// DESCRIPTION: Verilator: Test of gated clock detection // // The code as shown generates a result by a delayed assignment from PC. The // creation of the result is from a clock gated from the clock that sets // PC. Howevever since they are essentially the same clock, the result should // be delayed by one cycle. // // Standard Verilator treats them as different clocks, so the result stays in // step with the PC. An event drive simulator always allows the clock to win. // // The problem is caused by the extra loop added by Verilator to the // evaluation of all internally generated clocks (effectively removed by // marking the clock enable). // // This test is added to facilitate experiments with solutions. // // This file ONLY is placed into the Public Domain, for any use, // without warranty, 2013 by Jeremy Bennett . // SPDX-License-Identifier: CC0-1.0 module t (/*AUTOARG*/ // Inputs clk ); input clk; reg gated_clk_en = 1'b0 ; reg [1:0] pc = 2'b0; reg [1:0] res = 2'b0; wire gated_clk = gated_clk_en & clk; always @(posedge clk) begin pc <= pc + 1; gated_clk_en <= 1'b1; end always @(posedge gated_clk) begin res <= pc; end always @(posedge clk) begin if (pc == 2'b11) begin // Correct behaviour is that res should be lagging pc in the count // by one cycle if (res == 2'b10) begin $write("*-* All Finished *-*\n"); $finish; end else begin $stop; end end end endmodule