) ? true : false; // true : false to prevent MSVC++ warning } else { return floc < 0; } } static void _vl_vsss_advance(FILE* fp, int& floc) VL_MT_SAFE { if (VL_LIKELY(fp)) { std::fgetc(fp); } else { floc -= 8; } } static int _vl_vsss_peek(FILE* fp, int& floc, const WDataInP fromp, const std::string& fstr) VL_MT_SAFE { // Get a character without advancing if (VL_LIKELY(fp)) { const int data = std::fgetc(fp); if (data == EOF) return EOF; ungetc(data, fp); return data; } else { if (floc < 0) return EOF; floc = floc & ~7; // Align to closest character if (fromp == nullptr) { return fstr[fstr.length() - 1 - (floc >> 3)]; } else { return VL_BITRSHIFT_W(fromp, floc) & 0xff; } } } static void _vl_vsss_skipspace(FILE* fp, int& floc, const WDataInP fromp, const std::string& fstr) VL_MT_SAFE { while (true) { const int c = _vl_vsss_peek(fp, floc, fromp, fstr); if (c == EOF || !std::isspace(c)) return; _vl_vsss_advance(fp, floc); } } static void _vl_vsss_read_str(FILE* fp, int& floc, const WDataInP fromp, const std::string& fstr, char* tmpp, const char* acceptp) VL_MT_SAFE { // Read into tmp, consisting of characters from acceptp list char* cp = tmpp; while (true) { int c = _vl_vsss_peek(fp, floc, fromp, fstr); if (c == EOF || std::isspace(c)) break; if (acceptp && nullptr == std::strchr(acceptp, c)) break; // String - allow anything if (acceptp) c = std::tolower(c); // Non-strings we'll simplify *cp++ = c; _vl_vsss_advance(fp, floc); } *cp++ = '\0'; // VL_DBG_MSGF(" _read got='"< 0) { const int c = _vl_vsss_peek(fp, floc, fromp, fstr); if (c == EOF) return nullptr; if (!inhibit) *beginp++ = c; _vl_vsss_advance(fp, floc); } return beginp; } static void _vl_vsss_setbit(WDataOutP iowp, int obits, int lsb, int nbits, IData ld) VL_MT_SAFE { for (; nbits && lsb < obits; nbits--, lsb++, ld >>= 1) VL_ASSIGNBIT_WI(lsb, iowp, ld & 1); } static void _vl_vsss_based(WDataOutP owp, int obits, int baseLog2, const char* strp, size_t posstart, size_t posend) VL_MT_SAFE { // Read in base "2^^baseLog2" digits from strp[posstart..posend-1] into owp of size obits. VL_ZERO_W(obits, owp); int lsb = 0; for (int i = 0, pos = static_cast(posend) - 1; i < obits && pos >= static_cast(posstart); --pos) { // clang-format off switch (tolower (strp[pos])) { case 'x': case 'z': case '?': // FALLTHRU case '0': lsb += baseLog2; break; case '1': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 1); lsb += baseLog2; break; case '2': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 2); lsb += baseLog2; break; case '3': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 3); lsb += baseLog2; break; case '4': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 4); lsb += baseLog2; break; case '5': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 5); lsb += baseLog2; break; case '6': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 6); lsb += baseLog2; break; case '7': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 7); lsb += baseLog2; break; case '8': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 8); lsb += baseLog2; break; case '9': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 9); lsb += baseLog2; break; case 'a': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 10); lsb += baseLog2; break; case 'b': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 11); lsb += baseLog2; break; case 'c': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 12); lsb += baseLog2; break; case 'd': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 13); lsb += baseLog2; break; case 'e': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 14); lsb += baseLog2; break; case 'f': _vl_vsss_setbit(owp, obits, lsb, baseLog2, 15); lsb += baseLog2; break; case '_': break; } // clang-format on } } IData _vl_vsscanf(FILE* fp, // If a fscanf int fbits, const WDataInP fromp, // Else if a sscanf const std::string& fstr, // if a sscanf to string const char* formatp, va_list ap) VL_MT_SAFE { // Read a Verilog $sscanf/$fscanf style format into the output list // The format must be pre-processed (and lower cased) by Verilator // Arguments are in "width, arg-value (or WDataIn* if wide)" form static thread_local char t_tmp[VL_VALUE_STRING_MAX_WIDTH]; int floc = fbits - 1; IData got = 0; bool inPct = false; bool inIgnore = false; const char* pos = formatp; for (; *pos && !_vl_vsss_eof(fp, floc); ++pos) { // VL_DBG_MSGF("_vlscan fmt='"< qowp; VL_SET_WQ(qowp, 0ULL); WDataOutP owp = qowp; if (obits == -1) { // string owp = nullptr; if (VL_UNCOVERABLE(fmt != 's')) { VL_FATAL_MT( __FILE__, __LINE__, "", "Internal: format other than %s is passed to string"); // LCOV_EXCL_LINE } } else if (obits > VL_QUADSIZE) { owp = va_arg(ap, WDataOutP); } for (int i = 0; i < VL_WORDS_I(obits); ++i) owp[i] = 0; switch (fmt) { case 'c': { const int c = _vl_vsss_peek(fp, floc, fromp, fstr); if (c == EOF) goto done; _vl_vsss_advance(fp, floc); owp[0] = c; break; } case 's': { _vl_vsss_skipspace(fp, floc, fromp, fstr); _vl_vsss_read_str(fp, floc, fromp, fstr, t_tmp, nullptr); if (!t_tmp[0]) goto done; if (owp) { int lpos = (static_cast(std::strlen(t_tmp))) - 1; int lsb = 0; for (int i = 0; i < obits && lpos >= 0; --lpos) { _vl_vsss_setbit(owp, obits, lsb, 8, t_tmp[lpos]); lsb += 8; } } break; } case 'd': { // Signed decimal _vl_vsss_skipspace(fp, floc, fromp, fstr); _vl_vsss_read_str(fp, floc, fromp, fstr, t_tmp, "0123456789+-xXzZ?_"); if (!t_tmp[0]) goto done; int64_t ld = 0; std::sscanf(t_tmp, "%30" PRId64, &ld); VL_SET_WQ(owp, ld); break; } case 'f': case 'e': case 'g': { // Real number _vl_vsss_skipspace(fp, floc, fromp, fstr); _vl_vsss_read_str(fp, floc, fromp, fstr, t_tmp, "+-.0123456789eE"); if (!t_tmp[0]) goto done; // cppcheck-has-bug-suppress unusedStructMember, unreadVariable union { double r; int64_t ld; } u; u.r = std::strtod(t_tmp, nullptr); VL_SET_WQ(owp, u.ld); break; } case 't': // FALLTHRU // Time case '#': { // Unsigned decimal _vl_vsss_skipspace(fp, floc, fromp, fstr); _vl_vsss_read_str(fp, floc, fromp, fstr, t_tmp, "0123456789+-xXzZ?_"); if (!t_tmp[0]) goto done; QData ld = 0; std::sscanf(t_tmp, "%30" PRIu64, &ld); VL_SET_WQ(owp, ld); break; } case 'b': { _vl_vsss_skipspace(fp, floc, fromp, fstr); _vl_vsss_read_str(fp, floc, fromp, fstr, t_tmp, "01xXzZ?_"); if (!t_tmp[0]) goto done; _vl_vsss_based(owp, obits, 1, t_tmp, 0, std::strlen(t_tmp)); break; } case 'o': { _vl_vsss_skipspace(fp, floc, fromp, fstr); _vl_vsss_read_str(fp, floc, fromp, fstr, t_tmp, "01234567xXzZ?_"); if (!t_tmp[0]) goto done; _vl_vsss_based(owp, obits, 3, t_tmp, 0, std::strlen(t_tmp)); break; } case 'x': { _vl_vsss_skipspace(fp, floc, fromp, fstr); _vl_vsss_read_str(fp, floc, fromp, fstr, t_tmp, "0123456789abcdefABCDEFxXzZ?_"); if (!t_tmp[0]) goto done; _vl_vsss_based(owp, obits, 4, t_tmp, 0, std::strlen(t_tmp)); break; } case 'u': { // Read packed 2-value binary data const int bytes = VL_BYTES_I(obits); char* const out = reinterpret_cast(owp); if (!_vl_vsss_read_bin(fp, floc, fromp, fstr, out, bytes)) goto done; const int last = bytes % 4; if (last != 0 && !_vl_vsss_read_bin(fp, floc, fromp, fstr, out, 4 - last, true)) goto done; break; } case 'z': { // Read packed 4-value binary data char* out = reinterpret_cast(owp); int bytes = VL_BYTES_I(obits); while (bytes > 0) { const int abytes = std::min(4, bytes); // aval (4B) read {0, 1} state out = _vl_vsss_read_bin(fp, floc, fromp, fstr, out, abytes); if (!out) goto done; // bval (4B) disregard {X, Z} state and align to new 8B boundary. out = _vl_vsss_read_bin(fp, floc, fromp, fstr, out, 8 - abytes, true); if (!out) goto done; bytes -= abytes; } break; } default: { // LCOV_EXCL_START const std::string msg = std::string{"Unknown _vl_vsscanf code: "} + pos[0]; VL_FATAL_MT(__FILE__, __LINE__, "", msg.c_str()); break; } // LCOV_EXCL_STOP } // switch if (!inIgnore) ++got; // Reload data if non-wide (if wide, we put it in the right place directly) if (obits == 0) { // Due to inIgnore } else if (obits == -1) { // string std::string* const p = va_arg(ap, std::string*); *p = t_tmp; } else if (obits <= VL_BYTESIZE) { CData* const p = va_arg(ap, CData*); *p = VL_CLEAN_II(obits, obits, owp[0]); } else if (obits <= VL_SHORTSIZE) { SData* const p = va_arg(ap, SData*); *p = VL_CLEAN_II(obits, obits, owp[0]); } else if (obits <= VL_IDATASIZE) { IData* const p = va_arg(ap, IData*); *p = VL_CLEAN_II(obits, obits, owp[0]); } else if (obits <= VL_QUADSIZE) { QData* const p = va_arg(ap, QData*); *p = VL_CLEAN_QQ(obits, obits, VL_SET_QW(owp)); } else { _vl_clean_inplace_w(obits, owp); } } } // switch } } done: return got; } //=========================================================================== // File I/O FILE* VL_CVT_I_FP(IData lhs) VL_MT_SAFE { // Expected non-MCD case; returns null on MCD descriptors. return Verilated::threadContextp()->impp()->fdToFp(lhs); } void _vl_vint_to_string(int obits, char* destoutp, const WDataInP sourcep) VL_MT_SAFE { // See also VL_DATA_TO_STRING_NW int lsb = obits - 1; bool start = true; char* destp = destoutp; for (; lsb >= 0; --lsb) { lsb = (lsb / 8) * 8; // Next digit const IData charval = VL_BITRSHIFT_W(sourcep, lsb) & 0xff; if (!start || charval) { *destp++ = (charval == 0) ? ' ' : charval; start = false; // Drop leading 0s } } *destp = '\0'; // Terminate if (!start) { // Drop trailing spaces while (std::isspace(*(destp - 1)) && destp > destoutp) *--destp = '\0'; } } void _vl_string_to_vint(int obits, void* destp, size_t srclen, const char* srcp) VL_MT_SAFE { // Convert C string to Verilog format const size_t bytes = VL_BYTES_I(obits); char* op = reinterpret_cast(destp); if (srclen > bytes) srclen = bytes; // Don't overflow destination size_t i = 0; for (i = 0; i < srclen; ++i) { *op++ = srcp[srclen - 1 - i]; } for (; i < bytes; ++i) { *op++ = 0; } } static IData getLine(std::string& str, IData fpi, size_t maxLen) VL_MT_SAFE { str.clear(); // While threadsafe, each thread can only access different file handles FILE* const fp = VL_CVT_I_FP(fpi); if (VL_UNLIKELY(!fp)) return 0; // We don't use fgets, as we must read \0s. while (str.size() < maxLen) { const int c = getc(fp); // getc() is threadsafe if (c == EOF) break; str.push_back(c); if (c == '\n') break; } return static_cast(str.size()); } IData VL_FGETS_IXI(int obits, void* destp, IData fpi) VL_MT_SAFE { std::string str; const IData bytes = VL_BYTES_I(obits); const IData got = getLine(str, fpi, bytes); if (VL_UNLIKELY(str.empty())) return 0; // V3Emit has static check that bytes < VL_VALUE_STRING_MAX_WORDS, but be safe if (VL_UNCOVERABLE(bytes < str.size())) { VL_FATAL_MT(__FILE__, __LINE__, "", "Internal: fgets buffer overrun"); // LCOV_EXCL_LINE } _vl_string_to_vint(obits, destp, got, str.data()); return got; } IData VL_FGETS_NI(std::string& dest, IData fpi) VL_MT_SAFE { return getLine(dest, fpi, std::numeric_limits::max()); } IData VL_FERROR_IN(IData, std::string& outputr) VL_MT_SAFE { // We ignore lhs/fpi - IEEE says "most recent error" so probably good enough const IData ret = errno; outputr = std::string{::std::strerror(ret)}; return ret; } IData VL_FERROR_IW(IData fpi, int obits, WDataOutP outwp) VL_MT_SAFE { std::string output; const IData ret = VL_FERROR_IN(fpi, output /*ref*/); _vl_string_to_vint(obits, outwp, output.length(), output.c_str()); return ret; } IData VL_FOPEN_NN(const std::string& filename, const std::string& mode) { return Verilated::threadContextp()->impp()->fdNew(filename.c_str(), mode.c_str()); } IData VL_FOPEN_MCD_N(const std::string& filename) VL_MT_SAFE { return Verilated::threadContextp()->impp()->fdNewMcd(filename.c_str()); } void VL_FFLUSH_I(IData fdi) VL_MT_SAFE { Verilated::threadContextp()->impp()->fdFlush(fdi); } IData VL_FSEEK_I(IData fdi, IData offset, IData origin) VL_MT_SAFE { return Verilated::threadContextp()->impp()->fdSeek(fdi, offset, origin); } IData VL_FTELL_I(IData fdi) VL_MT_SAFE { return Verilated::threadContextp()->impp()->fdTell(fdi); } void VL_FCLOSE_I(IData fdi) VL_MT_SAFE { // While threadsafe, each thread can only access different file handles Verilated::threadContextp()->impp()->fdClose(fdi); } void VL_SFORMAT_X(int obits, CData& destr, const char* formatp, ...) VL_MT_SAFE { static thread_local std::string t_output; // static only for speed t_output = ""; va_list ap; va_start(ap, formatp); _vl_vsformat(t_output, formatp, ap); va_end(ap); _vl_string_to_vint(obits, &destr, t_output.length(), t_output.c_str()); } void VL_SFORMAT_X(int obits, SData& destr, const char* formatp, ...) VL_MT_SAFE { static thread_local std::string t_output; // static only for speed t_output = ""; va_list ap; va_start(ap, formatp); _vl_vsformat(t_output, formatp, ap); va_end(ap); _vl_string_to_vint(obits, &destr, t_output.length(), t_output.c_str()); } void VL_SFORMAT_X(int obits, IData& destr, const char* formatp, ...) VL_MT_SAFE { static thread_local std::string t_output; // static only for speed t_output = ""; va_list ap; va_start(ap, formatp); _vl_vsformat(t_output, formatp, ap); va_end(ap); _vl_string_to_vint(obits, &destr, t_output.length(), t_output.c_str()); } void VL_SFORMAT_X(int obits, QData& destr, const char* formatp, ...) VL_MT_SAFE { static thread_local std::string t_output; // static only for speed t_output = ""; va_list ap; va_start(ap, formatp); _vl_vsformat(t_output, formatp, ap); va_end(ap); _vl_string_to_vint(obits, &destr, t_output.length(), t_output.c_str()); } void VL_SFORMAT_X(int obits, void* destp, const char* formatp, ...) VL_MT_SAFE { static thread_local std::string t_output; // static only for speed t_output = ""; va_list ap; va_start(ap, formatp); _vl_vsformat(t_output, formatp, ap); va_end(ap); _vl_string_to_vint(obits, destp, t_output.length(), t_output.c_str()); } void VL_SFORMAT_X(int obits_ignored, std::string& output, const char* formatp, ...) VL_MT_SAFE { if (obits_ignored) {} std::string temp_output; va_list ap; va_start(ap, formatp); _vl_vsformat(temp_output, formatp, ap); va_end(ap); output = temp_output; } std::string VL_SFORMATF_NX(const char* formatp, ...) VL_MT_SAFE { static thread_local std::string t_output; // static only for speed t_output = ""; va_list ap; va_start(ap, formatp); _vl_vsformat(t_output, formatp, ap); va_end(ap); return t_output; } void VL_WRITEF(const char* formatp, ...) VL_MT_SAFE { static thread_local std::string t_output; // static only for speed t_output = ""; va_list ap; va_start(ap, formatp); _vl_vsformat(t_output, formatp, ap); va_end(ap); VL_PRINTF_MT("%s", t_output.c_str()); } void VL_FWRITEF(IData fpi, const char* formatp, ...) VL_MT_SAFE { // While threadsafe, each thread can only access different file handles static thread_local std::string t_output; // static only for speed t_output = ""; va_list ap; va_start(ap, formatp); _vl_vsformat(t_output, formatp, ap); va_end(ap); Verilated::threadContextp()->impp()->fdWrite(fpi, t_output); } IData VL_FSCANF_IX(IData fpi, const char* formatp, ...) VL_MT_SAFE { // While threadsafe, each thread can only access different file handles FILE* const fp = VL_CVT_I_FP(fpi); if (VL_UNLIKELY(!fp)) return ~0U; // -1 va_list ap; va_start(ap, formatp); const IData got = _vl_vsscanf(fp, 0, nullptr, "", formatp, ap); va_end(ap); return got; } IData VL_SSCANF_IIX(int lbits, IData ld, const char* formatp, ...) VL_MT_SAFE { VlWide fnw; VL_SET_WI(fnw, ld); va_list ap; va_start(ap, formatp); const IData got = _vl_vsscanf(nullptr, lbits, fnw, "", formatp, ap); va_end(ap); return got; } IData VL_SSCANF_IQX(int lbits, QData ld, const char* formatp, ...) VL_MT_SAFE { VlWide fnw; VL_SET_WQ(fnw, ld); va_list ap; va_start(ap, formatp); const IData got = _vl_vsscanf(nullptr, lbits, fnw, "", formatp, ap); va_end(ap); return got; } IData VL_SSCANF_IWX(int lbits, const WDataInP lwp, const char* formatp, ...) VL_MT_SAFE { va_list ap; va_start(ap, formatp); const IData got = _vl_vsscanf(nullptr, lbits, lwp, "", formatp, ap); va_end(ap); return got; } IData VL_SSCANF_INX(int, const std::string& ld, const char* formatp, ...) VL_MT_SAFE { va_list ap; va_start(ap, formatp); const IData got = _vl_vsscanf(nullptr, ld.length() * 8, nullptr, ld, formatp, ap); va_end(ap); return got; } IData VL_FREAD_I(int width, int array_lsb, int array_size, void* memp, IData fpi, IData start, IData count) VL_MT_SAFE { // While threadsafe, each thread can only access different file handles FILE* const fp = VL_CVT_I_FP(fpi); if (VL_UNLIKELY(!fp)) return 0; if (count > (array_size - (start - array_lsb))) count = array_size - (start - array_lsb); // Prep for reading IData read_count = 0; IData read_elements = 0; const int start_shift = (width - 1) & ~7; // bit+7:bit gets first character int shift = start_shift; // Read the data // We process a character at a time, as then we don't need to deal // with changing buffer sizes dynamically, etc. while (true) { const int c = std::fgetc(fp); if (VL_UNLIKELY(c == EOF)) break; // Shift value in const IData entry = read_elements + start - array_lsb; if (width <= 8) { CData* const datap = &(reinterpret_cast(memp))[entry]; if (shift == start_shift) *datap = 0; *datap |= (c << shift) & VL_MASK_I(width); } else if (width <= 16) { SData* const datap = &(reinterpret_cast(memp))[entry]; if (shift == start_shift) *datap = 0; *datap |= (c << shift) & VL_MASK_I(width); } else if (width <= VL_IDATASIZE) { IData* const datap = &(reinterpret_cast(memp))[entry]; if (shift == start_shift) *datap = 0; *datap |= (c << shift) & VL_MASK_I(width); } else if (width <= VL_QUADSIZE) { QData* const datap = &(reinterpret_cast(memp))[entry]; if (shift == start_shift) *datap = 0; *datap |= ((static_cast(c) << static_cast(shift)) & VL_MASK_Q(width)); } else { WDataOutP datap = &(reinterpret_cast(memp))[entry * VL_WORDS_I(width)]; if (shift == start_shift) VL_ZERO_W(width, datap); datap[VL_BITWORD_E(shift)] |= (static_cast(c) << VL_BITBIT_E(shift)); } // Prep for next ++read_count; shift -= 8; if (shift < 0) { shift = start_shift; ++read_elements; if (VL_UNLIKELY(read_elements >= count)) break; } } return read_count; } std::string VL_STACKTRACE_N() VL_MT_SAFE { static VerilatedMutex s_stackTraceMutex; const VerilatedLockGuard lock{s_stackTraceMutex}; int nptrs = 0; char** strings = nullptr; #ifdef _VL_HAVE_STACKTRACE constexpr int BT_BUF_SIZE = 100; void* buffer[BT_BUF_SIZE]; nptrs = backtrace(buffer, BT_BUF_SIZE); strings = backtrace_symbols(buffer, nptrs); #endif // cppcheck-suppress knownConditionTrueFalse if (!strings) return "Unable to backtrace\n"; std::string result = "Backtrace:\n"; for (int j = 0; j < nptrs; j++) result += std::string{strings[j]} + std::string{"\n"}; free(strings); return result; } void VL_STACKTRACE() VL_MT_SAFE { const std::string result = VL_STACKTRACE_N(); VL_PRINTF("%s", result.c_str()); } IData VL_SYSTEM_IQ(QData lhs) VL_MT_SAFE { VlWide lhsw; VL_SET_WQ(lhsw, lhs); return VL_SYSTEM_IW(VL_WQ_WORDS_E, lhsw); } IData VL_SYSTEM_IW(int lhswords, const WDataInP lhsp) VL_MT_SAFE { char filenamez[VL_VALUE_STRING_MAX_CHARS + 1]; _vl_vint_to_string(lhswords * VL_EDATASIZE, filenamez, lhsp); const int code = std::system(filenamez); // Yes, std::system() is threadsafe return code >> 8; // Want exit status } IData VL_TESTPLUSARGS_I(const std::string& format) VL_MT_SAFE { const std::string& match = Verilated::threadContextp()->impp()->argPlusMatch(format.c_str()); return match.empty() ? 0 : 1; } IData VL_VALUEPLUSARGS_INW(int rbits, const std::string& ld, WDataOutP rwp) VL_MT_SAFE { std::string prefix; bool inPct = false; bool done = false; char fmt = ' '; for (const char* posp = ld.c_str(); !done && *posp; ++posp) { if (!inPct && posp[0] == '%') { inPct = true; } else if (!inPct) { // Normal text prefix += *posp; } else if (*posp == '0') { // %0 } else { // Format character switch (std::tolower(*posp)) { case '%': prefix += *posp; inPct = false; break; default: fmt = *posp; done = true; break; } } } const std::string& match = Verilated::threadContextp()->impp()->argPlusMatch(prefix.c_str()); const char* const dp = match.c_str() + 1 /*leading + */ + prefix.length(); if (match.empty()) return 0; VL_ZERO_W(rbits, rwp); switch (std::tolower(fmt)) { case 'd': { int64_t lld = 0; std::sscanf(dp, "%30" PRId64, &lld); VL_SET_WQ(rwp, lld); break; } case 'b': _vl_vsss_based(rwp, rbits, 1, dp, 0, std::strlen(dp)); break; case 'o': _vl_vsss_based(rwp, rbits, 3, dp, 0, std::strlen(dp)); break; case 'h': // FALLTHRU case 'x': _vl_vsss_based(rwp, rbits, 4, dp, 0, std::strlen(dp)); break; case 's': { // string/no conversion for (int i = 0, lsb = 0, posp = static_cast(std::strlen(dp)) - 1; i < rbits && posp >= 0; --posp) { _vl_vsss_setbit(rwp, rbits, lsb, 8, dp[posp]); lsb += 8; } break; } case 'e': { double temp = 0.F; std::sscanf(dp, "%le", &temp); VL_SET_WQ(rwp, VL_CVT_Q_D(temp)); break; } case 'f': { double temp = 0.F; std::sscanf(dp, "%lf", &temp); VL_SET_WQ(rwp, VL_CVT_Q_D(temp)); break; } case 'g': { double temp = 0.F; std::sscanf(dp, "%lg", &temp); VL_SET_WQ(rwp, VL_CVT_Q_D(temp)); break; } default: // Other simulators return 0 in these cases and don't error out return 0; } _vl_clean_inplace_w(rbits, rwp); return 1; } IData VL_VALUEPLUSARGS_INN(int, const std::string& ld, std::string& rdr) VL_MT_SAFE { std::string prefix; bool inPct = false; bool done = false; for (const char* posp = ld.c_str(); !done && *posp; ++posp) { if (!inPct && posp[0] == '%') { inPct = true; } else if (!inPct) { // Normal text prefix += *posp; } else { // Format character switch (std::tolower(*posp)) { case '%': prefix += *posp; inPct = false; break; default: // done = true; break; } } } const std::string& match = Verilated::threadContextp()->impp()->argPlusMatch(prefix.c_str()); const char* const dp = match.c_str() + 1 /*leading + */ + prefix.length(); if (match.empty()) return 0; rdr = std::string{dp}; return 1; } const char* vl_mc_scan_plusargs(const char* prefixp) VL_MT_SAFE { const std::string& match = Verilated::threadContextp()->impp()->argPlusMatch(prefixp); static thread_local char t_outstr[VL_VALUE_STRING_MAX_WIDTH]; if (match.empty()) return nullptr; char* dp = t_outstr; for (const char* sp = match.c_str() + std::strlen(prefixp) + 1; // +1 to skip the "+" *sp && (dp - t_outstr) < (VL_VALUE_STRING_MAX_WIDTH - 2);) *dp++ = *sp++; *dp++ = '\0'; return t_outstr; } //=========================================================================== // Heavy string functions std::string VL_TO_STRING(CData lhs) { return VL_SFORMATF_NX("'h%0x", 8, lhs); } std::string VL_TO_STRING(SData lhs) { return VL_SFORMATF_NX("'h%0x", 16, lhs); } std::string VL_TO_STRING(IData lhs) { return VL_SFORMATF_NX("'h%0x", 32, lhs); } std::string VL_TO_STRING(QData lhs) { return VL_SFORMATF_NX("'h%0x", 64, lhs); } std::string VL_TO_STRING(double lhs) { return VL_SFORMATF_NX("%d", 64, lhs); } std::string VL_TO_STRING_W(int words, const WDataInP obj) { return VL_SFORMATF_NX("'h%0x", words * VL_EDATASIZE, obj); } std::string VL_TOLOWER_NN(const std::string& ld) VL_PURE { std::string result = ld; for (auto& cr : result) cr = std::tolower(cr); return result; } std::string VL_TOUPPER_NN(const std::string& ld) VL_PURE { std::string result = ld; for (auto& cr : result) cr = std::toupper(cr); return result; } std::string VL_CVT_PACK_STR_NW(int lwords, const WDataInP lwp) VL_PURE { // See also _vl_vint_to_string char destout[VL_VALUE_STRING_MAX_CHARS + 1]; const int obits = lwords * VL_EDATASIZE; int lsb = obits - 1; char* destp = destout; size_t len = 0; for (; lsb >= 0; --lsb) { lsb = (lsb / 8) * 8; // Next digit const IData charval = VL_BITRSHIFT_W(lwp, lsb) & 0xff; if (charval) { *destp++ = static_cast(charval); ++len; } } return std::string{destout, len}; } std::string VL_PUTC_N(const std::string& lhs, IData rhs, CData ths) VL_PURE { std::string lstring = lhs; const int32_t rhs_s = rhs; // To signed value // 6.16.2:str.putc(i, c) does not change the value when i < 0 || i >= str.len() || c == 0 if (0 <= rhs_s && rhs < lhs.length() && ths != 0) lstring[rhs] = ths; return lstring; } CData VL_GETC_N(const std::string& lhs, IData rhs) VL_PURE { CData v = 0; const int32_t rhs_s = rhs; // To signed value // 6.16.3:str.getc(i) returns 0 if i < 0 || i >= str.len() if (0 <= rhs_s && rhs < lhs.length()) v = lhs[rhs]; return v; } std::string VL_SUBSTR_N(const std::string& lhs, IData rhs, IData ths) VL_PURE { const int32_t rhs_s = rhs; // To signed value const int32_t ths_s = ths; // To signed value // 6.16.8:str.substr(i, j) returns an empty string when i < 0 || j < i || j >= str.len() if (rhs_s < 0 || ths_s < rhs_s || ths >= lhs.length()) return ""; // Second parameter of std::string::substr(i, n) is length, not position as in SystemVerilog return lhs.substr(rhs, ths - rhs + 1); } IData VL_ATOI_N(const std::string& str, int base) VL_PURE { std::string str_mod = str; // IEEE 1800-2017 6.16.9 says '_' may exist. str_mod.erase(std::remove(str_mod.begin(), str_mod.end(), '_'), str_mod.end()); errno = 0; auto v = std::strtol(str_mod.c_str(), nullptr, base); if (errno != 0) v = 0; return static_cast(v); } IData VL_NTOI_I(int obits, const std::string& str) VL_PURE { return VL_NTOI_Q(obits, str); } QData VL_NTOI_Q(int obits, const std::string& str) VL_PURE { QData out = 0; const char* const datap = str.data(); int pos = static_cast(str.length()) - 1; int bit = 0; while (bit < obits && pos >= 0) { out |= static_cast(datap[pos]) << VL_BITBIT_Q(bit); bit += 8; --pos; } return out & VL_MASK_Q(obits); } void VL_NTOI_W(int obits, WDataOutP owp, const std::string& str) VL_PURE { const int words = VL_WORDS_I(obits); for (int i = 0; i < words; ++i) owp[i] = 0; const char* const datap = str.data(); int pos = static_cast(str.length()) - 1; int bit = 0; while (bit < obits && pos >= 0) { owp[VL_BITWORD_I(bit)] |= static_cast(datap[pos]) << VL_BITBIT_I(bit); bit += 8; --pos; } owp[words - 1] &= VL_MASK_E(obits); } //=========================================================================== // Readmem/writemem static const char* memhFormat(int nBits) { assert((nBits >= 1) && (nBits <= 32)); static thread_local char t_buf[32]; switch ((nBits - 1) / 4) { case 0: VL_SNPRINTF(t_buf, 32, "%%01x"); break; case 1: VL_SNPRINTF(t_buf, 32, "%%02x"); break; case 2: VL_SNPRINTF(t_buf, 32, "%%03x"); break; case 3: VL_SNPRINTF(t_buf, 32, "%%04x"); break; case 4: VL_SNPRINTF(t_buf, 32, "%%05x"); break; case 5: VL_SNPRINTF(t_buf, 32, "%%06x"); break; case 6: VL_SNPRINTF(t_buf, 32, "%%07x"); break; case 7: VL_SNPRINTF(t_buf, 32, "%%08x"); break; default: assert(false); break; // LCOV_EXCL_LINE } return t_buf; } static const char* formatBinary(int nBits, uint32_t bits) { assert((nBits >= 1) && (nBits <= 32)); static thread_local char t_buf[64]; for (int i = 0; i < nBits; i++) { const bool isOne = bits & (1 << (nBits - 1 - i)); t_buf[i] = (isOne ? '1' : '0'); } t_buf[nBits] = '\0'; return t_buf; } VlReadMem::VlReadMem(bool hex, int bits, const std::string& filename, QData start, QData end) : m_hex{hex} , m_bits{bits} , m_filename(filename) // Need () or GCC 4.8 false warning , m_end{end} , m_addr{start} { m_fp = std::fopen(filename.c_str(), "r"); if (VL_UNLIKELY(!m_fp)) { // We don't report the Verilog source filename as it slow to have to pass it down VL_WARN_MT(filename.c_str(), 0, "", "$readmem file not found"); // cppcheck-has-bug-suppress resourceLeak // m_fp is nullptr return; } } VlReadMem::~VlReadMem() { if (m_fp) { std::fclose(m_fp); m_fp = nullptr; } } bool VlReadMem::get(QData& addrr, std::string& valuer) { if (VL_UNLIKELY(!m_fp)) return false; valuer = ""; // Prep for reading bool indata = false; bool ignore_to_eol = false; bool ignore_to_cmt = false; bool reading_addr = false; int lastc = ' '; // Read the data // We process a character at a time, as then we don't need to deal // with changing buffer sizes dynamically, etc. while (true) { int c = std::fgetc(m_fp); if (VL_UNLIKELY(c == EOF)) break; // printf("%d: Got '%c' Addr%lx IN%d IgE%d IgC%d\n", // m_linenum, c, m_addr, indata, ignore_to_eol, ignore_to_cmt); // See if previous data value has completed, and if so return if (c == '_') continue; // Ignore _ e.g. inside a number if (indata && !std::isxdigit(c) && c != 'x' && c != 'X') { // printf("Got data @%lx = %s\n", m_addr, valuer.c_str()); ungetc(c, m_fp); addrr = m_addr; ++m_addr; return true; } // Parse line if (c == '\n') { ++m_linenum; ignore_to_eol = false; reading_addr = false; } else if (c == '\t' || c == ' ' || c == '\r' || c == '\f') { reading_addr = false; } // Skip // comments and detect /* comments else if (ignore_to_cmt && lastc == '*' && c == '/') { ignore_to_cmt = false; reading_addr = false; } else if (!ignore_to_eol && !ignore_to_cmt) { if (lastc == '/' && c == '*') { ignore_to_cmt = true; } else if (lastc == '/' && c == '/') { ignore_to_eol = true; } else if (c == '/') { // Part of /* or // } else if (c == '#') { ignore_to_eol = true; } else if (c == '@') { reading_addr = true; m_anyAddr = true; m_addr = 0; } // Check for hex or binary digits as file format requests else if (std::isxdigit(c) || (!reading_addr && (c == 'x' || c == 'X'))) { c = std::tolower(c); const int value = (c >= 'a' ? (c == 'x' ? VL_RAND_RESET_I(4) : (c - 'a' + 10)) : (c - '0')); if (reading_addr) { // Decode @ addresses m_addr = (m_addr << 4) + value; } else { indata = true; valuer += static_cast(c); // printf(" Value width=%d @%x = %c\n", width, m_addr, c); if (VL_UNLIKELY(value > 1 && !m_hex)) { VL_FATAL_MT(m_filename.c_str(), m_linenum, "", "$readmemb (binary) file contains hex characters"); } } } else { VL_FATAL_MT(m_filename.c_str(), m_linenum, "", "$readmem file syntax error"); } } lastc = c; } if (VL_UNLIKELY(m_end != ~0ULL && m_addr <= m_end && !m_anyAddr)) { VL_WARN_MT(m_filename.c_str(), m_linenum, "", "$readmem file ended before specified final address (IEEE 2017 21.4)"); } return false; // EOF } void VlReadMem::setData(void* valuep, const std::string& rhs) { const QData shift = m_hex ? 4ULL : 1ULL; bool innum = false; // Shift value in for (const auto& i : rhs) { const char c = std::tolower(i); const int value = (c >= 'a' ? (c == 'x' ? VL_RAND_RESET_I(4) : (c - 'a' + 10)) : (c - '0')); if (m_bits <= 8) { CData* const datap = reinterpret_cast(valuep); if (!innum) *datap = 0; *datap = ((*datap << shift) + value) & VL_MASK_I(m_bits); } else if (m_bits <= 16) { SData* const datap = reinterpret_cast(valuep); if (!innum) *datap = 0; *datap = ((*datap << shift) + value) & VL_MASK_I(m_bits); } else if (m_bits <= VL_IDATASIZE) { IData* const datap = reinterpret_cast(valuep); if (!innum) *datap = 0; *datap = ((*datap << shift) + value) & VL_MASK_I(m_bits); } else if (m_bits <= VL_QUADSIZE) { QData* const datap = reinterpret_cast(valuep); if (!innum) *datap = 0; *datap = ((*datap << static_cast(shift)) + static_cast(value)) & VL_MASK_Q(m_bits); } else { WDataOutP datap = reinterpret_cast(valuep); if (!innum) VL_ZERO_W(m_bits, datap); _vl_shiftl_inplace_w(m_bits, datap, static_cast(shift)); datap[0] |= value; } innum = true; } } VlWriteMem::VlWriteMem(bool hex, int bits, const std::string& filename, QData start, QData end) : m_hex{hex} , m_bits{bits} { if (VL_UNLIKELY(start > end)) { VL_FATAL_MT(filename.c_str(), 0, "", "$writemem invalid address range"); return; } m_fp = std::fopen(filename.c_str(), "w"); if (VL_UNLIKELY(!m_fp)) { VL_FATAL_MT(filename.c_str(), 0, "", "$writemem file not found"); // cppcheck-has-bug-suppress resourceLeak // m_fp is nullptr return; } } VlWriteMem::~VlWriteMem() { if (m_fp) { std::fclose(m_fp); m_fp = nullptr; } } void VlWriteMem::print(QData addr, bool addrstamp, const void* valuep) { if (VL_UNLIKELY(!m_fp)) return; if (addr != m_addr && addrstamp) { // Only assoc has time stamps fprintf(m_fp, "@%" PRIx64 "\n", addr); } m_addr = addr + 1; if (m_bits <= 8) { const CData* const datap = reinterpret_cast(valuep); if (m_hex) { fprintf(m_fp, memhFormat(m_bits), VL_MASK_I(m_bits) & *datap); fprintf(m_fp, "\n"); } else { fprintf(m_fp, "%s\n", formatBinary(m_bits, *datap)); } } else if (m_bits <= 16) { const SData* const datap = reinterpret_cast(valuep); if (m_hex) { fprintf(m_fp, memhFormat(m_bits), VL_MASK_I(m_bits) & *datap); fprintf(m_fp, "\n"); } else { fprintf(m_fp, "%s\n", formatBinary(m_bits, *datap)); } } else if (m_bits <= 32) { const IData* const datap = reinterpret_cast(valuep); if (m_hex) { fprintf(m_fp, memhFormat(m_bits), VL_MASK_I(m_bits) & *datap); fprintf(m_fp, "\n"); } else { fprintf(m_fp, "%s\n", formatBinary(m_bits, *datap)); } } else if (m_bits <= 64) { const QData* const datap = reinterpret_cast(valuep); const uint64_t value = VL_MASK_Q(m_bits) & *datap; const uint32_t lo = value & 0xffffffff; const uint32_t hi = value >> 32; if (m_hex) { fprintf(m_fp, memhFormat(m_bits - 32), hi); fprintf(m_fp, "%08x\n", lo); } else { fprintf(m_fp, "%s", formatBinary(m_bits - 32, hi)); fprintf(m_fp, "%s\n", formatBinary(32, lo)); } } else { const WDataInP datap = reinterpret_cast(valuep); // output as a sequence of VL_EDATASIZE'd words // from MSB to LSB. Mask off the MSB word which could // contain junk above the top of valid data. int word_idx = ((m_bits - 1) / VL_EDATASIZE); bool first = true; while (word_idx >= 0) { EData data = datap[word_idx]; if (first) { data &= VL_MASK_E(m_bits); const int top_word_nbits = VL_BITBIT_E(m_bits - 1) + 1; if (m_hex) { fprintf(m_fp, memhFormat(top_word_nbits), data); } else { fprintf(m_fp, "%s", formatBinary(top_word_nbits, data)); } } else { if (m_hex) { fprintf(m_fp, "%08x", data); } else { fprintf(m_fp, "%s", formatBinary(32, data)); } } --word_idx; first = false; } fprintf(m_fp, "\n"); } } void VL_READMEM_N(bool hex, // Hex format, else binary int bits, // M_Bits of each array row QData depth, // Number of rows int array_lsb, // Index of first row. Valid row addresses // // range from array_lsb up to (array_lsb + depth - 1) const std::string& filename, // Input file name void* memp, // Array state QData start, // First array row address to read QData end // Last row address to read ) VL_MT_SAFE { if (start < static_cast(array_lsb)) start = array_lsb; VlReadMem rmem{hex, bits, filename, start, end}; if (VL_UNLIKELY(!rmem.isOpen())) return; while (true) { QData addr = 0; std::string value; if (rmem.get(addr /*ref*/, value /*ref*/)) { if (VL_UNLIKELY(addr < static_cast(array_lsb) || addr >= static_cast(array_lsb + depth))) { VL_FATAL_MT(filename.c_str(), rmem.linenum(), "", "$readmem file address beyond bounds of array"); } else { const QData entry = addr - array_lsb; if (bits <= 8) { CData* const datap = &(reinterpret_cast(memp))[entry]; rmem.setData(datap, value); } else if (bits <= 16) { SData* const datap = &(reinterpret_cast(memp))[entry]; rmem.setData(datap, value); } else if (bits <= VL_IDATASIZE) { IData* const datap = &(reinterpret_cast(memp))[entry]; rmem.setData(datap, value); } else if (bits <= VL_QUADSIZE) { QData* const datap = &(reinterpret_cast(memp))[entry]; rmem.setData(datap, value); } else { WDataOutP datap = &(reinterpret_cast(memp))[entry * VL_WORDS_I(bits)]; rmem.setData(datap, value); } } } else { break; } } } void VL_WRITEMEM_N(bool hex, // Hex format, else binary int bits, // Width of each array row QData depth, // Number of rows int array_lsb, // Index of first row. Valid row addresses // // range from array_lsb up to (array_lsb + depth - 1) const std::string& filename, // Output file name const void* memp, // Array state QData start, // First array row address to write QData end // Last address to write, or ~0 when not specified ) VL_MT_SAFE { const QData addr_max = array_lsb + depth - 1; if (start < static_cast(array_lsb)) start = array_lsb; if (end > addr_max) end = addr_max; VlWriteMem wmem{hex, bits, filename, start, end}; if (VL_UNLIKELY(!wmem.isOpen())) return; for (QData addr = start; addr <= end; ++addr) { const QData row_offset = addr - array_lsb; if (bits <= 8) { const CData* const datap = &(reinterpret_cast(memp))[row_offset]; wmem.print(addr, false, datap); } else if (bits <= 16) { const SData* const datap = &(reinterpret_cast(memp))[row_offset]; wmem.print(addr, false, datap); } else if (bits <= 32) { const IData* const datap = &(reinterpret_cast(memp))[row_offset]; wmem.print(addr, false, datap); } else if (bits <= 64) { const QData* const datap = &(reinterpret_cast(memp))[row_offset]; wmem.print(addr, false, datap); } else { const WDataInP memDatap = reinterpret_cast(memp); const WDataInP datap = &memDatap[row_offset * VL_WORDS_I(bits)]; wmem.print(addr, false, datap); } } } //=========================================================================== // Timescale conversion static const char* vl_time_str(int scale) VL_PURE { static const char* const names[] = {"100s", "10s", "1s", "100ms", "10ms", "1ms", "100us", "10us", "1us", "100ns", "10ns", "1ns", "100ps", "10ps", "1ps", "100fs", "10fs", "1fs"}; if (VL_UNLIKELY(scale > 2 || scale < -15)) scale = 0; return names[2 - scale]; } double vl_time_multiplier(int scale) VL_PURE { // Return timescale multiplier -18 to +18 // For speed, this does not check for illegal values // cppcheck-has-bug-suppress arrayIndexOutOfBoundsCond if (scale < 0) { static const double neg10[] = {1.0, 0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001, 0.0000001, 0.00000001, 0.000000001, 0.0000000001, 0.00000000001, 0.000000000001, 0.0000000000001, 0.00000000000001, 0.000000000000001, 0.0000000000000001, 0.00000000000000001, 0.000000000000000001}; // cppcheck-has-bug-suppress arrayIndexOutOfBoundsCond return neg10[-scale]; } else { static const double pow10[] = {1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0, 1000000.0, 10000000.0, 100000000.0, 1000000000.0, 10000000000.0, 100000000000.0, 1000000000000.0, 10000000000000.0, 100000000000000.0, 1000000000000000.0, 10000000000000000.0, 100000000000000000.0, 1000000000000000000.0}; // cppcheck-has-bug-suppress arrayIndexOutOfBoundsCond return pow10[scale]; } } uint64_t vl_time_pow10(int n) { static const uint64_t pow10[20] = { 1ULL, 10ULL, 100ULL, 1000ULL, 10000ULL, 100000ULL, 1000000ULL, 10000000ULL, 100000000ULL, 1000000000ULL, 10000000000ULL, 100000000000ULL, 1000000000000ULL, 10000000000000ULL, 100000000000000ULL, 1000000000000000ULL, 10000000000000000ULL, 100000000000000000ULL, 1000000000000000000ULL, }; return pow10[n]; } void VL_PRINTTIMESCALE(const char* namep, const char* timeunitp, const VerilatedContext* contextp) VL_MT_SAFE { VL_PRINTF_MT("Time scale of %s is %s / %s\n", namep, timeunitp, contextp->timeprecisionString()); } void VL_TIMEFORMAT_IINI(int units, int precision, const std::string& suffix, int width, VerilatedContext* contextp) VL_MT_SAFE { contextp->impp()->timeFormatUnits(units); contextp->impp()->timeFormatPrecision(precision); contextp->impp()->timeFormatSuffix(suffix); contextp->impp()->timeFormatWidth(width); } //====================================================================== // VerilatedContext:: Methods VerilatedContext::VerilatedContext() : m_impdatap{new VerilatedContextImpData} { Verilated::lastContextp(this); Verilated::threadContextp(this); m_ns.m_profExecFilename = "profile_exec.dat"; m_ns.m_profVltFilename = "profile.vlt"; m_fdps.resize(31); std::fill(m_fdps.begin(), m_fdps.end(), static_cast(nullptr)); m_fdFreeMct.resize(30); for (std::size_t i = 0, id = 1; i < m_fdFreeMct.size(); ++i, ++id) m_fdFreeMct[i] = id; } // Must declare here not in interface, as otherwise forward declarations not known VerilatedContext::~VerilatedContext() { checkMagic(this); m_magic = 0x1; // Arbitrary but 0x1 is what Verilator src uses for a deleted pointer } void VerilatedContext::checkMagic(const VerilatedContext* contextp) { if (VL_UNLIKELY(!contextp || contextp->m_magic != MAGIC)) { VL_FATAL_MT("", 0, "", // LCOV_EXCL_LINE "Attempt to create model using a bad/deleted VerilatedContext pointer"); } } VerilatedContext::Serialized::Serialized() { constexpr int8_t picosecond = -12; m_timeunit = picosecond; // Initial value until overridden by _Vconfigure m_timeprecision = picosecond; // Initial value until overridden by _Vconfigure } void VerilatedContext::assertOn(bool flag) VL_MT_SAFE { const VerilatedLockGuard lock{m_mutex}; m_s.m_assertOn = flag; } void VerilatedContext::calcUnusedSigs(bool flag) VL_MT_SAFE { const VerilatedLockGuard lock{m_mutex}; m_s.m_calcUnusedSigs = flag; } void VerilatedContext::dumpfile(const std::string& flag) VL_MT_SAFE_EXCLUDES(m_timeDumpMutex) { const VerilatedLockGuard lock{m_timeDumpMutex}; m_dumpfile = flag; } std::string VerilatedContext::dumpfile() const VL_MT_SAFE_EXCLUDES(m_timeDumpMutex) { const VerilatedLockGuard lock{m_timeDumpMutex}; return m_dumpfile; } std::string VerilatedContext::dumpfileCheck() const VL_MT_SAFE_EXCLUDES(m_timeDumpMutex) { std::string out = dumpfile(); if (VL_UNLIKELY(out.empty())) { VL_PRINTF_MT("%%Warning: $dumpvar ignored as not preceded by $dumpfile\n"); return ""; } return out; } void VerilatedContext::errorCount(int val) VL_MT_SAFE { const VerilatedLockGuard lock{m_mutex}; m_s.m_errorCount = val; } void VerilatedContext::errorCountInc() VL_MT_SAFE { const VerilatedLockGuard lock{m_mutex}; ++m_s.m_errorCount; } void VerilatedContext::errorLimit(int val) VL_MT_SAFE { const VerilatedLockGuard lock{m_mutex}; m_s.m_errorLimit = val; } void VerilatedContext::fatalOnError(bool flag) VL_MT_SAFE { const VerilatedLockGuard lock{m_mutex}; m_s.m_fatalOnError = flag; } void VerilatedContext::fatalOnVpiError(bool flag) VL_MT_SAFE { const VerilatedLockGuard lock{m_mutex}; m_s.m_fatalOnVpiError = flag; } void VerilatedContext::gotError(bool flag) VL_MT_SAFE { const VerilatedLockGuard lock{m_mutex}; m_s.m_gotError = flag; } void VerilatedContext::gotFinish(bool flag) VL_MT_SAFE { const VerilatedLockGuard lock{m_mutex}; m_s.m_gotFinish = flag; } void VerilatedContext::profExecStart(uint64_t flag) VL_MT_SAFE { const VerilatedLockGuard lock{m_mutex}; m_ns.m_profExecStart = flag; } void VerilatedContext::profExecWindow(uint64_t flag) VL_MT_SAFE { const VerilatedLockGuard lock{m_mutex}; m_ns.m_profExecWindow = flag; } void VerilatedContext::profExecFilename(const std::string& flag) VL_MT_SAFE { const VerilatedLockGuard lock{m_mutex}; m_ns.m_profExecFilename = flag; } std::string VerilatedContext::profExecFilename() const VL_MT_SAFE { const VerilatedLockGuard lock{m_mutex}; return m_ns.m_profExecFilename; } void VerilatedContext::profVltFilename(const std::string& flag) VL_MT_SAFE { const VerilatedLockGuard lock{m_mutex}; m_ns.m_profVltFilename = flag; } std::string VerilatedContext::profVltFilename() const VL_MT_SAFE { const VerilatedLockGuard lock{m_mutex}; return m_ns.m_profVltFilename; } void VerilatedContext::randReset(int val) VL_MT_SAFE { const VerilatedLockGuard lock{m_mutex}; m_s.m_randReset = val; } void VerilatedContext::timeunit(int value) VL_MT_SAFE { if (value < 0) value = -value; // Stored as 0..15 const VerilatedLockGuard lock{m_mutex}; m_s.m_timeunit = value; } const char* VerilatedContext::timeunitString() const VL_MT_SAFE { return vl_time_str(timeunit()); } const char* VerilatedContext::timeprecisionString() const VL_MT_SAFE { return vl_time_str(timeprecision()); } void VerilatedContext::threads(unsigned n) { if (n == 0) VL_FATAL_MT(__FILE__, __LINE__, "", "%Error: Simulation threads must be >= 1"); if (m_threadPool) { VL_FATAL_MT( __FILE__, __LINE__, "", "%Error: Cannot set simulation threads after the thread pool has been created."); } if (m_threads == n) return; // To avoid unnecessary warnings m_threads = n; const unsigned hardwareThreadsAvailable = std::thread::hardware_concurrency(); if (m_threads > hardwareThreadsAvailable) { VL_PRINTF_MT("%%Warning: System has %u hardware threads but simulation thread count set " "to %u. This will likely cause significant slowdown.\n", hardwareThreadsAvailable, m_threads); } } void VerilatedContext::commandArgs(int argc, const char** argv) VL_MT_SAFE_EXCLUDES(m_argMutex) { // Not locking m_argMutex here, it is done in impp()->commandArgsAddGuts // m_argMutex here is the same as in impp()->commandArgsAddGuts; // due to clang limitations, it doesn't properly check it impp()->commandArgsGuts(argc, argv); } void VerilatedContext::commandArgsAdd(int argc, const char** argv) VL_MT_SAFE_EXCLUDES(m_argMutex) { // Not locking m_argMutex here, it is done in impp()->commandArgsAddGuts // m_argMutex here is the same as in impp()->commandArgsAddGuts; // due to clang limitations, it doesn't properly check it impp()->commandArgsAddGutsLock(argc, argv); } const char* VerilatedContext::commandArgsPlusMatch(const char* prefixp) VL_MT_SAFE_EXCLUDES(m_argMutex) { const std::string& match = impp()->argPlusMatch(prefixp); static thread_local char t_outstr[VL_VALUE_STRING_MAX_WIDTH]; if (match.empty()) return ""; char* dp = t_outstr; for (const char* sp = match.c_str(); *sp && (dp - t_outstr) < (VL_VALUE_STRING_MAX_WIDTH - 2);) *dp++ = *sp++; *dp++ = '\0'; return t_outstr; } void VerilatedContext::internalsDump() const VL_MT_SAFE { VL_PRINTF_MT("internalsDump:\n"); VerilatedImp::versionDump(); impp()->commandArgDump(); impp()->scopesDump(); VerilatedImp::exportsDump(); VerilatedImp::userDump(); } void VerilatedContext::addModel(VerilatedModel* modelp) { threadPoolp(); // Ensure thread pool is created, so m_threads cannot change any more if (VL_UNLIKELY(modelp->threads() > m_threads)) { std::ostringstream msg; msg << "VerilatedContext has " << m_threads << " threads but model '" << modelp->modelName() << "' (instantiated as '" << modelp->hierName() << "') was Verilated with --threads " << modelp->threads() << ".\n"; const std::string str = msg.str(); VL_FATAL_MT(__FILE__, __LINE__, modelp->hierName(), str.c_str()); } } VerilatedVirtualBase* VerilatedContext::threadPoolp() { if (m_threads == 1) return nullptr; if (!m_threadPool) m_threadPool.reset(new VlThreadPool{this, m_threads - 1}); return m_threadPool.get(); } VerilatedVirtualBase* VerilatedContext::enableExecutionProfiler(VerilatedVirtualBase* (*construct)(VerilatedContext&)) { if (!m_executionProfiler) m_executionProfiler.reset(construct(*this)); return m_executionProfiler.get(); } //====================================================================== // VerilatedContextImp:: Methods - command line void VerilatedContextImp::commandArgsGuts(int argc, const char** argv) VL_MT_SAFE_EXCLUDES(m_argMutex) { const VerilatedLockGuard lock{m_argMutex}; m_args.m_argVec.clear(); // Empty first, then add commandArgsAddGuts(argc, argv); } void VerilatedContextImp::commandArgsAddGutsLock(int argc, const char** argv) VL_MT_SAFE_EXCLUDES(m_argMutex) { const VerilatedLockGuard lock{m_argMutex}; commandArgsAddGuts(argc, argv); } void VerilatedContextImp::commandArgsAddGuts(int argc, const char** argv) VL_REQUIRES(m_argMutex) { if (!m_args.m_argVecLoaded) m_args.m_argVec.clear(); for (int i = 0; i < argc; ++i) { m_args.m_argVec.emplace_back(argv[i]); commandArgVl(argv[i]); } m_args.m_argVecLoaded = true; // Can't just test later for empty vector, no arguments is ok } void VerilatedContextImp::commandArgDump() const VL_MT_SAFE_EXCLUDES(m_argMutex) { const VerilatedLockGuard lock{m_argMutex}; VL_PRINTF_MT(" Argv:"); for (const auto& i : m_args.m_argVec) VL_PRINTF_MT(" %s", i.c_str()); VL_PRINTF_MT("\n"); } std::string VerilatedContextImp::argPlusMatch(const char* prefixp) VL_MT_SAFE_EXCLUDES(m_argMutex) { const VerilatedLockGuard lock{m_argMutex}; // Note prefixp does not include the leading "+" const size_t len = std::strlen(prefixp); if (VL_UNLIKELY(!m_args.m_argVecLoaded)) { m_args.m_argVecLoaded = true; // Complain only once VL_FATAL_MT("unknown", 0, "", "%Error: Verilog called $test$plusargs or $value$plusargs without" " testbench C first calling Verilated::commandArgs(argc,argv)."); } for (const auto& i : m_args.m_argVec) { if (i[0] == '+') { if (0 == std::strncmp(prefixp, i.c_str() + 1, len)) return i; } } return ""; } // Return string representing current argv // Only used by VPI so uses static storage, only supports most recent called context std::pair VerilatedContextImp::argc_argv() VL_MT_SAFE_EXCLUDES(m_argMutex) { const VerilatedLockGuard lock{m_argMutex}; static bool s_loaded = false; static int s_argc = 0; static char** s_argvp = nullptr; if (VL_UNLIKELY(!s_loaded)) { s_loaded = true; s_argc = static_cast(m_args.m_argVec.size()); s_argvp = new char*[s_argc + 1]; int in = 0; for (const auto& i : m_args.m_argVec) { s_argvp[in] = new char[i.length() + 1]; std::strcpy(s_argvp[in], i.c_str()); ++in; } s_argvp[s_argc] = nullptr; } return std::make_pair(s_argc, s_argvp); } void VerilatedContextImp::commandArgVl(const std::string& arg) { if (0 == std::strncmp(arg.c_str(), "+verilator+", std::strlen("+verilator+"))) { std::string str; uint64_t u64; if (arg == "+verilator+debug") { Verilated::debug(4); } else if (commandArgVlUint64(arg, "+verilator+debugi+", u64, 0, std::numeric_limits::max())) { Verilated::debug(static_cast(u64)); } else if (commandArgVlUint64(arg, "+verilator+error+limit+", u64, 0, std::numeric_limits::max())) { errorLimit(static_cast(u64)); } else if (arg == "+verilator+help") { VerilatedImp::versionDump(); VL_PRINTF_MT("For help, please see 'verilator --help'\n"); VL_FATAL_MT("COMMAND_LINE", 0, "", "Exiting due to command line argument (not an error)"); } else if (arg == "+verilator+noassert") { assertOn(false); } else if (commandArgVlUint64(arg, "+verilator+prof+exec+start+", u64) || commandArgVlUint64(arg, "+verilator+prof+threads+start+", u64)) { profExecStart(u64); } else if (commandArgVlUint64(arg, "+verilator+prof+exec+window+", u64, 1) || commandArgVlUint64(arg, "+verilator+prof+threads+window+", u64, 1)) { profExecWindow(u64); } else if (commandArgVlString(arg, "+verilator+prof+exec+file+", str) || commandArgVlString(arg, "+verilator+prof+threads+file+", str)) { profExecFilename(str); } else if (commandArgVlString(arg, "+verilator+prof+vlt+file+", str)) { profVltFilename(str); } else if (commandArgVlUint64(arg, "+verilator+rand+reset+", u64, 0, 2)) { randReset(static_cast(u64)); } else if (commandArgVlUint64(arg, "+verilator+seed+", u64, 1, std::numeric_limits::max())) { randSeed(static_cast(u64)); } else if (arg == "+verilator+V") { VerilatedImp::versionDump(); // Someday more info too VL_FATAL_MT("COMMAND_LINE", 0, "", "Exiting due to command line argument (not an error)"); } else if (arg == "+verilator+version") { VerilatedImp::versionDump(); VL_FATAL_MT("COMMAND_LINE", 0, "", "Exiting due to command line argument (not an error)"); } else { const std::string msg = "Unknown runtime argument: " + arg; VL_FATAL_MT("COMMAND_LINE", 0, "", msg.c_str()); } } } bool VerilatedContextImp::commandArgVlString(const std::string& arg, const std::string& prefix, std::string& valuer) { const size_t len = prefix.length(); if (0 == std::strncmp(prefix.c_str(), arg.c_str(), len)) { valuer = arg.substr(len); return true; } else { return false; } } bool VerilatedContextImp::commandArgVlUint64(const std::string& arg, const std::string& prefix, uint64_t& valuer, uint64_t min, uint64_t max) { std::string str; if (commandArgVlString(arg, prefix, str)) { const auto fail = [&](const std::string& extra = "") { std::stringstream ss; ss << "Argument '" << prefix << "' must be an unsigned integer"; if (min != std::numeric_limits::min()) ss << ", greater than " << min - 1; if (max != std::numeric_limits::max()) ss << ", less than " << max + 1; if (!extra.empty()) ss << ". " << extra; const std::string& msg = ss.str(); VL_FATAL_MT("COMMAND_LINE", 0, "", msg.c_str()); }; if (std::any_of(str.begin(), str.end(), [](int c) { return !std::isdigit(c); })) fail(); char* end; valuer = std::strtoull(str.c_str(), &end, 10); if (errno == ERANGE) fail("Value out of range of uint64_t"); if (valuer < min || valuer > max) fail(); return true; } return false; } //====================================================================== // VerilatedContext:: + VerilatedContextImp:: Methods - random void VerilatedContext::randSeed(int val) VL_MT_SAFE { // As we have per-thread state, the epoch must be static, // and so the rand seed's mutex must also be static const VerilatedLockGuard lock{VerilatedContextImp::s().s_randMutex}; m_s.m_randSeed = val; const uint64_t newEpoch = VerilatedContextImp::s().s_randSeedEpoch + 1; // Observers must see new epoch AFTER seed updated std::atomic_signal_fence(std::memory_order_release); VerilatedContextImp::s().s_randSeedEpoch = newEpoch; } uint64_t VerilatedContextImp::randSeedDefault64() const VL_MT_SAFE { if (randSeed() != 0) { return ((static_cast(randSeed()) << 32) ^ (static_cast(randSeed()))); } else { return ((static_cast(vl_sys_rand32()) << 32) ^ (static_cast(vl_sys_rand32()))); } } //====================================================================== // VerilatedContext:: Methods - scopes void VerilatedContext::scopesDump() const VL_MT_SAFE { const VerilatedLockGuard lock{m_impdatap->m_nameMutex}; VL_PRINTF_MT(" scopesDump:\n"); for (const auto& i : m_impdatap->m_nameMap) { const VerilatedScope* const scopep = i.second; scopep->scopeDump(); } VL_PRINTF_MT("\n"); } void VerilatedContextImp::scopeInsert(const VerilatedScope* scopep) VL_MT_SAFE { // Slow ok - called once/scope at construction const VerilatedLockGuard lock{m_impdatap->m_nameMutex}; const auto it = m_impdatap->m_nameMap.find(scopep->name()); if (it == m_impdatap->m_nameMap.end()) m_impdatap->m_nameMap.emplace(scopep->name(), scopep); } void VerilatedContextImp::scopeErase(const VerilatedScope* scopep) VL_MT_SAFE { // Slow ok - called once/scope at destruction const VerilatedLockGuard lock{m_impdatap->m_nameMutex}; VerilatedImp::userEraseScope(scopep); const auto it = m_impdatap->m_nameMap.find(scopep->name()); if (it != m_impdatap->m_nameMap.end()) m_impdatap->m_nameMap.erase(it); } const VerilatedScope* VerilatedContext::scopeFind(const char* namep) const VL_MT_SAFE { // Thread save only assuming this is called only after model construction completed const VerilatedLockGuard lock{m_impdatap->m_nameMutex}; // If too slow, can assume this is only VL_MT_SAFE_POSINIT const auto& it = m_impdatap->m_nameMap.find(namep); if (VL_UNLIKELY(it == m_impdatap->m_nameMap.end())) return nullptr; return it->second; } const VerilatedScopeNameMap* VerilatedContext::scopeNameMap() VL_MT_SAFE { return &(impp()->m_impdatap->m_nameMap); } //====================================================================== // VerilatedSyms:: Methods VerilatedSyms::VerilatedSyms(VerilatedContext* contextp) : _vm_contextp__(contextp ? contextp : Verilated::threadContextp()) { VerilatedContext::checkMagic(_vm_contextp__); Verilated::threadContextp(_vm_contextp__); // cppcheck-has-bug-suppress noCopyConstructor __Vm_evalMsgQp = new VerilatedEvalMsgQueue; } VerilatedSyms::~VerilatedSyms() { VerilatedContext::checkMagic(_vm_contextp__); delete __Vm_evalMsgQp; } //=========================================================================== // Verilated:: Methods void Verilated::debug(int level) VL_MT_SAFE { s_debug = level; if (level) { #ifdef VL_DEBUG VL_DEBUG_IF(VL_DBG_MSGF("- Verilated::debug is on." " Message prefix indicates {,}.\n");); #else VL_PRINTF_MT("- Verilated::debug attempted," " but compiled without VL_DEBUG, so messages suppressed.\n" "- Suggest remake using 'make ... CPPFLAGS=-DVL_DEBUG'\n"); #endif } } const char* Verilated::catName(const char* n1, const char* n2, const char* delimiter) VL_MT_SAFE { // Used by symbol table creation to make module names static thread_local char* t_strp = nullptr; static thread_local size_t t_len = 0; const size_t newlen = std::strlen(n1) + std::strlen(n2) + std::strlen(delimiter) + 1; if (VL_UNLIKELY(!t_strp || newlen > t_len)) { if (t_strp) delete[] t_strp; t_strp = new char[newlen]; t_len = newlen; } char* dp = t_strp; for (const char* sp = n1; *sp;) *dp++ = *sp++; for (const char* sp = delimiter; *sp;) *dp++ = *sp++; for (const char* sp = n2; *sp;) *dp++ = *sp++; *dp++ = '\0'; return t_strp; } //========================================================================= // Flush and exit callbacks // Keeping these out of class Verilated to avoid having to include // in verilated.h (for compilation speed) using VoidPCbList = std::list>; static struct { VerilatedMutex s_flushMutex; VoidPCbList s_flushCbs VL_GUARDED_BY(s_flushMutex); VerilatedMutex s_exitMutex; VoidPCbList s_exitCbs VL_GUARDED_BY(s_exitMutex); } VlCbStatic; static void addCbFlush(Verilated::VoidPCb cb, void* datap) VL_MT_SAFE_EXCLUDES(VlCbStatic.s_flushMutex) { const VerilatedLockGuard lock{VlCbStatic.s_flushMutex}; std::pair pair(cb, datap); VlCbStatic.s_flushCbs.remove(pair); // Just in case it's a duplicate VlCbStatic.s_flushCbs.push_back(pair); } static void addCbExit(Verilated::VoidPCb cb, void* datap) VL_MT_SAFE_EXCLUDES(VlCbStatic.s_exitMutex) { const VerilatedLockGuard lock{VlCbStatic.s_exitMutex}; std::pair pair(cb, datap); VlCbStatic.s_exitCbs.remove(pair); // Just in case it's a duplicate VlCbStatic.s_exitCbs.push_back(pair); } static void removeCbFlush(Verilated::VoidPCb cb, void* datap) VL_MT_SAFE_EXCLUDES(VlCbStatic.s_flushMutex) { const VerilatedLockGuard lock{VlCbStatic.s_flushMutex}; std::pair pair(cb, datap); VlCbStatic.s_flushCbs.remove(pair); } static void removeCbExit(Verilated::VoidPCb cb, void* datap) VL_MT_SAFE_EXCLUDES(VlCbStatic.s_exitMutex) { const VerilatedLockGuard lock{VlCbStatic.s_exitMutex}; std::pair pair(cb, datap); VlCbStatic.s_exitCbs.remove(pair); } static void runCallbacks(const VoidPCbList& cbs) VL_MT_SAFE { for (const auto& i : cbs) i.first(i.second); } void Verilated::addFlushCb(VoidPCb cb, void* datap) VL_MT_SAFE { addCbFlush(cb, datap); } void Verilated::removeFlushCb(VoidPCb cb, void* datap) VL_MT_SAFE { removeCbFlush(cb, datap); } void Verilated::runFlushCallbacks() VL_MT_SAFE { // Flush routines may call flush, so avoid mutex deadlock static std::atomic s_recursing; if (!s_recursing++) { const VerilatedLockGuard lock{VlCbStatic.s_flushMutex}; runCallbacks(VlCbStatic.s_flushCbs); } --s_recursing; std::fflush(stderr); std::fflush(stdout); // When running internal code coverage (gcc --coverage, as opposed to // verilator --coverage), dump coverage data to properly cover failing // tests. VL_GCOV_DUMP(); } void Verilated::addExitCb(VoidPCb cb, void* datap) VL_MT_SAFE { addCbExit(cb, datap); } void Verilated::removeExitCb(VoidPCb cb, void* datap) VL_MT_SAFE { removeCbExit(cb, datap); } void Verilated::runExitCallbacks() VL_MT_SAFE { static std::atomic s_recursing; if (!s_recursing++) { const VerilatedLockGuard lock{VlCbStatic.s_exitMutex}; runCallbacks(VlCbStatic.s_exitCbs); } --s_recursing; } const char* Verilated::productName() VL_PURE { return VERILATOR_PRODUCT; } const char* Verilated::productVersion() VL_PURE { return VERILATOR_VERSION; } void Verilated::nullPointerError(const char* filename, int linenum) VL_MT_SAFE { // Slowpath - Called only on error VL_FATAL_MT(filename, linenum, "", "Null pointer dereferenced"); VL_UNREACHABLE; } void Verilated::overWidthError(const char* signame) VL_MT_SAFE { // Slowpath - Called only when signal sets too high of a bit const std::string msg = (std::string{"Testbench C set input '"} + signame + "' to value that overflows what the signal's width can fit"); VL_FATAL_MT("unknown", 0, "", msg.c_str()); VL_UNREACHABLE; } void Verilated::scTimePrecisionError(int sc_prec, int vl_prec) VL_MT_SAFE { std::ostringstream msg; msg << "SystemC's sc_set_time_resolution is 10^-" << sc_prec << ", which does not match Verilog timeprecision 10^-" << vl_prec << ". Suggest use 'sc_set_time_resolution(" << vl_time_str(vl_prec) << ")', or Verilator '--timescale-override " << vl_time_str(sc_prec) << "/" << vl_time_str(sc_prec) << "'"; const std::string msgs = msg.str(); VL_FATAL_MT("", 0, "", msgs.c_str()); VL_UNREACHABLE; } void Verilated::scTraceBeforeElaborationError() VL_MT_SAFE { // Slowpath - Called only when trace file opened before SystemC elaboration VL_FATAL_MT("unknown", 0, "", "%Error: Verilated*Sc::open(...) was called before sc_core::sc_start(). " "Run sc_core::sc_start(sc_core::SC_ZERO_TIME) before opening a wave file."); VL_UNREACHABLE; } void Verilated::mkdir(const char* dirname) VL_MT_UNSAFE { #if defined(_WIN32) || defined(__MINGW32__) ::mkdir(dirname); #else ::mkdir(dirname, 0777); #endif } void Verilated::quiesce() VL_MT_SAFE { // Wait until all threads under this evaluation are quiet // THREADED-TODO } int Verilated::exportFuncNum(const char* namep) VL_MT_SAFE { return VerilatedImp::exportFind(namep); } void Verilated::endOfThreadMTaskGuts(VerilatedEvalMsgQueue* evalMsgQp) VL_MT_SAFE { VL_DEBUG_IF(VL_DBG_MSGF("End of thread mtask\n");); VerilatedThreadMsgQueue::flush(evalMsgQp); } void Verilated::endOfEval(VerilatedEvalMsgQueue* evalMsgQp) VL_MT_SAFE { // It doesn't work to set endOfEvalReqd on the threadpool thread // and then check it on the eval thread since it's thread local. // It should be ok to call into endOfEvalGuts, it returns immediately // if there are no transactions. VL_DEBUG_IF(VL_DBG_MSGF("End-of-eval cleanup\n");); evalMsgQp->process(); } //=========================================================================== // VerilatedImp:: Methods void VerilatedImp::versionDump() VL_MT_SAFE { VL_PRINTF_MT(" Version: %s %s\n", Verilated::productName(), Verilated::productVersion()); } //=========================================================================== // VerilatedModel:: Methods VerilatedModel::VerilatedModel(VerilatedContext& context) : m_context{context} {} std::unique_ptr VerilatedModel::traceConfig() const { return nullptr; } //=========================================================================== // VerilatedModule:: Methods VerilatedModule::VerilatedModule(const char* namep) : m_namep{strdup(namep)} {} VerilatedModule::~VerilatedModule() { // Memory cleanup - not called during normal operation // NOLINTNEXTLINE(google-readability-casting) if (m_namep) VL_DO_CLEAR(free((void*)(m_namep)), m_namep = nullptr); } //====================================================================== // VerilatedVar:: Methods // cppcheck-suppress unusedFunction // Used by applications uint32_t VerilatedVarProps::entSize() const VL_MT_SAFE { uint32_t size = 1; switch (vltype()) { case VLVT_PTR: size = sizeof(void*); break; case VLVT_UINT8: size = sizeof(CData); break; case VLVT_UINT16: size = sizeof(SData); break; case VLVT_UINT32: size = sizeof(IData); break; case VLVT_UINT64: size = sizeof(QData); break; case VLVT_WDATA: size = VL_WORDS_I(packed().elements()) * sizeof(IData); break; default: size = 0; break; // LCOV_EXCL_LINE } return size; } size_t VerilatedVarProps::totalSize() const { size_t size = entSize(); for (int udim = 0; udim < udims(); ++udim) size *= m_unpacked[udim].elements(); return size; } void* VerilatedVarProps::datapAdjustIndex(void* datap, int dim, int indx) const VL_MT_SAFE { if (VL_UNLIKELY(dim <= 0 || dim > udims())) return nullptr; if (VL_UNLIKELY(indx < low(dim) || indx > high(dim))) return nullptr; const int indxAdj = indx - low(dim); uint8_t* bytep = reinterpret_cast(datap); // If on index 1 of a 2 index array, then each index 1 is index2sz*entsz size_t slicesz = entSize(); for (int d = dim + 1; d <= m_udims; ++d) slicesz *= elements(d); bytep += indxAdj * slicesz; return bytep; } //====================================================================== // VerilatedScope:: Methods VerilatedScope::~VerilatedScope() { // Memory cleanup - not called during normal operation Verilated::threadContextp()->impp()->scopeErase(this); if (m_namep) VL_DO_CLEAR(delete[] m_namep, m_namep = nullptr); if (m_callbacksp) VL_DO_CLEAR(delete[] m_callbacksp, m_callbacksp = nullptr); if (m_varsp) VL_DO_CLEAR(delete m_varsp, m_varsp = nullptr); m_funcnumMax = 0; // Force callback table to empty } void VerilatedScope::configure(VerilatedSyms* symsp, const char* prefixp, const char* suffixp, const char* identifier, int8_t timeunit, const Type& type) VL_MT_UNSAFE { // Slowpath - called once/scope at construction // We don't want the space and reference-count access overhead of strings. m_symsp = symsp; m_type = type; m_timeunit = timeunit; { char* const namep = new char[std::strlen(prefixp) + std::strlen(suffixp) + 2]; char* dp = namep; for (const char* sp = prefixp; *sp;) *dp++ = *sp++; if (*prefixp && *suffixp) *dp++ = '.'; for (const char* sp = suffixp; *sp;) *dp++ = *sp++; *dp++ = '\0'; m_namep = namep; } m_identifierp = identifier; Verilated::threadContextp()->impp()->scopeInsert(this); } void VerilatedScope::exportInsert(int finalize, const char* namep, void* cb) VL_MT_UNSAFE { // Slowpath - called once/scope*export at construction // Insert a exported function into scope table const int funcnum = VerilatedImp::exportInsert(namep); if (!finalize) { // Need two passes so we know array size to create // Alternative is to dynamically stretch the array, which is more code, and slower. if (funcnum >= m_funcnumMax) m_funcnumMax = funcnum + 1; } else { if (VL_UNCOVERABLE(funcnum >= m_funcnumMax)) { VL_FATAL_MT(__FILE__, __LINE__, "", // LCOV_EXCL_LINE "Internal: Bad funcnum vs. pre-finalize maximum"); } if (VL_UNLIKELY(!m_callbacksp)) { // First allocation m_callbacksp = new void*[m_funcnumMax]; std::memset(m_callbacksp, 0, m_funcnumMax * sizeof(void*)); } m_callbacksp[funcnum] = cb; } } void VerilatedScope::varInsert(int finalize, const char* namep, void* datap, bool isParam, VerilatedVarType vltype, int vlflags, int dims, ...) VL_MT_UNSAFE { // Grab dimensions // In the future we may just create a large table at emit time and // statically construct from that. if (!finalize) return; if (!m_varsp) m_varsp = new VerilatedVarNameMap; VerilatedVar var(namep, datap, vltype, static_cast(vlflags), dims, isParam); va_list ap; va_start(ap, dims); for (int i = 0; i < dims; ++i) { const int msb = va_arg(ap, int); const int lsb = va_arg(ap, int); if (i == 0) { var.m_packed.m_left = msb; var.m_packed.m_right = lsb; } else if (i >= 1 && i <= var.udims()) { var.m_unpacked[i - 1].m_left = msb; var.m_unpacked[i - 1].m_right = lsb; } else { // We could have a linked list of ranges, but really this whole thing needs // to be generalized to support structs and unions, etc. const std::string msg = std::string{"Unsupported multi-dimensional public varInsert: "} + namep; VL_FATAL_MT(__FILE__, __LINE__, "", msg.c_str()); } } va_end(ap); m_varsp->emplace(namep, var); } // cppcheck-suppress unusedFunction // Used by applications VerilatedVar* VerilatedScope::varFind(const char* namep) const VL_MT_SAFE_POSTINIT { if (VL_LIKELY(m_varsp)) { const auto it = m_varsp->find(namep); if (VL_LIKELY(it != m_varsp->end())) return &(it->second); } return nullptr; } void* VerilatedScope::exportFindNullError(int funcnum) VL_MT_SAFE { // Slowpath - Called only when find has failed const std::string msg = (std::string{"Testbench C called '"} + VerilatedImp::exportName(funcnum) + "' but scope wasn't set, perhaps due to dpi import call without " + "'context', or missing svSetScope. See IEEE 1800-2017 35.5.3."); VL_FATAL_MT("unknown", 0, "", msg.c_str()); return nullptr; } void* VerilatedScope::exportFindError(int funcnum) const VL_MT_SAFE { // Slowpath - Called only when find has failed const std::string msg = (std::string{"Testbench C called '"} + VerilatedImp::exportName(funcnum) + "' but this DPI export function exists only in other scopes, not scope '" + name() + "'"); VL_FATAL_MT("unknown", 0, "", msg.c_str()); return nullptr; } void VerilatedScope::scopeDump() const { VL_PRINTF_MT(" SCOPE %p: %s\n", this, name()); for (int i = 0; i < m_funcnumMax; ++i) { if (m_callbacksp && m_callbacksp[i]) { VL_PRINTF_MT(" DPI-EXPORT %p: %s\n", m_callbacksp[i], VerilatedImp::exportName(i)); } } if (const VerilatedVarNameMap* const varsp = this->varsp()) { for (const auto& i : *varsp) VL_PRINTF_MT(" VAR %p: %s\n", &(i.second), i.first); } } void VerilatedHierarchy::add(VerilatedScope* fromp, VerilatedScope* top) { VerilatedImp::hierarchyAdd(fromp, top); } void VerilatedHierarchy::remove(VerilatedScope* fromp, VerilatedScope* top) { VerilatedImp::hierarchyRemove(fromp, top); } //=========================================================================== // VerilatedOneThreaded:: Methods #ifdef VL_DEBUG void VerilatedAssertOneThread::fatal_different() VL_MT_SAFE { VL_FATAL_MT(__FILE__, __LINE__, "", "Routine called that is single threaded, but called from" " a different thread then the expected constructing thread"); } #endif //=========================================================================== // VlDeleter:: Methods void VlDeleter::deleteAll() { while (true) { VerilatedLockGuard lock{m_mutex}; if (m_newGarbage.empty()) break; VerilatedLockGuard deleteLock{m_deleteMutex}; std::swap(m_newGarbage, m_toDelete); lock.unlock(); // So destructors can enqueue new objects for (VlDeletable* const objp : m_toDelete) delete objp; m_toDelete.clear(); } } //===========================================================================