// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
//
// Copyright 2003-2020 by Wilson Snyder. This program is free software; you can
// redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//*************************************************************************
///
/// \file
/// \brief Verilator: Common include for all Verilated C files
///
///     This file is included automatically by Verilator at the top of
///     all C++ files it generates.  It contains standard macros and
///     classes required by the Verilated code.
///
/// Code available from: https://verilator.org
///
//*************************************************************************

#ifndef _VERILATED_H_
#define _VERILATED_H_ 1  ///< Header Guard

// clang-format off
#include "verilatedos.h"
#if VM_SC
# include "verilated_sc.h"  // Get SYSTEMC_VERSION and time declarations
#endif

#include <cassert>
#include <cmath>
#include <cstdarg>
#include <cstdio>
#include <cstdlib>
#include <cstring>
// <iostream> avoided to reduce compile time
// <map> avoided and instead in verilated_heavy.h to reduce compile time
// <string> avoided and instead in verilated_heavy.h to reduce compile time
#ifdef VL_THREADED
# include <atomic>
# include <mutex>
# include <thread>
#endif

// Allow user to specify their own include file
#ifdef VL_VERILATED_INCLUDE
// cppcheck-suppress preprocessorErrorDirective
# include VL_VERILATED_INCLUDE
#endif
// clang-format on

//=============================================================================
// Switches

// clang-format off
#if VM_TRACE  // Verilator tracing requested
# define WAVES 1  // Set backward compatibility flag
#endif

// Version check
#if defined(SYSTEMC_VERSION) && (SYSTEMC_VERSION < 20111121)
# warning "Verilator requires SystemC 2.3.* or newer."
#endif
// clang-format on

//=========================================================================
// Basic types

// clang-format off
//                   P          // Packed data of bit type (C/S/I/Q/W)
typedef vluint8_t    CData;     ///< Verilated pack data, 1-8 bits
typedef vluint16_t   SData;     ///< Verilated pack data, 9-16 bits
typedef vluint32_t   IData;     ///< Verilated pack data, 17-32 bits
typedef vluint64_t   QData;     ///< Verilated pack data, 33-64 bits
typedef vluint32_t   EData;     ///< Verilated pack element of WData array
typedef EData        WData;     ///< Verilated pack data, >64 bits, as an array
//      float        F          // No typedef needed; Verilator uses float
//      double       D          // No typedef needed; Verilator uses double
//      string       N          // No typedef needed; Verilator uses string
// clang-format on

typedef const WData* WDataInP;  ///< Array input to a function
typedef WData* WDataOutP;  ///< Array output from a function

class VerilatedEvalMsgQueue;
class VerilatedScopeNameMap;
class VerilatedVar;
class VerilatedVarNameMap;
class VerilatedVcd;
class VerilatedVcdC;
class VerilatedVcdSc;
class VerilatedFst;
class VerilatedFstC;

enum VerilatedVarType : vluint8_t {
    VLVT_UNKNOWN = 0,
    VLVT_PTR,  // Pointer to something
    VLVT_UINT8,  // AKA CData
    VLVT_UINT16,  // AKA SData
    VLVT_UINT32,  // AKA IData
    VLVT_UINT64,  // AKA QData
    VLVT_WDATA,  // AKA WData
    VLVT_STRING  // C++ string
};

enum VerilatedVarFlags {
    VLVD_0 = 0,  // None
    VLVD_IN = 1,  // == vpiInput
    VLVD_OUT = 2,  // == vpiOutput
    VLVD_INOUT = 3,  // == vpiInOut
    VLVD_NODIR = 5,  // == vpiNoDirection
    VLVF_MASK_DIR = 7,  // Bit mask for above directions
    // Flags
    VLVF_PUB_RD = (1 << 8),  // Public readable
    VLVF_PUB_RW = (1 << 9),  // Public writable
    VLVF_DPI_CLAY = (1 << 10)  // DPI compatible C standard layout
};

//=========================================================================
/// Mutex and threading support

/// Return current thread ID (or 0), not super fast, cache if needed
extern vluint32_t VL_THREAD_ID() VL_MT_SAFE;

#if VL_THREADED

#define VL_LOCK_SPINS 50000  /// Number of times to spin for a mutex before relaxing

/// Mutex, wrapped to allow -fthread_safety checks
class VL_CAPABILITY("mutex") VerilatedMutex final {
private:
    std::mutex m_mutex;  // Mutex
public:
    VerilatedMutex() = default;
    ~VerilatedMutex() = default;
    const VerilatedMutex& operator!() const { return *this; }  // For -fthread_safety
    /// Acquire/lock mutex
    void lock() VL_ACQUIRE() {
        // Try to acquire the lock by spinning.  If the wait is short,
        // avoids a trap to the OS plus OS scheduler overhead.
        if (VL_LIKELY(try_lock())) return;  // Short circuit loop
        for (int i = 0; i < VL_LOCK_SPINS; ++i) {
            if (VL_LIKELY(try_lock())) return;
            VL_CPU_RELAX();
        }
        // Spinning hasn't worked, pay the cost of blocking.
        m_mutex.lock();
    }
    /// Release/unlock mutex
    void unlock() VL_RELEASE() { m_mutex.unlock(); }
    /// Try to acquire mutex.  Returns true on success, and false on failure.
    bool try_lock() VL_TRY_ACQUIRE(true) { return m_mutex.try_lock(); }
};

/// Lock guard for mutex (ala std::unique_lock), wrapped to allow -fthread_safety checks
class VL_SCOPED_CAPABILITY VerilatedLockGuard final {
    VL_UNCOPYABLE(VerilatedLockGuard);

private:
    VerilatedMutex& m_mutexr;

public:
    explicit VerilatedLockGuard(VerilatedMutex& mutexr) VL_ACQUIRE(mutexr)
        : m_mutexr(mutexr) {  // Need () or GCC 4.8 false warning
        m_mutexr.lock();
    }
    ~VerilatedLockGuard() VL_RELEASE() { m_mutexr.unlock(); }
    void lock() VL_ACQUIRE() { m_mutexr.lock(); }
    void unlock() VL_RELEASE() { m_mutexr.unlock(); }
};

#else  // !VL_THREADED

/// Empty non-threaded mutex to avoid #ifdefs in consuming code
class VerilatedMutex final {
public:
    void lock() {}
    void unlock() {}
};

/// Empty non-threaded lock guard to avoid #ifdefs in consuming code
class VerilatedLockGuard final {
    VL_UNCOPYABLE(VerilatedLockGuard);

public:
    explicit VerilatedLockGuard(VerilatedMutex&) {}
    ~VerilatedLockGuard() = default;
    void lock() {}
    void unlock() {}
};

#endif  // VL_THREADED

/// Remember the calling thread at construction time, and make sure later calls use same thread
class VerilatedAssertOneThread final {
    // MEMBERS
#if defined(VL_THREADED) && defined(VL_DEBUG)
    vluint32_t m_threadid;  /// Thread that is legal
public:
    // CONSTRUCTORS
    /// The constructor establishes the thread id for all later calls.
    /// If necessary, a different class could be made that inits it otherwise.
    VerilatedAssertOneThread()
        : m_threadid{VL_THREAD_ID()} {}
    ~VerilatedAssertOneThread() { check(); }
    // METHODS
    /// Check that the current thread ID is the same as the construction thread ID
    void check() VL_MT_UNSAFE_ONE {
        if (VL_UNCOVERABLE(m_threadid != VL_THREAD_ID())) {
            if (m_threadid == 0) {
                m_threadid = VL_THREAD_ID();
            } else {
                fatal_different();  // LCOV_EXCL_LINE
            }
        }
    }
    void changeThread() { m_threadid = 0; }  // Allow intentional change-of-thread
    static void fatal_different() VL_MT_SAFE;
#else  // !VL_THREADED || !VL_DEBUG
public:
    void check() {}
    void changeThread() {}
#endif
};

//=========================================================================
/// Base class for all Verilated module classes

class VerilatedScope;

class VerilatedModule VL_NOT_FINAL {
    VL_UNCOPYABLE(VerilatedModule);

private:
    const char* m_namep;  ///< Module name
public:
    explicit VerilatedModule(const char* namep);  ///< Create module with given hierarchy name
    ~VerilatedModule();
    const char* name() const { return m_namep; }  ///< Return name of module
};

//=========================================================================
// Declare nets

#define VL_SIG8(name, msb, lsb) CData name  ///< Declare signal, 1-8 bits
#define VL_SIG16(name, msb, lsb) SData name  ///< Declare signal, 9-16 bits
#define VL_SIG64(name, msb, lsb) QData name  ///< Declare signal, 33-64 bits
#define VL_SIG(name, msb, lsb) IData name  ///< Declare signal, 17-32 bits
#define VL_SIGW(name, msb, lsb, words) WData name[words]  ///< Declare signal, 65+ bits
#define VL_IN8(name, msb, lsb) CData name  ///< Declare input signal, 1-8 bits
#define VL_IN16(name, msb, lsb) SData name  ///< Declare input signal, 9-16 bits
#define VL_IN64(name, msb, lsb) QData name  ///< Declare input signal, 33-64 bits
#define VL_IN(name, msb, lsb) IData name  ///< Declare input signal, 17-32 bits
#define VL_INW(name, msb, lsb, words) WData name[words]  ///< Declare input signal, 65+ bits
#define VL_INOUT8(name, msb, lsb) CData name  ///< Declare bidir signal, 1-8 bits
#define VL_INOUT16(name, msb, lsb) SData name  ///< Declare bidir signal, 9-16 bits
#define VL_INOUT64(name, msb, lsb) QData name  ///< Declare bidir signal, 33-64 bits
#define VL_INOUT(name, msb, lsb) IData name  ///< Declare bidir signal, 17-32 bits
#define VL_INOUTW(name, msb, lsb, words) WData name[words]  ///< Declare bidir signal, 65+ bits
#define VL_OUT8(name, msb, lsb) CData name  ///< Declare output signal, 1-8 bits
#define VL_OUT16(name, msb, lsb) SData name  ///< Declare output signal, 9-16 bits
#define VL_OUT64(name, msb, lsb) QData name  ///< Declare output signal, 33-64bits
#define VL_OUT(name, msb, lsb) IData name  ///< Declare output signal, 17-32 bits
#define VL_OUTW(name, msb, lsb, words) WData name[words]  ///< Declare output signal, 65+ bits

#define VL_PIN_NOP(instname, pin, port)  ///< Connect a pin, ala SP_PIN
#define VL_CELL(instname, type)  ///< Declare a cell, ala SP_CELL

/// Declare a module, ala SC_MODULE
#define VL_MODULE(modname) class modname VL_NOT_FINAL : public VerilatedModule
// Not class final in VL_MODULE, as users might be abstracting our models (--hierarchical)

/// Constructor, ala SC_CTOR
#define VL_CTOR(modname) modname(const char* __VCname = "")

/// Constructor declaration for C++, ala SP_CTOR_IMPL
#define VL_CTOR_IMP(modname) \
    modname::modname(const char* __VCname) \
        : VerilatedModule(__VCname)

/// Constructor declaration for SystemC, ala SP_CTOR_IMPL
#define VL_SC_CTOR_IMP(modname) modname::modname(sc_module_name)

//=========================================================================
// Functions overridable by user defines
// (Internals however must use VL_PRINTF_MT, which calls these.)

// clang-format off
#ifndef VL_PRINTF
# define VL_PRINTF printf  ///< Print ala printf, called from main thread; redefine if desired
#endif
#ifndef VL_VPRINTF
# define VL_VPRINTF vprintf  ///< Print ala vprintf, called from main thread; redefine if desired
#endif
// clang-format on

//===========================================================================
/// Verilator symbol table base class

class VerilatedSyms VL_NOT_FINAL {
public:  // But for internal use only
#ifdef VL_THREADED
    VerilatedEvalMsgQueue* __Vm_evalMsgQp;
#endif
    VerilatedSyms();
    ~VerilatedSyms();
};

//===========================================================================
/// Verilator global class information class
/// This class is initialized by main thread only. Reading post-init is thread safe.

class VerilatedScope final {
public:
    typedef enum : vluint8_t {
        SCOPE_MODULE,
        SCOPE_OTHER
    } Type;  // Type of a scope, currently module is only interesting
private:
    // Fastpath:
    VerilatedSyms* m_symsp = nullptr;  ///< Symbol table
    void** m_callbacksp = nullptr;  ///< Callback table pointer (Fastpath)
    int m_funcnumMax = 0;  ///< Maxium function number stored (Fastpath)
    // 4 bytes padding (on -m64), for rent.
    VerilatedVarNameMap* m_varsp = nullptr;  ///< Variable map
    const char* m_namep = nullptr;  ///< Scope name (Slowpath)
    const char* m_identifierp = nullptr;  ///< Identifier of scope (with escapes removed)
    vlsint8_t m_timeunit = 0;  ///< Timeunit in negative power-of-10
    Type m_type = SCOPE_OTHER;  ///< Type of the scope

public:  // But internals only - called from VerilatedModule's
    VerilatedScope() = default;
    ~VerilatedScope();
    void configure(VerilatedSyms* symsp, const char* prefixp, const char* suffixp,
                   const char* identifier, vlsint8_t timeunit, const Type& type) VL_MT_UNSAFE;
    void exportInsert(int finalize, const char* namep, void* cb) VL_MT_UNSAFE;
    void varInsert(int finalize, const char* namep, void* datap, bool isParam,
                   VerilatedVarType vltype, int vlflags, int dims, ...) VL_MT_UNSAFE;
    // ACCESSORS
    const char* name() const { return m_namep; }
    const char* identifier() const { return m_identifierp; }
    vlsint8_t timeunit() const { return m_timeunit; }
    inline VerilatedSyms* symsp() const { return m_symsp; }
    VerilatedVar* varFind(const char* namep) const VL_MT_SAFE_POSTINIT;
    VerilatedVarNameMap* varsp() const VL_MT_SAFE_POSTINIT { return m_varsp; }
    void scopeDump() const;
    void* exportFindError(int funcnum) const;
    static void* exportFindNullError(int funcnum) VL_MT_SAFE;
    static inline void* exportFind(const VerilatedScope* scopep, int funcnum) VL_MT_SAFE {
        if (VL_UNLIKELY(!scopep)) return exportFindNullError(funcnum);
        if (VL_LIKELY(funcnum < scopep->m_funcnumMax)) {
            // m_callbacksp must be declared, as Max'es are > 0
            return scopep->m_callbacksp[funcnum];
        } else {  // LCOV_EXCL_LINE
            return scopep->exportFindError(funcnum);  // LCOV_EXCL_LINE
        }
    }
    Type type() const { return m_type; }
};

class VerilatedHierarchy final {
public:
    static void add(VerilatedScope* fromp, VerilatedScope* top);
    static void remove(VerilatedScope* fromp, VerilatedScope* top);
};

//===========================================================================
/// Verilator global static information class

class Verilated final {
    // MEMBERS
    // Slow path variables
    static VerilatedMutex s_mutex;  ///< Mutex for s_s/s_ns members, when VL_THREADED

    static struct Serialized {  // All these members serialized/deserialized
        // Fast path
        int s_debug;  ///< See accessors... only when VL_DEBUG set
        bool s_calcUnusedSigs;  ///< Waves file on, need all signals calculated
        bool s_gotFinish;  ///< A $finish statement executed
        bool s_assertOn;  ///< Assertions are enabled
        bool s_fatalOnVpiError;  ///< Stop on vpi error/unsupported
        // Slow path
        vlsint8_t s_timeunit;  ///< Time unit as 0..15
        vlsint8_t s_timeprecision;  ///< Time precision as 0..15
        int s_errorCount;  ///< Number of errors
        int s_errorLimit;  ///< Stop on error number
        int s_randReset;  ///< Random reset: 0=all 0s, 1=all 1s, 2=random
        int s_randSeed;  ///< Random seed: 0=random
        int s_randSeedEpoch;  ///< Number incrementing on each reseed, 0=illegal
        Serialized();
        ~Serialized() = default;
    } s_s;

    static struct NonSerialized {  // Non-serialized information
        // These are reloaded from on command-line settings, so do not need to persist
        // Fast path
        vluint64_t s_profThreadsStart = 1;  ///< +prof+threads starting time
        vluint32_t s_profThreadsWindow = 2;  ///< +prof+threads window size
        // Slow path
        const char* s_profThreadsFilenamep;  ///< +prof+threads filename
        void setup();
        void teardown();
    } s_ns;

    // no need to be save-restored (serialized) the
    // assumption is that the restore is allowed to pass different arguments
    static struct CommandArgValues {
        VerilatedMutex m_argMutex;  ///< Mutex for s_args members, when VL_THREADED
        int argc = 0;
        const char** argv = nullptr;
        CommandArgValues() = default;
        ~CommandArgValues() = default;
    } s_args;

    // Not covered by mutex, as per-thread
    static VL_THREAD_LOCAL struct ThreadLocal {
#ifdef VL_THREADED
        vluint32_t t_mtaskId = 0;  ///< Current mtask# executing on this thread
        vluint32_t t_endOfEvalReqd
            = 0;  ///< Messages may be pending, thread needs endOf-eval calls
#endif
        const VerilatedScope* t_dpiScopep = nullptr;  ///< DPI context scope
        const char* t_dpiFilename = nullptr;  ///< DPI context filename
        int t_dpiLineno = 0;  ///< DPI context line number

        ThreadLocal() = default;
        ~ThreadLocal() = default;
    } t_s;

private:
    friend struct VerilatedInitializer;

    // CONSTRUCTORS
    VL_UNCOPYABLE(Verilated);

public:
    // METHODS - User called

    /// Select initial value of otherwise uninitialized signals.
    ////
    /// 0 = Set to zeros
    /// 1 = Set all bits to one
    /// 2 = Randomize all bits
    static void randReset(int val) VL_MT_SAFE;
    static int randReset() VL_MT_SAFE { return s_s.s_randReset; }  ///< Return randReset value
    static void randSeed(int val) VL_MT_SAFE;
    static int randSeed() VL_MT_SAFE { return s_s.s_randSeed; }  ///< Return randSeed value
    static vluint32_t randSeedEpoch() VL_MT_SAFE { return s_s.s_randSeedEpoch; }
    /// Random seed extended to 64 bits, and defaulted if user seed==0
    static vluint64_t randSeedDefault64() VL_MT_SAFE;

    /// Enable debug of internal verilated code
    static void debug(int level) VL_MT_SAFE;
#ifdef VL_DEBUG
    /// Return debug level
    /// When multithreaded this may not immediately react to another thread
    /// changing the level (no mutex)
    static inline int debug() VL_MT_SAFE { return s_s.s_debug; }
#else
    /// Return constant 0 debug level, so C++'s optimizer rips up
    static constexpr int debug() VL_PURE { return 0; }
#endif
    /// Enable calculation of unused signals
    static void calcUnusedSigs(bool flag) VL_MT_SAFE;
    static bool calcUnusedSigs() VL_MT_SAFE {  ///< Return calcUnusedSigs value
        return s_s.s_calcUnusedSigs;
    }
    /// Current number of errors/assertions
    static void errorCount(int val) VL_MT_SAFE;
    static void errorCountInc() VL_MT_SAFE;
    static int errorCount() VL_MT_SAFE { return s_s.s_errorCount; }
    /// Set number of errors/assertions before stop
    static void errorLimit(int val) VL_MT_SAFE;
    static int errorLimit() VL_MT_SAFE { return s_s.s_errorLimit; }
    /// Did the simulation $finish?
    static void gotFinish(bool flag) VL_MT_SAFE;
    static bool gotFinish() VL_MT_SAFE { return s_s.s_gotFinish; }  ///< Return if got a $finish
    /// Allow traces to at some point be enabled (disables some optimizations)
    static void traceEverOn(bool flag) VL_MT_SAFE {
        if (flag) { calcUnusedSigs(flag); }
    }
    /// Enable/disable assertions
    static void assertOn(bool flag) VL_MT_SAFE;
    static bool assertOn() VL_MT_SAFE { return s_s.s_assertOn; }
    /// Enable/disable vpi fatal
    static void fatalOnVpiError(bool flag) VL_MT_SAFE;
    static bool fatalOnVpiError() VL_MT_SAFE { return s_s.s_fatalOnVpiError; }
    /// Time handling
    static int timeunit() VL_MT_SAFE { return -s_s.s_timeunit; }
    static const char* timeunitString() VL_MT_SAFE;
    static void timeunit(int value) VL_MT_SAFE;
    static int timeprecision() VL_MT_SAFE { return -s_s.s_timeprecision; }
    static const char* timeprecisionString() VL_MT_SAFE;
    static void timeprecision(int value) VL_MT_SAFE;
    /// --prof-threads related settings
    static void profThreadsStart(vluint64_t flag) VL_MT_SAFE;
    static vluint64_t profThreadsStart() VL_MT_SAFE { return s_ns.s_profThreadsStart; }
    static void profThreadsWindow(vluint64_t flag) VL_MT_SAFE;
    static vluint32_t profThreadsWindow() VL_MT_SAFE { return s_ns.s_profThreadsWindow; }
    static void profThreadsFilenamep(const char* flagp) VL_MT_SAFE;
    static const char* profThreadsFilenamep() VL_MT_SAFE { return s_ns.s_profThreadsFilenamep; }

    typedef void (*VoidPCb)(void*);  // Callback type for below
    /// Callbacks to run on global flush
    static void addFlushCb(VoidPCb cb, void* datap) VL_MT_SAFE;
    static void removeFlushCb(VoidPCb cb, void* datap) VL_MT_SAFE;
    static void runFlushCallbacks() VL_MT_SAFE;
    static void flushCall() VL_MT_SAFE { runFlushCallbacks(); }  // Deprecated
    /// Callbacks to run prior to termination
    static void addExitCb(VoidPCb cb, void* datap) VL_MT_SAFE;
    static void removeExitCb(VoidPCb cb, void* datap) VL_MT_SAFE;
    static void runExitCallbacks() VL_MT_SAFE;

    /// Record command line arguments, for retrieval by $test$plusargs/$value$plusargs,
    /// and for parsing +verilator+ run-time arguments.
    /// This should be called before the first model is created.
    static void commandArgs(int argc, const char** argv) VL_MT_SAFE;
    static void commandArgs(int argc, char** argv) VL_MT_SAFE {
        commandArgs(argc, const_cast<const char**>(argv));
    }
    static void commandArgsAdd(int argc, const char** argv);
    static CommandArgValues* getCommandArgs() VL_MT_SAFE { return &s_args; }
    /// Match plusargs with a given prefix. Returns static char* valid only for a single call
    static const char* commandArgsPlusMatch(const char* prefixp) VL_MT_SAFE;

    /// Produce name & version for (at least) VPI
    static const char* productName() VL_PURE;
    static const char* productVersion() VL_PURE;

    /// Convenience OS utilities
    static void mkdir(const char* dirname) VL_MT_UNSAFE;

    /// When multithreaded, quiesce the model to prepare for trace/saves/coverage
    /// This may only be called when no locks are held.
    static void quiesce() VL_MT_SAFE;

    /// For debugging, print much of the Verilator internal state.
    /// The output of this function may change in future
    /// releases - contact the authors before production use.
    static void internalsDump() VL_MT_SAFE;

    /// For debugging, print text list of all scope names with
    /// dpiImport/Export context.  This function may change in future
    /// releases - contact the authors before production use.
    static void scopesDump() VL_MT_SAFE;

public:
    // METHODS - INTERNAL USE ONLY (but public due to what uses it)
    // Internal: Create a new module name by concatenating two strings
    static const char* catName(const char* n1, const char* n2,
                               const char* delimiter = ".");  // Returns static data

    // Internal: Throw signal assertion
    static void nullPointerError(const char* filename, int linenum) VL_ATTR_NORETURN VL_MT_SAFE;
    static void overWidthError(const char* signame) VL_ATTR_NORETURN VL_MT_SAFE;

    // Internal: Find scope
    static const VerilatedScope* scopeFind(const char* namep) VL_MT_SAFE;
    static const VerilatedScopeNameMap* scopeNameMap() VL_MT_SAFE;

    // Internal: Get and set DPI context
    static const VerilatedScope* dpiScope() VL_MT_SAFE { return t_s.t_dpiScopep; }
    static void dpiScope(const VerilatedScope* scopep) VL_MT_SAFE { t_s.t_dpiScopep = scopep; }
    static void dpiContext(const VerilatedScope* scopep, const char* filenamep,
                           int lineno) VL_MT_SAFE {
        t_s.t_dpiScopep = scopep;
        t_s.t_dpiFilename = filenamep;
        t_s.t_dpiLineno = lineno;
    }
    static void dpiClearContext() VL_MT_SAFE { t_s.t_dpiScopep = nullptr; }
    static bool dpiInContext() VL_MT_SAFE { return t_s.t_dpiScopep != nullptr; }
    static const char* dpiFilenamep() VL_MT_SAFE { return t_s.t_dpiFilename; }
    static int dpiLineno() VL_MT_SAFE { return t_s.t_dpiLineno; }
    static int exportFuncNum(const char* namep) VL_MT_SAFE;

    static constexpr size_t serialized1Size() VL_PURE { return sizeof(s_s); }
    static constexpr void* serialized1Ptr() VL_MT_UNSAFE { return &s_s; }  // For Serialize only
    static size_t serialized2Size() VL_PURE;
    static void* serialized2Ptr() VL_MT_UNSAFE;
#ifdef VL_THREADED
    /// Set the mtaskId, called when an mtask starts
    static void mtaskId(vluint32_t id) VL_MT_SAFE { t_s.t_mtaskId = id; }
    static vluint32_t mtaskId() VL_MT_SAFE { return t_s.t_mtaskId; }
    static void endOfEvalReqdInc() VL_MT_SAFE { ++t_s.t_endOfEvalReqd; }
    static void endOfEvalReqdDec() VL_MT_SAFE { --t_s.t_endOfEvalReqd; }

    /// Called at end of each thread mtask, before finishing eval
    static void endOfThreadMTask(VerilatedEvalMsgQueue* evalMsgQp) VL_MT_SAFE {
        if (VL_UNLIKELY(t_s.t_endOfEvalReqd)) { endOfThreadMTaskGuts(evalMsgQp); }
    }
    /// Called at end of eval loop
    static void endOfEval(VerilatedEvalMsgQueue* evalMsgQp) VL_MT_SAFE {
        // It doesn't work to set endOfEvalReqd on the threadpool thread
        // and then check it on the eval thread since it's thread local.
        // It should be ok to call into endOfEvalGuts, it returns immediately
        // if there are no transactions.
        endOfEvalGuts(evalMsgQp);
    }
#endif

private:
#ifdef VL_THREADED
    static void endOfThreadMTaskGuts(VerilatedEvalMsgQueue* evalMsgQp) VL_MT_SAFE;
    static void endOfEvalGuts(VerilatedEvalMsgQueue* evalMsgQp) VL_MT_SAFE;
#endif
};

//=========================================================================
// Extern functions -- User may override -- See verilated.cpp

/// Routine to call for $finish
/// User code may wish to replace this function, to do so, define VL_USER_FINISH.
/// This code does not have to be thread safe.
/// Verilator internal code must call VL_FINISH_MT instead, which eventually calls this.
extern void vl_finish(const char* filename, int linenum, const char* hier);

/// Routine to call for $stop
/// User code may wish to replace this function, to do so, define VL_USER_STOP.
/// This code does not have to be thread safe.
/// Verilator internal code must call VL_FINISH_MT instead, which eventually calls this.
extern void vl_stop(const char* filename, int linenum, const char* hier);

/// Routine to call for a couple of fatal messages
/// User code may wish to replace this function, to do so, define VL_USER_FATAL.
/// This code does not have to be thread safe.
/// Verilator internal code must call VL_FINISH_MT instead, which eventually calls this.
extern void vl_fatal(const char* filename, int linenum, const char* hier, const char* msg);

//=========================================================================
// Extern functions -- Slow path

/// Multithread safe wrapper for calls to $finish
extern void VL_FINISH_MT(const char* filename, int linenum, const char* hier) VL_MT_SAFE;
/// Multithread safe wrapper for calls to $stop
extern void VL_STOP_MT(const char* filename, int linenum, const char* hier,
                       bool maybe = true) VL_MT_SAFE;
/// Multithread safe wrapper to call for a couple of fatal messages
extern void VL_FATAL_MT(const char* filename, int linenum, const char* hier,
                        const char* msg) VL_MT_SAFE;

// clang-format off
/// Print a string, multithread safe. Eventually VL_PRINTF will get called.
#ifdef VL_THREADED
extern void VL_PRINTF_MT(const char* formatp, ...) VL_ATTR_PRINTF(1) VL_MT_SAFE;
#else
# define VL_PRINTF_MT VL_PRINTF  // The following parens will take care of themselves
#endif
// clang-format on

/// Print a debug message from internals with standard prefix, with printf style format
extern void VL_DBG_MSGF(const char* formatp, ...) VL_ATTR_PRINTF(1) VL_MT_SAFE;

extern vluint64_t vl_rand64() VL_MT_SAFE;
inline IData VL_RANDOM_I(int obits) VL_MT_SAFE { return vl_rand64() & VL_MASK_I(obits); }
inline QData VL_RANDOM_Q(int obits) VL_MT_SAFE { return vl_rand64() & VL_MASK_Q(obits); }
extern WDataOutP VL_RANDOM_W(int obits, WDataOutP outwp);  ///< Randomize a signal
extern IData VL_RANDOM_SEEDED_II(int obits, IData seed) VL_MT_SAFE;
inline IData VL_URANDOM_RANGE_I(IData hi, IData lo) {
    vluint64_t rnd = vl_rand64();
    if (VL_LIKELY(hi > lo)) {
        // Modulus isn't very fast but it's common that hi-low is power-of-two
        return (rnd % (hi - lo + 1)) + lo;
    } else {
        return (rnd % (lo - hi + 1)) + hi;
    }
}

/// Init time only, so slow is fine
extern IData VL_RAND_RESET_I(int obits);  ///< Random reset a signal
extern QData VL_RAND_RESET_Q(int obits);  ///< Random reset a signal
extern WDataOutP VL_RAND_RESET_W(int obits, WDataOutP outwp);  ///< Random reset a signal
/// Zero reset a signal (slow - else use VL_ZERO_W)
extern WDataOutP VL_ZERO_RESET_W(int obits, WDataOutP outwp);

#if VL_THREADED
/// Return high-precision counter for profiling, or 0x0 if not available
inline QData VL_RDTSC_Q() {
    vluint64_t val;
    VL_RDTSC(val);
    return val;
}
#endif

extern void VL_PRINTTIMESCALE(const char* namep, const char* timeunitp) VL_MT_SAFE;

/// Math
extern WDataOutP _vl_moddiv_w(int lbits, WDataOutP owp, WDataInP lwp, WDataInP rwp,
                              bool is_modulus);

/// File I/O
extern IData VL_FGETS_IXI(int obits, void* destp, IData fpi);

extern void VL_FFLUSH_I(IData fdi);
extern IData VL_FSEEK_I(IData fdi, IData offset, IData origin);
extern IData VL_FTELL_I(IData fdi);
extern void VL_FCLOSE_I(IData fdi);

extern IData VL_FREAD_I(int width, int array_lsb, int array_size, void* memp, IData fpi,
                        IData start, IData count);

extern void VL_WRITEF(const char* formatp, ...);
extern void VL_FWRITEF(IData fpi, const char* formatp, ...);

extern IData VL_FSCANF_IX(IData fpi, const char* formatp, ...);
extern IData VL_SSCANF_IIX(int lbits, IData ld, const char* formatp, ...);
extern IData VL_SSCANF_IQX(int lbits, QData ld, const char* formatp, ...);
extern IData VL_SSCANF_IWX(int lbits, WDataInP lwp, const char* formatp, ...);

extern void VL_SFORMAT_X(int obits, CData& destr, const char* formatp, ...);
extern void VL_SFORMAT_X(int obits, SData& destr, const char* formatp, ...);
extern void VL_SFORMAT_X(int obits, IData& destr, const char* formatp, ...);
extern void VL_SFORMAT_X(int obits, QData& destr, const char* formatp, ...);
extern void VL_SFORMAT_X(int obits, void* destp, const char* formatp, ...);

extern IData VL_SYSTEM_IW(int lhswords, WDataInP lhsp);
extern IData VL_SYSTEM_IQ(QData lhs);
inline IData VL_SYSTEM_II(IData lhs) VL_MT_SAFE { return VL_SYSTEM_IQ(lhs); }

extern IData VL_TESTPLUSARGS_I(const char* formatp);
extern const char* vl_mc_scan_plusargs(const char* prefixp);  // PLIish

//=========================================================================
// Base macros

/// Return true if data[bit] set; not 0/1 return, but 0/non-zero return.
#define VL_BITISSET_I(data, bit) ((data) & (VL_UL(1) << VL_BITBIT_I(bit)))
#define VL_BITISSET_Q(data, bit) ((data) & (1ULL << VL_BITBIT_Q(bit)))
#define VL_BITISSET_E(data, bit) ((data) & (VL_EUL(1) << VL_BITBIT_E(bit)))
#define VL_BITISSET_W(data, bit) ((data)[VL_BITWORD_E(bit)] & (VL_EUL(1) << VL_BITBIT_E(bit)))
#define VL_BITISSETLIMIT_W(data, width, bit) (((bit) < (width)) && VL_BITISSET_W(data, bit))

/// Shift appropriate word by bit. Does not account for wrapping between two words
#define VL_BITRSHIFT_W(data, bit) ((data)[VL_BITWORD_E(bit)] >> VL_BITBIT_E(bit))

/// Create two 32-bit words from quadword
/// WData is always at least 2 words; does not clean upper bits
#define VL_SET_WQ(owp, data) \
    do { \
        (owp)[0] = static_cast<IData>(data); \
        (owp)[1] = static_cast<IData>((data) >> VL_EDATASIZE); \
    } while (false)
#define VL_SET_WI(owp, data) \
    do { \
        (owp)[0] = static_cast<IData>(data); \
        (owp)[1] = 0; \
    } while (false)
#define VL_SET_QW(lwp) \
    ((static_cast<QData>((lwp)[0])) \
     | (static_cast<QData>((lwp)[1]) << (static_cast<QData>(VL_EDATASIZE))))
#define _VL_SET_QII(ld, rd) ((static_cast<QData>(ld) << 32ULL) | static_cast<QData>(rd))

/// Return FILE* from IData
extern FILE* VL_CVT_I_FP(IData lhs) VL_MT_SAFE;

// clang-format off
// Use a union to avoid cast-to-different-size warnings
/// Return void* from QData
static inline void* VL_CVT_Q_VP(QData lhs) VL_PURE {
    union { void* fp; QData q; } u;
    u.q = lhs;
    return u.fp;
}
/// Return QData from const void*
static inline QData VL_CVT_VP_Q(const void* fp) VL_PURE {
    union { const void* fp; QData q; } u;
    u.q = 0;
    u.fp = fp;
    return u.q;
}
/// Return double from QData (bits, not numerically)
static inline double VL_CVT_D_Q(QData lhs) VL_PURE {
    union { double d; QData q; } u;
    u.q = lhs;
    return u.d;
}
/// Return QData from double (bits, not numerically)
static inline QData VL_CVT_Q_D(double lhs) VL_PURE {
    union { double d; QData q; } u;
    u.d = lhs;
    return u.q;
}
// clang-format on

/// Return double from lhs (numeric) unsigned
double VL_ITOR_D_W(int lbits, WDataInP lwp) VL_PURE;
static inline double VL_ITOR_D_I(int, IData lhs) VL_PURE {
    return static_cast<double>(static_cast<vluint32_t>(lhs));
}
static inline double VL_ITOR_D_Q(int, QData lhs) VL_PURE {
    return static_cast<double>(static_cast<vluint64_t>(lhs));
}
/// Return double from lhs (numeric) signed
double VL_ISTOR_D_W(int lbits, WDataInP lwp) VL_PURE;
static inline double VL_ISTOR_D_I(int lbits, IData lhs) VL_PURE {
    if (lbits == 32) return static_cast<double>(static_cast<vlsint32_t>(lhs));
    WData lwp[VL_WQ_WORDS_E];
    VL_SET_WI(lwp, lhs);
    return VL_ISTOR_D_W(lbits, lwp);
}
static inline double VL_ISTOR_D_Q(int lbits, QData lhs) VL_PURE {
    if (lbits == 64) return static_cast<double>(static_cast<vlsint64_t>(lhs));
    WData lwp[VL_WQ_WORDS_E];
    VL_SET_WQ(lwp, lhs);
    return VL_ISTOR_D_W(lbits, lwp);
}
/// Return QData from double (numeric)
static inline IData VL_RTOI_I_D(double lhs) VL_PURE {
    return static_cast<vlsint32_t>(VL_TRUNC(lhs));
}

// Sign extend such that if MSB set, we get ffff_ffff, else 0s
// (Requires clean input)
#define VL_SIGN_I(nbits, lhs) ((lhs) >> VL_BITBIT_I((nbits)-VL_UL(1)))
#define VL_SIGN_Q(nbits, lhs) ((lhs) >> VL_BITBIT_Q((nbits)-1ULL))
#define VL_SIGN_E(nbits, lhs) ((lhs) >> VL_BITBIT_E((nbits)-VL_EUL(1)))
#define VL_SIGN_W(nbits, rwp) \
    ((rwp)[VL_BITWORD_E((nbits)-VL_EUL(1))] >> VL_BITBIT_E((nbits)-VL_EUL(1)))
#define VL_SIGNONES_E(nbits, lhs) (-(VL_SIGN_E(nbits, lhs)))

// Sign bit extended up to MSB, doesn't include unsigned portion
// Optimization bug in GCC 3.3 returns different bitmasks to later states for
static inline IData VL_EXTENDSIGN_I(int lbits, IData lhs) VL_PURE {
    return (-((lhs) & (VL_UL(1) << (lbits - 1))));
}
static inline QData VL_EXTENDSIGN_Q(int lbits, QData lhs) VL_PURE {
    return (-((lhs) & (1ULL << (lbits - 1))));
}

// Debugging prints
extern void _VL_DEBUG_PRINT_W(int lbits, WDataInP iwp);

//=========================================================================
// Pli macros

extern int VL_TIME_STR_CONVERT(const char* strp) VL_PURE;

// These are deprecated and used only to establish the default precision/units.
// Use Verilator timescale-override for better control.
// clang-format off
#ifndef VL_TIME_PRECISION
# ifdef VL_TIME_PRECISION_STR
#  define VL_TIME_PRECISION VL_TIME_STR_CONVERT(VL_STRINGIFY(VL_TIME_PRECISION_STR))
# else
#  define VL_TIME_PRECISION (-12)  ///< Timescale default units if not in Verilog - picoseconds
# endif
#endif
#ifndef VL_TIME_UNIT
# ifdef VL_TIME_UNIT_STR
#  define VL_TIME_UNIT VL_TIME_STR_CONVERT(VL_STRINGIFY(VL_TIME_PRECISION_STR))
# else
#  define VL_TIME_UNIT (-12)  ///< Timescale default units if not in Verilog - picoseconds
# endif
#endif

/// Return current simulation time
#if defined(SYSTEMC_VERSION)
// Already defined: extern sc_time sc_time_stamp();
inline vluint64_t vl_time_stamp64() { return sc_time_stamp().value(); }
#else  // Non-SystemC
# ifdef VL_TIME_STAMP64
extern vluint64_t vl_time_stamp64();
# else
extern double sc_time_stamp();  // Verilator 4.032 and newer
inline vluint64_t vl_time_stamp64() { return static_cast<vluint64_t>(sc_time_stamp()); }
# endif
#endif

#define VL_TIME_I() (static_cast<IData>(vl_time_stamp64()))
#define VL_TIME_Q() (static_cast<QData>(vl_time_stamp64()))
#define VL_TIME_D() (static_cast<double>(vl_time_stamp64()))

/// Time scaled from 1-per-precision into a module's time units ("Unit"-ed, not "United")
// Optimized assuming scale is always constant.
// Can't use multiply in Q flavor, as might lose precision
#define VL_TIME_UNITED_Q(scale) (VL_TIME_Q() / static_cast<QData>(scale))
#define VL_TIME_UNITED_D(scale) (VL_TIME_D() / static_cast<double>(scale))
/// Time imported from units to time precision
double vl_time_multiplier(int scale);

/// Evaluate expression if debug enabled
#ifdef VL_DEBUG
# define VL_DEBUG_IF(text) \
    do { \
        if (VL_UNLIKELY(Verilated::debug())) {text} \
    } while (false)
#else
// We intentionally do not compile the text to improve compile speed
# define VL_DEBUG_IF(text) do {} while (false)
#endif

/// Collect coverage analysis for this line
#ifndef SP_AUTO_COVER3
# define SP_AUTO_COVER3(what,file,line)
#endif
// clang-format on

//=========================================================================
// Functional macros/routines
// These all take the form
//      VL_func_IW(bits, bits, op, op)
//      VL_func_WW(bits, bits, out, op, op)
// The I/W indicates if it's a integer or wide for the output and each operand.
// The bits indicate the bit width of the output and each operand.
// If wide output, a temporary storage location is specified.

//===================================================================
// SETTING OPERATORS

// Output clean
// EMIT_RULE: VL_CLEAN:  oclean=clean; obits=lbits;
#define VL_CLEAN_II(obits, lbits, lhs) ((lhs)&VL_MASK_I(obits))
#define VL_CLEAN_QQ(obits, lbits, lhs) ((lhs)&VL_MASK_Q(obits))

// EMIT_RULE: VL_ASSIGNCLEAN:  oclean=clean; obits==lbits;
#define VL_ASSIGNCLEAN_W(obits, owp, lwp) VL_CLEAN_WW((obits), (obits), (owp), (lwp))
static inline WDataOutP _VL_CLEAN_INPLACE_W(int obits, WDataOutP owp) VL_MT_SAFE {
    int words = VL_WORDS_I(obits);
    owp[words - 1] &= VL_MASK_E(obits);
    return owp;
}
static inline WDataOutP VL_CLEAN_WW(int obits, int, WDataOutP owp, WDataInP lwp) VL_MT_SAFE {
    int words = VL_WORDS_I(obits);
    for (int i = 0; (i < (words - 1)); ++i) owp[i] = lwp[i];
    owp[words - 1] = lwp[words - 1] & VL_MASK_E(obits);
    return owp;
}
static inline WDataOutP VL_ZERO_W(int obits, WDataOutP owp) VL_MT_SAFE {
    int words = VL_WORDS_I(obits);
    for (int i = 0; i < words; ++i) owp[i] = 0;
    return owp;
}
static inline WDataOutP VL_ALLONES_W(int obits, WDataOutP owp) VL_MT_SAFE {
    int words = VL_WORDS_I(obits);
    for (int i = 0; i < (words - 1); ++i) owp[i] = ~VL_EUL(0);
    owp[words - 1] = VL_MASK_E(obits);
    return owp;
}

// EMIT_RULE: VL_ASSIGN:  oclean=rclean; obits==lbits;
// For now, we always have a clean rhs.
// Note: If a ASSIGN isn't clean, use VL_ASSIGNCLEAN instead to do the same thing.
static inline WDataOutP VL_ASSIGN_W(int obits, WDataOutP owp, WDataInP lwp) VL_MT_SAFE {
    int words = VL_WORDS_I(obits);
    for (int i = 0; i < words; ++i) owp[i] = lwp[i];
    return owp;
}

// EMIT_RULE: VL_ASSIGNBIT:  rclean=clean;
static inline void VL_ASSIGNBIT_II(int, int bit, CData& lhsr, IData rhs) VL_PURE {
    lhsr = ((lhsr & ~(VL_UL(1) << VL_BITBIT_I(bit))) | (rhs << VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_II(int, int bit, SData& lhsr, IData rhs) VL_PURE {
    lhsr = ((lhsr & ~(VL_UL(1) << VL_BITBIT_I(bit))) | (rhs << VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_II(int, int bit, IData& lhsr, IData rhs) VL_PURE {
    lhsr = ((lhsr & ~(VL_UL(1) << VL_BITBIT_I(bit))) | (rhs << VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_QI(int, int bit, QData& lhsr, QData rhs) VL_PURE {
    lhsr = ((lhsr & ~(1ULL << VL_BITBIT_Q(bit))) | (static_cast<QData>(rhs) << VL_BITBIT_Q(bit)));
}
static inline void VL_ASSIGNBIT_WI(int, int bit, WDataOutP owp, IData rhs) VL_MT_SAFE {
    EData orig = owp[VL_BITWORD_E(bit)];
    owp[VL_BITWORD_E(bit)] = ((orig & ~(VL_EUL(1) << VL_BITBIT_E(bit)))
                              | (static_cast<EData>(rhs) << VL_BITBIT_E(bit)));
}
// Alternative form that is an instruction faster when rhs is constant one.
static inline void VL_ASSIGNBIT_IO(int, int bit, CData& lhsr, IData) VL_PURE {
    lhsr = (lhsr | (VL_UL(1) << VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_IO(int, int bit, SData& lhsr, IData) VL_PURE {
    lhsr = (lhsr | (VL_UL(1) << VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_IO(int, int bit, IData& lhsr, IData) VL_PURE {
    lhsr = (lhsr | (VL_UL(1) << VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_QO(int, int bit, QData& lhsr, IData) VL_PURE {
    lhsr = (lhsr | (1ULL << VL_BITBIT_Q(bit)));
}
static inline void VL_ASSIGNBIT_WO(int, int bit, WDataOutP owp, IData) VL_MT_SAFE {
    EData orig = owp[VL_BITWORD_E(bit)];
    owp[VL_BITWORD_E(bit)] = (orig | (VL_EUL(1) << VL_BITBIT_E(bit)));
}

//===================================================================
// SYSTEMC OPERATORS
// Copying verilog format to systemc integers and bit vectors.
// Get a SystemC variable

#define VL_ASSIGN_ISI(obits, vvar, svar) \
    { (vvar) = VL_CLEAN_II((obits), (obits), (svar).read()); }
#define VL_ASSIGN_QSQ(obits, vvar, svar) \
    { (vvar) = VL_CLEAN_QQ((obits), (obits), (svar).read()); }

#define VL_ASSIGN_ISW(obits, od, svar) \
    { (od) = ((svar).read().get_word(0)) & VL_MASK_I(obits); }
#define VL_ASSIGN_QSW(obits, od, svar) \
    { \
        (od) = ((static_cast<QData>((svar).read().get_word(1))) << VL_IDATASIZE \
                | (svar).read().get_word(0)) \
               & VL_MASK_Q(obits); \
    }
#define VL_ASSIGN_WSW(obits, owp, svar) \
    { \
        int words = VL_WORDS_I(obits); \
        for (int i = 0; i < words; ++i) (owp)[i] = (svar).read().get_word(i); \
        (owp)[words - 1] &= VL_MASK_E(obits); \
    }

#define VL_ASSIGN_ISU(obits, vvar, svar) \
    { (vvar) = VL_CLEAN_II((obits), (obits), (svar).read().to_uint()); }
#define VL_ASSIGN_QSU(obits, vvar, svar) \
    { (vvar) = VL_CLEAN_QQ((obits), (obits), (svar).read().to_uint64()); }
#define VL_ASSIGN_WSB(obits, owp, svar) \
    { \
        int words = VL_WORDS_I(obits); \
        sc_biguint<(obits)> _butemp = (svar).read(); \
        for (int i = 0; i < words; ++i) { \
            int msb = ((i + 1) * VL_IDATASIZE) - 1; \
            msb = (msb >= (obits)) ? ((obits)-1) : msb; \
            (owp)[i] = _butemp.range(msb, i * VL_IDATASIZE).to_uint(); \
        } \
        (owp)[words - 1] &= VL_MASK_E(obits); \
    }

// Copying verilog format from systemc integers and bit vectors.
// Set a SystemC variable

#define VL_ASSIGN_SII(obits, svar, vvar) \
    { (svar).write(vvar); }
#define VL_ASSIGN_SQQ(obits, svar, vvar) \
    { (svar).write(vvar); }

#define VL_ASSIGN_SWI(obits, svar, rd) \
    { \
        sc_bv<(obits)> _bvtemp; \
        _bvtemp.set_word(0, (rd)); \
        (svar).write(_bvtemp); \
    }
#define VL_ASSIGN_SWQ(obits, svar, rd) \
    { \
        sc_bv<(obits)> _bvtemp; \
        _bvtemp.set_word(0, static_cast<IData>(rd)); \
        _bvtemp.set_word(1, static_cast<IData>((rd) >> VL_IDATASIZE)); \
        (svar).write(_bvtemp); \
    }
#define VL_ASSIGN_SWW(obits, svar, rwp) \
    { \
        sc_bv<(obits)> _bvtemp; \
        for (int i = 0; i < VL_WORDS_I(obits); ++i) _bvtemp.set_word(i, (rwp)[i]); \
        (svar).write(_bvtemp); \
    }

#define VL_ASSIGN_SUI(obits, svar, rd) \
    { (svar).write(rd); }
#define VL_ASSIGN_SUQ(obits, svar, rd) \
    { (svar).write(rd); }
#define VL_ASSIGN_SBI(obits, svar, rd) \
    { (svar).write(rd); }
#define VL_ASSIGN_SBQ(obits, svar, rd) \
    { (svar).write(rd); }
#define VL_ASSIGN_SBW(obits, svar, rwp) \
    { \
        sc_biguint<(obits)> _butemp; \
        for (int i = 0; i < VL_WORDS_I(obits); ++i) { \
            int msb = ((i + 1) * VL_IDATASIZE) - 1; \
            msb = (msb >= (obits)) ? ((obits)-1) : msb; \
            _butemp.range(msb, i* VL_IDATASIZE) = (rwp)[i]; \
        } \
        (svar).write(_butemp); \
    }

//===================================================================
// Extending sizes

// CAREFUL, we're width changing, so obits!=lbits

// Right must be clean because otherwise size increase would pick up bad bits
// EMIT_RULE: VL_EXTEND:  oclean=clean; rclean==clean;
#define VL_EXTEND_II(obits, lbits, lhs) ((lhs))
#define VL_EXTEND_QI(obits, lbits, lhs) (static_cast<QData>(lhs))
#define VL_EXTEND_QQ(obits, lbits, lhs) ((lhs))

static inline WDataOutP VL_EXTEND_WI(int obits, int, WDataOutP owp, IData ld) VL_MT_SAFE {
    // Note for extracts that obits != lbits
    owp[0] = ld;
    for (int i = 1; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
    return owp;
}
static inline WDataOutP VL_EXTEND_WQ(int obits, int, WDataOutP owp, QData ld) VL_MT_SAFE {
    VL_SET_WQ(owp, ld);
    for (int i = VL_WQ_WORDS_E; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
    return owp;
}
static inline WDataOutP VL_EXTEND_WW(int obits, int lbits, WDataOutP owp,
                                     WDataInP lwp) VL_MT_SAFE {
    for (int i = 0; i < VL_WORDS_I(lbits); ++i) owp[i] = lwp[i];
    for (int i = VL_WORDS_I(lbits); i < VL_WORDS_I(obits); ++i) owp[i] = 0;
    return owp;
}

// EMIT_RULE: VL_EXTENDS:  oclean=*dirty*; obits=lbits;
// Sign extension; output dirty
static inline IData VL_EXTENDS_II(int, int lbits, IData lhs) VL_PURE {
    return VL_EXTENDSIGN_I(lbits, lhs) | lhs;
}
static inline QData VL_EXTENDS_QI(int, int lbits, QData lhs /*Q_as_need_extended*/) VL_PURE {
    return VL_EXTENDSIGN_Q(lbits, lhs) | lhs;
}
static inline QData VL_EXTENDS_QQ(int, int lbits, QData lhs) VL_PURE {
    return VL_EXTENDSIGN_Q(lbits, lhs) | lhs;
}

static inline WDataOutP VL_EXTENDS_WI(int obits, int lbits, WDataOutP owp, IData ld) VL_MT_SAFE {
    EData sign = VL_SIGNONES_E(lbits, static_cast<EData>(ld));
    owp[0] = ld | (sign & ~VL_MASK_E(lbits));
    for (int i = 1; i < VL_WORDS_I(obits); ++i) owp[i] = sign;
    return owp;
}
static inline WDataOutP VL_EXTENDS_WQ(int obits, int lbits, WDataOutP owp, QData ld) VL_MT_SAFE {
    VL_SET_WQ(owp, ld);
    EData sign = VL_SIGNONES_E(lbits, owp[1]);
    owp[1] |= sign & ~VL_MASK_E(lbits);
    for (int i = VL_WQ_WORDS_E; i < VL_WORDS_I(obits); ++i) owp[i] = sign;
    return owp;
}
static inline WDataOutP VL_EXTENDS_WW(int obits, int lbits, WDataOutP owp,
                                      WDataInP lwp) VL_MT_SAFE {
    for (int i = 0; i < VL_WORDS_I(lbits) - 1; ++i) owp[i] = lwp[i];
    int lmsw = VL_WORDS_I(lbits) - 1;
    EData sign = VL_SIGNONES_E(lbits, lwp[lmsw]);
    owp[lmsw] = lwp[lmsw] | (sign & ~VL_MASK_E(lbits));
    for (int i = VL_WORDS_I(lbits); i < VL_WORDS_I(obits); ++i) owp[i] = sign;
    return owp;
}

//===================================================================
// REDUCTION OPERATORS

// EMIT_RULE: VL_REDAND:  oclean=clean; lclean==clean; obits=1;
#define VL_REDAND_II(obits, lbits, lhs) ((lhs) == VL_MASK_I(lbits))
#define VL_REDAND_IQ(obits, lbits, lhs) ((lhs) == VL_MASK_Q(lbits))
static inline IData VL_REDAND_IW(int, int lbits, WDataInP lwp) VL_MT_SAFE {
    int words = VL_WORDS_I(lbits);
    EData combine = lwp[0];
    for (int i = 1; i < words - 1; ++i) combine &= lwp[i];
    combine &= ~VL_MASK_E(lbits) | lwp[words - 1];
    return ((~combine) == 0);
}

// EMIT_RULE: VL_REDOR:  oclean=clean; lclean==clean; obits=1;
#define VL_REDOR_I(lhs) ((lhs) != 0)
#define VL_REDOR_Q(lhs) ((lhs) != 0)
static inline IData VL_REDOR_W(int words, WDataInP lwp) VL_MT_SAFE {
    EData equal = 0;
    for (int i = 0; i < words; ++i) equal |= lwp[i];
    return (equal != 0);
}

// EMIT_RULE: VL_REDXOR:  oclean=dirty; obits=1;
static inline IData VL_REDXOR_2(IData r) VL_PURE {
    // Experiments show VL_REDXOR_2 is faster than __builtin_parityl
    r = (r ^ (r >> 1));
    return r;
}
static inline IData VL_REDXOR_4(IData r) VL_PURE {
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
    return __builtin_parityl(r);
#else
    r = (r ^ (r >> 1));
    r = (r ^ (r >> 2));
    return r;
#endif
}
static inline IData VL_REDXOR_8(IData r) VL_PURE {
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
    return __builtin_parityl(r);
#else
    r = (r ^ (r >> 1));
    r = (r ^ (r >> 2));
    r = (r ^ (r >> 4));
    return r;
#endif
}
static inline IData VL_REDXOR_16(IData r) VL_PURE {
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
    return __builtin_parityl(r);
#else
    r = (r ^ (r >> 1));
    r = (r ^ (r >> 2));
    r = (r ^ (r >> 4));
    r = (r ^ (r >> 8));
    return r;
#endif
}
static inline IData VL_REDXOR_32(IData r) VL_PURE {
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
    return __builtin_parityl(r);
#else
    r = (r ^ (r >> 1));
    r = (r ^ (r >> 2));
    r = (r ^ (r >> 4));
    r = (r ^ (r >> 8));
    r = (r ^ (r >> 16));
    return r;
#endif
}
static inline IData VL_REDXOR_64(QData r) VL_PURE {
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
    return __builtin_parityll(r);
#else
    r = (r ^ (r >> 1));
    r = (r ^ (r >> 2));
    r = (r ^ (r >> 4));
    r = (r ^ (r >> 8));
    r = (r ^ (r >> 16));
    r = (r ^ (r >> 32));
    return static_cast<IData>(r);
#endif
}
static inline IData VL_REDXOR_W(int words, WDataInP lwp) VL_MT_SAFE {
    EData r = lwp[0];
    for (int i = 1; i < words; ++i) r ^= lwp[i];
    return VL_REDXOR_32(r);
}

// EMIT_RULE: VL_COUNTONES_II:  oclean = false; lhs clean
static inline IData VL_COUNTONES_I(IData lhs) VL_PURE {
    // This is faster than __builtin_popcountl
    IData r = lhs - ((lhs >> 1) & 033333333333) - ((lhs >> 2) & 011111111111);
    r = (r + (r >> 3)) & 030707070707;
    r = (r + (r >> 6));
    r = (r + (r >> 12) + (r >> 24)) & 077;
    return r;
}
static inline IData VL_COUNTONES_Q(QData lhs) VL_PURE {
    return VL_COUNTONES_I(static_cast<IData>(lhs)) + VL_COUNTONES_I(static_cast<IData>(lhs >> 32));
}
#define VL_COUNTONES_E VL_COUNTONES_I
static inline IData VL_COUNTONES_W(int words, WDataInP lwp) VL_MT_SAFE {
    EData r = 0;
    for (int i = 0; i < words; ++i) r += VL_COUNTONES_E(lwp[i]);
    return r;
}

// EMIT_RULE: VL_COUNTBITS_II:  oclean = false; lhs clean
static inline IData VL_COUNTBITS_I(int lbits, IData lhs, IData ctrl0, IData ctrl1,
                                   IData ctrl2) VL_PURE {
    int ctrlSum = (ctrl0 & 0x1) + (ctrl1 & 0x1) + (ctrl2 & 0x1);
    if (ctrlSum == 3) {
        return VL_COUNTONES_I(lhs);
    } else if (ctrlSum == 0) {
        IData mask = (lbits == 32) ? -1 : ((1 << lbits) - 1);
        return VL_COUNTONES_I(~lhs & mask);
    } else {
        return (lbits == 32) ? 32 : lbits;
    }
}
static inline IData VL_COUNTBITS_Q(int lbits, QData lhs, IData ctrl0, IData ctrl1,
                                   IData ctrl2) VL_PURE {
    return VL_COUNTBITS_I(32, static_cast<IData>(lhs), ctrl0, ctrl1, ctrl2)
           + VL_COUNTBITS_I(lbits - 32, static_cast<IData>(lhs >> 32), ctrl0, ctrl1, ctrl2);
}
#define VL_COUNTBITS_E VL_COUNTBITS_I
static inline IData VL_COUNTBITS_W(int lbits, int words, WDataInP lwp, IData ctrl0, IData ctrl1,
                                   IData ctrl2) VL_MT_SAFE {
    EData r = 0;
    IData wordLbits = 32;
    for (int i = 0; i < words; ++i) {
        if (i == words - 1) { wordLbits = lbits % 32; }
        r += VL_COUNTBITS_E(wordLbits, lwp[i], ctrl0, ctrl1, ctrl2);
    }
    return r;
}

static inline IData VL_ONEHOT_I(IData lhs) VL_PURE {
    return (((lhs & (lhs - 1)) == 0) & (lhs != 0));
}
static inline IData VL_ONEHOT_Q(QData lhs) VL_PURE {
    return (((lhs & (lhs - 1)) == 0) & (lhs != 0));
}
static inline IData VL_ONEHOT_W(int words, WDataInP lwp) VL_MT_SAFE {
    EData one = 0;
    for (int i = 0; (i < words); ++i) {
        if (lwp[i]) {
            if (one) return 0;
            one = 1;
            if (lwp[i] & (lwp[i] - 1)) return 0;
        }
    }
    return one;
}

static inline IData VL_ONEHOT0_I(IData lhs) VL_PURE { return ((lhs & (lhs - 1)) == 0); }
static inline IData VL_ONEHOT0_Q(QData lhs) VL_PURE { return ((lhs & (lhs - 1)) == 0); }
static inline IData VL_ONEHOT0_W(int words, WDataInP lwp) VL_MT_SAFE {
    bool one = false;
    for (int i = 0; (i < words); ++i) {
        if (lwp[i]) {
            if (one) return 0;
            one = true;
            if (lwp[i] & (lwp[i] - 1)) return 0;
        }
    }
    return 1;
}

static inline IData VL_CLOG2_I(IData lhs) VL_PURE {
    // There are faster algorithms, or fls GCC4 builtins, but rarely used
    if (VL_UNLIKELY(!lhs)) return 0;
    lhs--;
    int shifts = 0;
    for (; lhs != 0; ++shifts) lhs = lhs >> 1;
    return shifts;
}
static inline IData VL_CLOG2_Q(QData lhs) VL_PURE {
    if (VL_UNLIKELY(!lhs)) return 0;
    lhs--;
    int shifts = 0;
    for (; lhs != 0; ++shifts) lhs = lhs >> 1ULL;
    return shifts;
}
static inline IData VL_CLOG2_W(int words, WDataInP lwp) VL_MT_SAFE {
    EData adjust = (VL_COUNTONES_W(words, lwp) == 1) ? 0 : 1;
    for (int i = words - 1; i >= 0; --i) {
        if (VL_UNLIKELY(lwp[i])) {  // Shorter worst case if predict not taken
            for (int bit = VL_EDATASIZE - 1; bit >= 0; --bit) {
                if (VL_UNLIKELY(VL_BITISSET_E(lwp[i], bit))) {
                    return i * VL_EDATASIZE + bit + adjust;
                }
            }
            // Can't get here - one bit must be set
        }
    }
    return 0;
}

static inline IData VL_MOSTSETBITP1_W(int words, WDataInP lwp) VL_MT_SAFE {
    // MSB set bit plus one; similar to FLS.  0=value is zero
    for (int i = words - 1; i >= 0; --i) {
        if (VL_UNLIKELY(lwp[i])) {  // Shorter worst case if predict not taken
            for (int bit = VL_EDATASIZE - 1; bit >= 0; --bit) {
                if (VL_UNLIKELY(VL_BITISSET_E(lwp[i], bit))) { return i * VL_EDATASIZE + bit + 1; }
            }
            // Can't get here - one bit must be set
        }
    }
    return 0;
}

//===================================================================
// SIMPLE LOGICAL OPERATORS

// EMIT_RULE: VL_AND:  oclean=lclean||rclean; obits=lbits; lbits==rbits;
static inline WDataOutP VL_AND_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
    for (int i = 0; (i < words); ++i) owp[i] = (lwp[i] & rwp[i]);
    return owp;
}
// EMIT_RULE: VL_OR:   oclean=lclean&&rclean; obits=lbits; lbits==rbits;
static inline WDataOutP VL_OR_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
    for (int i = 0; (i < words); ++i) owp[i] = (lwp[i] | rwp[i]);
    return owp;
}
// EMIT_RULE: VL_CHANGEXOR:  oclean=1; obits=32; lbits==rbits;
static inline IData VL_CHANGEXOR_W(int words, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
    IData od = 0;
    for (int i = 0; (i < words); ++i) od |= (lwp[i] ^ rwp[i]);
    return od;
}
// EMIT_RULE: VL_XOR:  oclean=lclean&&rclean; obits=lbits; lbits==rbits;
static inline WDataOutP VL_XOR_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
    for (int i = 0; (i < words); ++i) owp[i] = (lwp[i] ^ rwp[i]);
    return owp;
}
// EMIT_RULE: VL_NOT:  oclean=dirty; obits=lbits;
static inline WDataOutP VL_NOT_W(int words, WDataOutP owp, WDataInP lwp) VL_MT_SAFE {
    for (int i = 0; i < words; ++i) owp[i] = ~(lwp[i]);
    return owp;
}

//=========================================================================
// Logical comparisons

// EMIT_RULE: VL_EQ:  oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
// EMIT_RULE: VL_NEQ: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
// EMIT_RULE: VL_LT:  oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
// EMIT_RULE: VL_GT:  oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
// EMIT_RULE: VL_GTE: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
// EMIT_RULE: VL_LTE: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
#define VL_NEQ_W(words, lwp, rwp) (!VL_EQ_W(words, lwp, rwp))
#define VL_LT_W(words, lwp, rwp) (_VL_CMP_W(words, lwp, rwp) < 0)
#define VL_LTE_W(words, lwp, rwp) (_VL_CMP_W(words, lwp, rwp) <= 0)
#define VL_GT_W(words, lwp, rwp) (_VL_CMP_W(words, lwp, rwp) > 0)
#define VL_GTE_W(words, lwp, rwp) (_VL_CMP_W(words, lwp, rwp) >= 0)

// Output clean, <lhs> AND <rhs> MUST BE CLEAN
static inline IData VL_EQ_W(int words, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
    EData nequal = 0;
    for (int i = 0; (i < words); ++i) nequal |= (lwp[i] ^ rwp[i]);
    return (nequal == 0);
}

// Internal usage
static inline int _VL_CMP_W(int words, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
    for (int i = words - 1; i >= 0; --i) {
        if (lwp[i] > rwp[i]) return 1;
        if (lwp[i] < rwp[i]) return -1;
    }
    return 0;  // ==
}

#define VL_LTS_IWW(obits, lbits, rbbits, lwp, rwp) (_VL_CMPS_W(lbits, lwp, rwp) < 0)
#define VL_LTES_IWW(obits, lbits, rbits, lwp, rwp) (_VL_CMPS_W(lbits, lwp, rwp) <= 0)
#define VL_GTS_IWW(obits, lbits, rbits, lwp, rwp) (_VL_CMPS_W(lbits, lwp, rwp) > 0)
#define VL_GTES_IWW(obits, lbits, rbits, lwp, rwp) (_VL_CMPS_W(lbits, lwp, rwp) >= 0)

static inline IData VL_GTS_III(int, int lbits, int, IData lhs, IData rhs) VL_PURE {
    // For lbits==32, this becomes just a single instruction, otherwise ~5.
    // GCC 3.3.4 sign extension bugs on AMD64 architecture force us to use quad logic
    vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);  // Q for gcc
    vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);  // Q for gcc
    return lhs_signed > rhs_signed;
}
static inline IData VL_GTS_IQQ(int, int lbits, int, QData lhs, QData rhs) VL_PURE {
    vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
    vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
    return lhs_signed > rhs_signed;
}

static inline IData VL_GTES_III(int, int lbits, int, IData lhs, IData rhs) VL_PURE {
    vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);  // Q for gcc
    vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);  // Q for gcc
    return lhs_signed >= rhs_signed;
}
static inline IData VL_GTES_IQQ(int, int lbits, int, QData lhs, QData rhs) VL_PURE {
    vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
    vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
    return lhs_signed >= rhs_signed;
}

static inline IData VL_LTS_III(int, int lbits, int, IData lhs, IData rhs) VL_PURE {
    vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);  // Q for gcc
    vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);  // Q for gcc
    return lhs_signed < rhs_signed;
}
static inline IData VL_LTS_IQQ(int, int lbits, int, QData lhs, QData rhs) VL_PURE {
    vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
    vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
    return lhs_signed < rhs_signed;
}

static inline IData VL_LTES_III(int, int lbits, int, IData lhs, IData rhs) VL_PURE {
    vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);  // Q for gcc
    vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);  // Q for gcc
    return lhs_signed <= rhs_signed;
}
static inline IData VL_LTES_IQQ(int, int lbits, int, QData lhs, QData rhs) VL_PURE {
    vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
    vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
    return lhs_signed <= rhs_signed;
}

static inline int _VL_CMPS_W(int lbits, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
    int words = VL_WORDS_I(lbits);
    int i = words - 1;
    // We need to flip sense if negative comparison
    EData lsign = VL_SIGN_E(lbits, lwp[i]);
    EData rsign = VL_SIGN_E(lbits, rwp[i]);
    if (!lsign && rsign) return 1;  // + > -
    if (lsign && !rsign) return -1;  // - < +
    for (; i >= 0; --i) {
        if (lwp[i] > rwp[i]) return 1;
        if (lwp[i] < rwp[i]) return -1;
    }
    return 0;  // ==
}

//=========================================================================
// Math

// Output NOT clean
static inline WDataOutP VL_NEGATE_W(int words, WDataOutP owp, WDataInP lwp) VL_MT_SAFE {
    EData carry = 1;
    for (int i = 0; i < words; ++i) {
        owp[i] = ~lwp[i] + carry;
        carry = (owp[i] < ~lwp[i]);
    }
    return owp;
}
static void VL_NEGATE_INPLACE_W(int words, WDataOutP owp_lwp) VL_MT_SAFE {
    EData carry = 1;
    for (int i = 0; i < words; ++i) {
        EData word = ~owp_lwp[i] + carry;
        carry = (word < ~owp_lwp[i]);
        owp_lwp[i] = word;
    }
}

// EMIT_RULE: VL_MUL:    oclean=dirty; lclean==clean; rclean==clean;
// EMIT_RULE: VL_DIV:    oclean=dirty; lclean==clean; rclean==clean;
// EMIT_RULE: VL_MODDIV: oclean=dirty; lclean==clean; rclean==clean;
#define VL_DIV_III(lbits, lhs, rhs) (((rhs) == 0) ? 0 : (lhs) / (rhs))
#define VL_DIV_QQQ(lbits, lhs, rhs) (((rhs) == 0) ? 0 : (lhs) / (rhs))
#define VL_DIV_WWW(lbits, owp, lwp, rwp) (_vl_moddiv_w(lbits, owp, lwp, rwp, 0))
#define VL_MODDIV_III(lbits, lhs, rhs) (((rhs) == 0) ? 0 : (lhs) % (rhs))
#define VL_MODDIV_QQQ(lbits, lhs, rhs) (((rhs) == 0) ? 0 : (lhs) % (rhs))
#define VL_MODDIV_WWW(lbits, owp, lwp, rwp) (_vl_moddiv_w(lbits, owp, lwp, rwp, 1))

static inline WDataOutP VL_ADD_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
    QData carry = 0;
    for (int i = 0; i < words; ++i) {
        carry = carry + static_cast<QData>(lwp[i]) + static_cast<QData>(rwp[i]);
        owp[i] = (carry & 0xffffffffULL);
        carry = (carry >> 32ULL) & 0xffffffffULL;
    }
    // Last output word is dirty
    return owp;
}

static inline WDataOutP VL_SUB_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
    QData carry = 0;
    for (int i = 0; i < words; ++i) {
        carry = (carry + static_cast<QData>(lwp[i])
                 + static_cast<QData>(static_cast<IData>(~rwp[i])));
        if (i == 0) ++carry;  // Negation of rwp
        owp[i] = (carry & 0xffffffffULL);
        carry = (carry >> 32ULL) & 0xffffffffULL;
    }
    // Last output word is dirty
    return owp;
}

static inline WDataOutP VL_MUL_W(int words, WDataOutP owp, WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
    for (int i = 0; i < words; ++i) owp[i] = 0;
    for (int lword = 0; lword < words; ++lword) {
        for (int rword = 0; rword < words; ++rword) {
            QData mul = static_cast<QData>(lwp[lword]) * static_cast<QData>(rwp[rword]);
            for (int qword = lword + rword; qword < words; ++qword) {
                mul += static_cast<QData>(owp[qword]);
                owp[qword] = (mul & 0xffffffffULL);
                mul = (mul >> 32ULL) & 0xffffffffULL;
            }
        }
    }
    // Last output word is dirty
    return owp;
}

static inline IData VL_MULS_III(int, int lbits, int, IData lhs, IData rhs) VL_PURE {
    vlsint32_t lhs_signed = VL_EXTENDS_II(32, lbits, lhs);
    vlsint32_t rhs_signed = VL_EXTENDS_II(32, lbits, rhs);
    return lhs_signed * rhs_signed;
}
static inline QData VL_MULS_QQQ(int, int lbits, int, QData lhs, QData rhs) VL_PURE {
    vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
    vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
    return lhs_signed * rhs_signed;
}

static inline WDataOutP VL_MULS_WWW(int, int lbits, int, WDataOutP owp, WDataInP lwp,
                                    WDataInP rwp) VL_MT_SAFE {
    int words = VL_WORDS_I(lbits);
    // cppcheck-suppress variableScope
    WData lwstore[VL_MULS_MAX_WORDS];  // Fixed size, as MSVC++ doesn't allow [words] here
    // cppcheck-suppress variableScope
    WData rwstore[VL_MULS_MAX_WORDS];
    WDataInP lwusp = lwp;
    WDataInP rwusp = rwp;
    EData lneg = VL_SIGN_E(lbits, lwp[words - 1]);
    if (lneg) {  // Negate lhs
        lwusp = lwstore;
        VL_NEGATE_W(words, lwstore, lwp);
        lwstore[words - 1] &= VL_MASK_E(lbits);  // Clean it
    }
    EData rneg = VL_SIGN_E(lbits, rwp[words - 1]);
    if (rneg) {  // Negate rhs
        rwusp = rwstore;
        VL_NEGATE_W(words, rwstore, rwp);
        rwstore[words - 1] &= VL_MASK_E(lbits);  // Clean it
    }
    VL_MUL_W(words, owp, lwusp, rwusp);
    owp[words - 1] &= VL_MASK_E(
        lbits);  // Clean.  Note it's ok for the multiply to overflow into the sign bit
    if ((lneg ^ rneg) & 1) {  // Negate output (not using NEGATE, as owp==lwp)
        QData carry = 0;
        for (int i = 0; i < words; ++i) {
            carry = carry + static_cast<QData>(static_cast<IData>(~owp[i]));
            if (i == 0) ++carry;  // Negation of temp2
            owp[i] = (carry & 0xffffffffULL);
            carry = (carry >> 32ULL) & 0xffffffffULL;
        }
        // Not needed: owp[words-1] |= 1<<VL_BITBIT_E(lbits-1);  // Set sign bit
    }
    // Last output word is dirty
    return owp;
}

static inline IData VL_DIVS_III(int lbits, IData lhs, IData rhs) VL_PURE {
    if (VL_UNLIKELY(rhs == 0)) return 0;
    // -MAX / -1 cannot be represented in twos complement, and will cause SIGFPE
    if (VL_UNLIKELY(lhs == 0x80000000 && rhs == 0xffffffff)) return 0;
    vlsint32_t lhs_signed = VL_EXTENDS_II(VL_IDATASIZE, lbits, lhs);
    vlsint32_t rhs_signed = VL_EXTENDS_II(VL_IDATASIZE, lbits, rhs);
    return lhs_signed / rhs_signed;
}
static inline QData VL_DIVS_QQQ(int lbits, QData lhs, QData rhs) VL_PURE {
    if (VL_UNLIKELY(rhs == 0)) return 0;
    // -MAX / -1 cannot be represented in twos complement, and will cause SIGFPE
    if (VL_UNLIKELY(lhs == 0x8000000000000000ULL && rhs == 0xffffffffffffffffULL)) return 0;
    vlsint64_t lhs_signed = VL_EXTENDS_QQ(VL_QUADSIZE, lbits, lhs);
    vlsint64_t rhs_signed = VL_EXTENDS_QQ(VL_QUADSIZE, lbits, rhs);
    return lhs_signed / rhs_signed;
}
static inline IData VL_MODDIVS_III(int lbits, IData lhs, IData rhs) VL_PURE {
    if (VL_UNLIKELY(rhs == 0)) return 0;
    if (VL_UNLIKELY(lhs == 0x80000000 && rhs == 0xffffffff)) return 0;
    vlsint32_t lhs_signed = VL_EXTENDS_II(VL_IDATASIZE, lbits, lhs);
    vlsint32_t rhs_signed = VL_EXTENDS_II(VL_IDATASIZE, lbits, rhs);
    return lhs_signed % rhs_signed;
}
static inline QData VL_MODDIVS_QQQ(int lbits, QData lhs, QData rhs) VL_PURE {
    if (VL_UNLIKELY(rhs == 0)) return 0;
    if (VL_UNLIKELY(lhs == 0x8000000000000000ULL && rhs == 0xffffffffffffffffULL)) return 0;
    vlsint64_t lhs_signed = VL_EXTENDS_QQ(VL_QUADSIZE, lbits, lhs);
    vlsint64_t rhs_signed = VL_EXTENDS_QQ(VL_QUADSIZE, lbits, rhs);
    return lhs_signed % rhs_signed;
}

static inline WDataOutP VL_DIVS_WWW(int lbits, WDataOutP owp, WDataInP lwp,
                                    WDataInP rwp) VL_MT_SAFE {
    int words = VL_WORDS_I(lbits);
    EData lsign = VL_SIGN_E(lbits, lwp[words - 1]);
    EData rsign = VL_SIGN_E(lbits, rwp[words - 1]);
    // cppcheck-suppress variableScope
    WData lwstore[VL_MULS_MAX_WORDS];  // Fixed size, as MSVC++ doesn't allow [words] here
    // cppcheck-suppress variableScope
    WData rwstore[VL_MULS_MAX_WORDS];
    WDataInP ltup = lwp;
    WDataInP rtup = rwp;
    if (lsign) { ltup = _VL_CLEAN_INPLACE_W(lbits, VL_NEGATE_W(VL_WORDS_I(lbits), lwstore, lwp)); }
    if (rsign) { rtup = _VL_CLEAN_INPLACE_W(lbits, VL_NEGATE_W(VL_WORDS_I(lbits), rwstore, rwp)); }
    if ((lsign && !rsign) || (!lsign && rsign)) {
        WData qNoSign[VL_MULS_MAX_WORDS];
        VL_DIV_WWW(lbits, qNoSign, ltup, rtup);
        _VL_CLEAN_INPLACE_W(lbits, VL_NEGATE_W(VL_WORDS_I(lbits), owp, qNoSign));
        return owp;
    } else {
        return VL_DIV_WWW(lbits, owp, ltup, rtup);
    }
}
static inline WDataOutP VL_MODDIVS_WWW(int lbits, WDataOutP owp, WDataInP lwp,
                                       WDataInP rwp) VL_MT_SAFE {
    int words = VL_WORDS_I(lbits);
    EData lsign = VL_SIGN_E(lbits, lwp[words - 1]);
    EData rsign = VL_SIGN_E(lbits, rwp[words - 1]);
    // cppcheck-suppress variableScope
    WData lwstore[VL_MULS_MAX_WORDS];  // Fixed size, as MSVC++ doesn't allow [words] here
    // cppcheck-suppress variableScope
    WData rwstore[VL_MULS_MAX_WORDS];
    WDataInP ltup = lwp;
    WDataInP rtup = rwp;
    if (lsign) { ltup = _VL_CLEAN_INPLACE_W(lbits, VL_NEGATE_W(VL_WORDS_I(lbits), lwstore, lwp)); }
    if (rsign) { rtup = _VL_CLEAN_INPLACE_W(lbits, VL_NEGATE_W(VL_WORDS_I(lbits), rwstore, rwp)); }
    if (lsign) {  // Only dividend sign matters for modulus
        WData qNoSign[VL_MULS_MAX_WORDS];
        VL_MODDIV_WWW(lbits, qNoSign, ltup, rtup);
        _VL_CLEAN_INPLACE_W(lbits, VL_NEGATE_W(VL_WORDS_I(lbits), owp, qNoSign));
        return owp;
    } else {
        return VL_MODDIV_WWW(lbits, owp, ltup, rtup);
    }
}

#define VL_POW_IIQ(obits, lbits, rbits, lhs, rhs) VL_POW_QQQ(obits, lbits, rbits, lhs, rhs)
#define VL_POW_IIW(obits, lbits, rbits, lhs, rwp) VL_POW_QQW(obits, lbits, rbits, lhs, rwp)
#define VL_POW_QQI(obits, lbits, rbits, lhs, rhs) VL_POW_QQQ(obits, lbits, rbits, lhs, rhs)
#define VL_POW_WWI(obits, lbits, rbits, owp, lwp, rhs) \
    VL_POW_WWQ(obits, lbits, rbits, owp, lwp, rhs)

static inline IData VL_POW_III(int, int, int rbits, IData lhs, IData rhs) VL_PURE {
    if (VL_UNLIKELY(rhs == 0)) return 1;
    if (VL_UNLIKELY(lhs == 0)) return 0;
    IData power = lhs;
    IData out = 1;
    for (int i = 0; i < rbits; ++i) {
        if (i > 0) power = power * power;
        if (rhs & (1ULL << i)) out *= power;
    }
    return out;
}
static inline QData VL_POW_QQQ(int, int, int rbits, QData lhs, QData rhs) VL_PURE {
    if (VL_UNLIKELY(rhs == 0)) return 1;
    if (VL_UNLIKELY(lhs == 0)) return 0;
    QData power = lhs;
    QData out = 1ULL;
    for (int i = 0; i < rbits; ++i) {
        if (i > 0) power = power * power;
        if (rhs & (1ULL << i)) out *= power;
    }
    return out;
}
WDataOutP VL_POW_WWW(int obits, int, int rbits, WDataOutP owp, WDataInP lwp, WDataInP rwp);
WDataOutP VL_POW_WWQ(int obits, int, int rbits, WDataOutP owp, WDataInP lwp, QData rhs);
QData VL_POW_QQW(int obits, int, int rbits, QData lhs, WDataInP rwp);

#define VL_POWSS_IIQ(obits, lbits, rbits, lhs, rhs, lsign, rsign) \
    VL_POWSS_QQQ(obits, lbits, rbits, lhs, rhs, lsign, rsign)
#define VL_POWSS_IIQ(obits, lbits, rbits, lhs, rhs, lsign, rsign) \
    VL_POWSS_QQQ(obits, lbits, rbits, lhs, rhs, lsign, rsign)
#define VL_POWSS_IIW(obits, lbits, rbits, lhs, rwp, lsign, rsign) \
    VL_POWSS_QQW(obits, lbits, rbits, lhs, rwp, lsign, rsign)
#define VL_POWSS_QQI(obits, lbits, rbits, lhs, rhs, lsign, rsign) \
    VL_POWSS_QQQ(obits, lbits, rbits, lhs, rhs, lsign, rsign)
#define VL_POWSS_WWI(obits, lbits, rbits, owp, lwp, rhs, lsign, rsign) \
    VL_POWSS_WWQ(obits, lbits, rbits, owp, lwp, rhs, lsign, rsign)

static inline IData VL_POWSS_III(int obits, int, int rbits, IData lhs, IData rhs, bool lsign,
                                 bool rsign) VL_MT_SAFE {
    if (VL_UNLIKELY(rhs == 0)) return 1;
    if (rsign && VL_SIGN_I(rbits, rhs)) {
        if (lhs == 0) {
            return 0;  // "X"
        } else if (lhs == 1) {
            return 1;
        } else if (lsign && lhs == VL_MASK_I(obits)) {  // -1
            if (rhs & 1) {
                return VL_MASK_I(obits);  // -1^odd=-1
            } else {
                return 1;  // -1^even=1
            }
        }
        return 0;
    }
    return VL_POW_III(obits, rbits, rbits, lhs, rhs);
}
static inline QData VL_POWSS_QQQ(int obits, int, int rbits, QData lhs, QData rhs, bool lsign,
                                 bool rsign) VL_MT_SAFE {
    if (VL_UNLIKELY(rhs == 0)) return 1;
    if (rsign && VL_SIGN_Q(rbits, rhs)) {
        if (lhs == 0) {
            return 0;  // "X"
        } else if (lhs == 1) {
            return 1;
        } else if (lsign && lhs == VL_MASK_Q(obits)) {  // -1
            if (rhs & 1) {
                return VL_MASK_Q(obits);  // -1^odd=-1
            } else {
                return 1;  // -1^even=1
            }
        }
        return 0;
    }
    return VL_POW_QQQ(obits, rbits, rbits, lhs, rhs);
}
WDataOutP VL_POWSS_WWW(int obits, int, int rbits, WDataOutP owp, WDataInP lwp, WDataInP rwp,
                       bool lsign, bool rsign);
WDataOutP VL_POWSS_WWQ(int obits, int, int rbits, WDataOutP owp, WDataInP lwp, QData rhs,
                       bool lsign, bool rsign);
QData VL_POWSS_QQW(int obits, int, int rbits, QData lhs, WDataInP rwp, bool lsign, bool rsign);

//===================================================================
// Concat/replication

// INTERNAL: Stuff LHS bit 0++ into OUTPUT at specified offset
// ld may be "dirty", output is clean
static inline void _VL_INSERT_II(int, CData& lhsr, IData ld, int hbit, int lbit) VL_PURE {
    IData insmask = (VL_MASK_I(hbit - lbit + 1)) << lbit;
    lhsr = (lhsr & ~insmask) | ((ld << lbit) & insmask);
}
static inline void _VL_INSERT_II(int, SData& lhsr, IData ld, int hbit, int lbit) VL_PURE {
    IData insmask = (VL_MASK_I(hbit - lbit + 1)) << lbit;
    lhsr = (lhsr & ~insmask) | ((ld << lbit) & insmask);
}
static inline void _VL_INSERT_II(int, IData& lhsr, IData ld, int hbit, int lbit) VL_PURE {
    IData insmask = (VL_MASK_I(hbit - lbit + 1)) << lbit;
    lhsr = (lhsr & ~insmask) | ((ld << lbit) & insmask);
}
static inline void _VL_INSERT_QQ(int, QData& lhsr, QData ld, int hbit, int lbit) VL_PURE {
    QData insmask = (VL_MASK_Q(hbit - lbit + 1)) << lbit;
    lhsr = (lhsr & ~insmask) | ((ld << lbit) & insmask);
}
static inline void _VL_INSERT_WI(int, WDataOutP owp, IData ld, int hbit, int lbit) VL_MT_SAFE {
    int hoffset = VL_BITBIT_E(hbit);
    int loffset = VL_BITBIT_E(lbit);
    if (hoffset == VL_SIZEBITS_E && loffset == 0) {
        // Fast and common case, word based insertion
        owp[VL_BITWORD_E(lbit)] = ld;
    } else {
        int hword = VL_BITWORD_E(hbit);
        int lword = VL_BITWORD_E(lbit);
        EData lde = static_cast<EData>(ld);
        if (hword == lword) {  // know < EData bits because above checks it
            EData insmask = (VL_MASK_E(hoffset - loffset + 1)) << loffset;
            owp[lword] = (owp[lword] & ~insmask) | ((lde << loffset) & insmask);
        } else {
            EData hinsmask = (VL_MASK_E(hoffset - 0 + 1)) << 0;
            EData linsmask = (VL_MASK_E((VL_EDATASIZE - 1) - loffset + 1)) << loffset;
            int nbitsonright = VL_EDATASIZE - loffset;  // bits that end up in lword
            owp[lword] = (owp[lword] & ~linsmask) | ((lde << loffset) & linsmask);
            owp[hword] = (owp[hword] & ~hinsmask) | ((lde >> nbitsonright) & hinsmask);
        }
    }
}

// INTERNAL: Stuff large LHS bit 0++ into OUTPUT at specified offset
// lwp may be "dirty"
static inline void _VL_INSERT_WW(int, WDataOutP owp, WDataInP lwp, int hbit, int lbit) VL_MT_SAFE {
    int hoffset = hbit & VL_SIZEBITS_E;
    int loffset = lbit & VL_SIZEBITS_E;
    int lword = VL_BITWORD_E(lbit);
    int words = VL_WORDS_I(hbit - lbit + 1);
    if (hoffset == VL_SIZEBITS_E && loffset == 0) {
        // Fast and common case, word based insertion
        for (int i = 0; i < words; ++i) owp[lword + i] = lwp[i];
    } else if (loffset == 0) {
        // Non-32bit, but nicely aligned, so stuff all but the last word
        for (int i = 0; i < (words - 1); ++i) owp[lword + i] = lwp[i];
        // Know it's not a full word as above fast case handled it
        EData hinsmask = (VL_MASK_E(hoffset - 0 + 1));
        owp[lword + words - 1]
            = (owp[words + lword - 1] & ~hinsmask) | (lwp[words - 1] & hinsmask);
    } else {
        EData hinsmask = (VL_MASK_E(hoffset - 0 + 1)) << 0;
        EData linsmask = (VL_MASK_E((VL_EDATASIZE - 1) - loffset + 1)) << loffset;
        int nbitsonright = VL_EDATASIZE - loffset;  // bits that end up in lword (know loffset!=0)
        // Middle words
        int hword = VL_BITWORD_E(hbit);
        for (int i = 0; i < words; ++i) {
            {  // Lower word
                int oword = lword + i;
                EData d = lwp[i] << loffset;
                EData od = (owp[oword] & ~linsmask) | (d & linsmask);
                if (oword == hword) {
                    owp[oword] = (owp[oword] & ~hinsmask) | (od & hinsmask);
                } else {
                    owp[oword] = od;
                }
            }
            {  // Upper word
                int oword = lword + i + 1;
                if (oword <= hword) {
                    EData d = lwp[i] >> nbitsonright;
                    EData od = (d & ~linsmask) | (owp[oword] & linsmask);
                    if (oword == hword) {
                        owp[oword] = (owp[oword] & ~hinsmask) | (od & hinsmask);
                    } else {
                        owp[oword] = od;
                    }
                }
            }
        }
    }
}

static inline void _VL_INSERT_WQ(int obits, WDataOutP owp, QData ld, int hbit,
                                 int lbit) VL_MT_SAFE {
    WData lwp[VL_WQ_WORDS_E];
    VL_SET_WQ(lwp, ld);
    _VL_INSERT_WW(obits, owp, lwp, hbit, lbit);
}

// EMIT_RULE: VL_REPLICATE:  oclean=clean>width32, dirty<=width32; lclean=clean; rclean==clean;
// RHS MUST BE CLEAN CONSTANT.
#define VL_REPLICATE_IOI(obits, lbits, rbits, ld, rep) (-(ld))  // Iff lbits==1
#define VL_REPLICATE_QOI(obits, lbits, rbits, ld, rep) (-(static_cast<QData>(ld)))  // Iff lbits==1

static inline IData VL_REPLICATE_III(int, int lbits, int, IData ld, IData rep) VL_PURE {
    IData returndata = ld;
    for (unsigned i = 1; i < rep; ++i) {
        returndata = returndata << lbits;
        returndata |= ld;
    }
    return returndata;
}
static inline QData VL_REPLICATE_QII(int, int lbits, int, IData ld, IData rep) VL_PURE {
    QData returndata = ld;
    for (unsigned i = 1; i < rep; ++i) {
        returndata = returndata << lbits;
        returndata |= static_cast<QData>(ld);
    }
    return returndata;
}
static inline WDataOutP VL_REPLICATE_WII(int obits, int lbits, int, WDataOutP owp, IData ld,
                                         IData rep) VL_MT_SAFE {
    owp[0] = ld;
    for (unsigned i = 1; i < rep; ++i) {
        _VL_INSERT_WI(obits, owp, ld, i * lbits + lbits - 1, i * lbits);
    }
    return owp;
}
static inline WDataOutP VL_REPLICATE_WQI(int obits, int lbits, int, WDataOutP owp, QData ld,
                                         IData rep) VL_MT_SAFE {
    VL_SET_WQ(owp, ld);
    for (unsigned i = 1; i < rep; ++i) {
        _VL_INSERT_WQ(obits, owp, ld, i * lbits + lbits - 1, i * lbits);
    }
    return owp;
}
static inline WDataOutP VL_REPLICATE_WWI(int obits, int lbits, int, WDataOutP owp, WDataInP lwp,
                                         IData rep) VL_MT_SAFE {
    for (int i = 0; i < VL_WORDS_I(lbits); ++i) owp[i] = lwp[i];
    for (unsigned i = 1; i < rep; ++i) {
        _VL_INSERT_WW(obits, owp, lwp, i * lbits + lbits - 1, i * lbits);
    }
    return owp;
}

// Left stream operator. Output will always be clean. LHS and RHS must be clean.
// Special "fast" versions for slice sizes that are a power of 2. These use
// shifts and masks to execute faster than the slower for-loop approach where a
// subset of bits is copied in during each iteration.
static inline IData VL_STREAML_FAST_III(int, int lbits, int, IData ld, IData rd_log2) VL_PURE {
    // Pre-shift bits in most-significant slice:
    //
    // If lbits is not a multiple of the slice size (i.e., lbits % rd != 0),
    // then we end up with a "gap" in our reversed result. For example, if we
    // have a 5-bit Verlilog signal (lbits=5) in an 8-bit C data type:
    //
    //   ld = ---43210
    //
    // (where numbers are the Verilog signal bit numbers and '-' is an unused bit).
    // Executing the switch statement below with a slice size of two (rd=2,
    // rd_log2=1) produces:
    //
    //   ret = 1032-400
    //
    // Pre-shifting the bits in the most-significant slice allows us to avoid
    // this gap in the shuffled data:
    //
    //   ld_adjusted = --4-3210
    //   ret = 10324---
    IData ret = ld;
    if (rd_log2) {
        vluint32_t lbitsFloor = lbits & ~VL_MASK_I(rd_log2);  // max multiple of rd <= lbits
        vluint32_t lbitsRem = lbits - lbitsFloor;  // number of bits in most-sig slice (MSS)
        IData msbMask = VL_MASK_I(lbitsRem) << lbitsFloor;  // mask to sel only bits in MSS
        ret = (ret & ~msbMask) | ((ret & msbMask) << ((VL_UL(1) << rd_log2) - lbitsRem));
    }
    switch (rd_log2) {
    case 0: ret = ((ret >> 1) & VL_UL(0x55555555)) | ((ret & VL_UL(0x55555555)) << 1);  // FALLTHRU
    case 1: ret = ((ret >> 2) & VL_UL(0x33333333)) | ((ret & VL_UL(0x33333333)) << 2);  // FALLTHRU
    case 2: ret = ((ret >> 4) & VL_UL(0x0f0f0f0f)) | ((ret & VL_UL(0x0f0f0f0f)) << 4);  // FALLTHRU
    case 3: ret = ((ret >> 8) & VL_UL(0x00ff00ff)) | ((ret & VL_UL(0x00ff00ff)) << 8);  // FALLTHRU
    case 4: ret = ((ret >> 16) | (ret << 16));  // FALLTHRU
    default:;
    }
    return ret >> (VL_IDATASIZE - lbits);
}

static inline QData VL_STREAML_FAST_QQI(int, int lbits, int, QData ld, IData rd_log2) VL_PURE {
    // Pre-shift bits in most-significant slice (see comment in VL_STREAML_FAST_III)
    QData ret = ld;
    if (rd_log2) {
        vluint32_t lbitsFloor = lbits & ~VL_MASK_I(rd_log2);
        vluint32_t lbitsRem = lbits - lbitsFloor;
        QData msbMask = VL_MASK_Q(lbitsRem) << lbitsFloor;
        ret = (ret & ~msbMask) | ((ret & msbMask) << ((1ULL << rd_log2) - lbitsRem));
    }
    switch (rd_log2) {
    case 0:
        ret = (((ret >> 1) & 0x5555555555555555ULL)
               | ((ret & 0x5555555555555555ULL) << 1));  // FALLTHRU
    case 1:
        ret = (((ret >> 2) & 0x3333333333333333ULL)
               | ((ret & 0x3333333333333333ULL) << 2));  // FALLTHRU
    case 2:
        ret = (((ret >> 4) & 0x0f0f0f0f0f0f0f0fULL)
               | ((ret & 0x0f0f0f0f0f0f0f0fULL) << 4));  // FALLTHRU
    case 3:
        ret = (((ret >> 8) & 0x00ff00ff00ff00ffULL)
               | ((ret & 0x00ff00ff00ff00ffULL) << 8));  // FALLTHRU
    case 4:
        ret = (((ret >> 16) & 0x0000ffff0000ffffULL)
               | ((ret & 0x0000ffff0000ffffULL) << 16));  // FALLTHRU
    case 5: ret = ((ret >> 32) | (ret << 32));  // FALLTHRU
    default:;
    }
    return ret >> (VL_QUADSIZE - lbits);
}

// Regular "slow" streaming operators
static inline IData VL_STREAML_III(int, int lbits, int, IData ld, IData rd) VL_PURE {
    IData ret = 0;
    // Slice size should never exceed the lhs width
    IData mask = VL_MASK_I(rd);
    for (int istart = 0; istart < lbits; istart += rd) {
        int ostart = lbits - rd - istart;
        ostart = ostart > 0 ? ostart : 0;
        ret |= ((ld >> istart) & mask) << ostart;
    }
    return ret;
}

static inline QData VL_STREAML_QQI(int, int lbits, int, QData ld, IData rd) VL_PURE {
    QData ret = 0;
    // Slice size should never exceed the lhs width
    QData mask = VL_MASK_Q(rd);
    for (int istart = 0; istart < lbits; istart += rd) {
        int ostart = lbits - rd - istart;
        ostart = ostart > 0 ? ostart : 0;
        ret |= ((ld >> istart) & mask) << ostart;
    }
    return ret;
}

static inline WDataOutP VL_STREAML_WWI(int, int lbits, int, WDataOutP owp, WDataInP lwp,
                                       IData rd) VL_MT_SAFE {
    VL_ZERO_W(lbits, owp);
    // Slice size should never exceed the lhs width
    int ssize = (rd < static_cast<IData>(lbits)) ? rd : (static_cast<IData>(lbits));
    for (int istart = 0; istart < lbits; istart += rd) {
        int ostart = lbits - rd - istart;
        ostart = ostart > 0 ? ostart : 0;
        for (int sbit = 0; sbit < ssize && sbit < lbits - istart; ++sbit) {
            // Extract a single bit from lwp and shift it to the correct
            // location for owp.
            EData bit = (VL_BITRSHIFT_W(lwp, (istart + sbit)) & 1) << VL_BITBIT_E(ostart + sbit);
            owp[VL_BITWORD_E(ostart + sbit)] |= bit;
        }
    }
    return owp;
}

// Because concats are common and wide, it's valuable to always have a clean output.
// Thus we specify inputs must be clean, so we don't need to clean the output.
// Note the bit shifts are always constants, so the adds in these constify out.
// Casts required, as args may be 8 bit entities, and need to shift to appropriate output size
#define VL_CONCAT_III(obits, lbits, rbits, ld, rd) \
    (static_cast<IData>(ld) << (rbits) | static_cast<IData>(rd))
#define VL_CONCAT_QII(obits, lbits, rbits, ld, rd) \
    (static_cast<QData>(ld) << (rbits) | static_cast<QData>(rd))
#define VL_CONCAT_QIQ(obits, lbits, rbits, ld, rd) \
    (static_cast<QData>(ld) << (rbits) | static_cast<QData>(rd))
#define VL_CONCAT_QQI(obits, lbits, rbits, ld, rd) \
    (static_cast<QData>(ld) << (rbits) | static_cast<QData>(rd))
#define VL_CONCAT_QQQ(obits, lbits, rbits, ld, rd) \
    (static_cast<QData>(ld) << (rbits) | static_cast<QData>(rd))

static inline WDataOutP VL_CONCAT_WII(int obits, int lbits, int rbits, WDataOutP owp, IData ld,
                                      IData rd) VL_MT_SAFE {
    owp[0] = rd;
    for (int i = 1; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
    _VL_INSERT_WI(obits, owp, ld, rbits + lbits - 1, rbits);
    return owp;
}
static inline WDataOutP VL_CONCAT_WWI(int obits, int lbits, int rbits, WDataOutP owp, WDataInP lwp,
                                      IData rd) VL_MT_SAFE {
    owp[0] = rd;
    for (int i = 1; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
    _VL_INSERT_WW(obits, owp, lwp, rbits + lbits - 1, rbits);
    return owp;
}
static inline WDataOutP VL_CONCAT_WIW(int obits, int lbits, int rbits, WDataOutP owp, IData ld,
                                      WDataInP rwp) VL_MT_SAFE {
    for (int i = 0; i < VL_WORDS_I(rbits); ++i) owp[i] = rwp[i];
    for (int i = VL_WORDS_I(rbits); i < VL_WORDS_I(obits); ++i) owp[i] = 0;
    _VL_INSERT_WI(obits, owp, ld, rbits + lbits - 1, rbits);
    return owp;
}
static inline WDataOutP VL_CONCAT_WIQ(int obits, int lbits, int rbits, WDataOutP owp, IData ld,
                                      QData rd) VL_MT_SAFE {
    VL_SET_WQ(owp, rd);
    for (int i = VL_WQ_WORDS_E; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
    _VL_INSERT_WI(obits, owp, ld, rbits + lbits - 1, rbits);
    return owp;
}
static inline WDataOutP VL_CONCAT_WQI(int obits, int lbits, int rbits, WDataOutP owp, QData ld,
                                      IData rd) VL_MT_SAFE {
    owp[0] = rd;
    for (int i = 1; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
    _VL_INSERT_WQ(obits, owp, ld, rbits + lbits - 1, rbits);
    return owp;
}
static inline WDataOutP VL_CONCAT_WQQ(int obits, int lbits, int rbits, WDataOutP owp, QData ld,
                                      QData rd) VL_MT_SAFE {
    VL_SET_WQ(owp, rd);
    for (int i = VL_WQ_WORDS_E; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
    _VL_INSERT_WQ(obits, owp, ld, rbits + lbits - 1, rbits);
    return owp;
}
static inline WDataOutP VL_CONCAT_WWQ(int obits, int lbits, int rbits, WDataOutP owp, WDataInP lwp,
                                      QData rd) VL_MT_SAFE {
    VL_SET_WQ(owp, rd);
    for (int i = VL_WQ_WORDS_E; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
    _VL_INSERT_WW(obits, owp, lwp, rbits + lbits - 1, rbits);
    return owp;
}
static inline WDataOutP VL_CONCAT_WQW(int obits, int lbits, int rbits, WDataOutP owp, QData ld,
                                      WDataInP rwp) VL_MT_SAFE {
    for (int i = 0; i < VL_WORDS_I(rbits); ++i) owp[i] = rwp[i];
    for (int i = VL_WORDS_I(rbits); i < VL_WORDS_I(obits); ++i) owp[i] = 0;
    _VL_INSERT_WQ(obits, owp, ld, rbits + lbits - 1, rbits);
    return owp;
}
static inline WDataOutP VL_CONCAT_WWW(int obits, int lbits, int rbits, WDataOutP owp, WDataInP lwp,
                                      WDataInP rwp) VL_MT_SAFE {
    for (int i = 0; i < VL_WORDS_I(rbits); ++i) owp[i] = rwp[i];
    for (int i = VL_WORDS_I(rbits); i < VL_WORDS_I(obits); ++i) owp[i] = 0;
    _VL_INSERT_WW(obits, owp, lwp, rbits + lbits - 1, rbits);
    return owp;
}

//===================================================================
// Shifts

// Static shift, used by internal functions
// The output is the same as the input - it overlaps!
static inline void _VL_SHIFTL_INPLACE_W(int obits, WDataOutP iowp,
                                        IData rd /*1 or 4*/) VL_MT_SAFE {
    int words = VL_WORDS_I(obits);
    EData linsmask = VL_MASK_E(rd);
    for (int i = words - 1; i >= 1; --i) {
        iowp[i]
            = ((iowp[i] << rd) & ~linsmask) | ((iowp[i - 1] >> (VL_EDATASIZE - rd)) & linsmask);
    }
    iowp[0] = ((iowp[0] << rd) & ~linsmask);
    iowp[VL_WORDS_I(obits) - 1] &= VL_MASK_E(obits);
}

// EMIT_RULE: VL_SHIFTL:  oclean=lclean; rclean==clean;
// Important: Unlike most other funcs, the shift might well be a computed
// expression.  Thus consider this when optimizing.  (And perhaps have 2 funcs?)
static inline WDataOutP VL_SHIFTL_WWI(int obits, int, int, WDataOutP owp, WDataInP lwp,
                                      IData rd) VL_MT_SAFE {
    int word_shift = VL_BITWORD_E(rd);
    int bit_shift = VL_BITBIT_E(rd);
    if (rd >= static_cast<IData>(obits)) {  // rd may be huge with MSB set
        for (int i = 0; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
    } else if (bit_shift == 0) {  // Aligned word shift (<<0,<<32,<<64 etc)
        for (int i = 0; i < word_shift; ++i) owp[i] = 0;
        for (int i = word_shift; i < VL_WORDS_I(obits); ++i) owp[i] = lwp[i - word_shift];
    } else {
        for (int i = 0; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
        _VL_INSERT_WW(obits, owp, lwp, obits - 1, rd);
    }
    return owp;
}
static inline WDataOutP VL_SHIFTL_WWW(int obits, int lbits, int rbits, WDataOutP owp, WDataInP lwp,
                                      WDataInP rwp) VL_MT_SAFE {
    for (int i = 1; i < VL_WORDS_I(rbits); ++i) {
        if (VL_UNLIKELY(rwp[i])) {  // Huge shift 1>>32 or more
            return VL_ZERO_W(obits, owp);
        }
    }
    return VL_SHIFTL_WWI(obits, lbits, 32, owp, lwp, rwp[0]);
}
static inline IData VL_SHIFTL_IIW(int obits, int, int rbits, IData lhs, WDataInP rwp) VL_MT_SAFE {
    for (int i = 1; i < VL_WORDS_I(rbits); ++i) {
        if (VL_UNLIKELY(rwp[i])) {  // Huge shift 1>>32 or more
            return 0;
        }
    }
    return VL_CLEAN_II(obits, obits, lhs << rwp[0]);
}
static inline QData VL_SHIFTL_QQW(int obits, int, int rbits, QData lhs, WDataInP rwp) VL_MT_SAFE {
    for (int i = 1; i < VL_WORDS_I(rbits); ++i) {
        if (VL_UNLIKELY(rwp[i])) {  // Huge shift 1>>32 or more
            return 0;
        }
    }
    // Above checks rwp[1]==0 so not needed in below shift
    return VL_CLEAN_QQ(obits, obits, lhs << (static_cast<QData>(rwp[0])));
}

// EMIT_RULE: VL_SHIFTR:  oclean=lclean; rclean==clean;
// Important: Unlike most other funcs, the shift might well be a computed
// expression.  Thus consider this when optimizing.  (And perhaps have 2 funcs?)
static inline WDataOutP VL_SHIFTR_WWI(int obits, int, int, WDataOutP owp, WDataInP lwp,
                                      IData rd) VL_MT_SAFE {
    int word_shift = VL_BITWORD_E(rd);  // Maybe 0
    int bit_shift = VL_BITBIT_E(rd);
    if (rd >= static_cast<IData>(obits)) {  // rd may be huge with MSB set
        for (int i = 0; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
    } else if (bit_shift == 0) {  // Aligned word shift (>>0,>>32,>>64 etc)
        int copy_words = (VL_WORDS_I(obits) - word_shift);
        for (int i = 0; i < copy_words; ++i) owp[i] = lwp[i + word_shift];
        for (int i = copy_words; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
    } else {
        int loffset = rd & VL_SIZEBITS_E;
        int nbitsonright = VL_EDATASIZE - loffset;  // bits that end up in lword (know loffset!=0)
        // Middle words
        int words = VL_WORDS_I(obits - rd);
        for (int i = 0; i < words; ++i) {
            owp[i] = lwp[i + word_shift] >> loffset;
            int upperword = i + word_shift + 1;
            if (upperword < VL_WORDS_I(obits)) owp[i] |= lwp[upperword] << nbitsonright;
        }
        for (int i = words; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
    }
    return owp;
}
static inline WDataOutP VL_SHIFTR_WWW(int obits, int lbits, int rbits, WDataOutP owp, WDataInP lwp,
                                      WDataInP rwp) VL_MT_SAFE {
    for (int i = 1; i < VL_WORDS_I(rbits); ++i) {
        if (VL_UNLIKELY(rwp[i])) {  // Huge shift 1>>32 or more
            return VL_ZERO_W(obits, owp);
        }
    }
    return VL_SHIFTR_WWI(obits, lbits, 32, owp, lwp, rwp[0]);
}
static inline WDataOutP VL_SHIFTR_WWQ(int obits, int lbits, int rbits, WDataOutP owp, WDataInP lwp,
                                      QData rd) VL_MT_SAFE {
    WData rwp[VL_WQ_WORDS_E];
    VL_SET_WQ(rwp, rd);
    return VL_SHIFTR_WWW(obits, lbits, rbits, owp, lwp, rwp);
}

static inline IData VL_SHIFTR_IIW(int obits, int, int rbits, IData lhs, WDataInP rwp) VL_MT_SAFE {
    for (int i = 1; i < VL_WORDS_I(rbits); ++i) {
        if (VL_UNLIKELY(rwp[i])) {  // Huge shift 1>>32 or more
            return 0;
        }
    }
    return VL_CLEAN_II(obits, obits, lhs >> rwp[0]);
}
static inline QData VL_SHIFTR_QQW(int obits, int, int rbits, QData lhs, WDataInP rwp) VL_MT_SAFE {
    for (int i = 1; i < VL_WORDS_I(rbits); ++i) {
        if (VL_UNLIKELY(rwp[i])) {  // Huge shift 1>>32 or more
            return 0;
        }
    }
    // Above checks rwp[1]==0 so not needed in below shift
    return VL_CLEAN_QQ(obits, obits, lhs >> (static_cast<QData>(rwp[0])));
}

// EMIT_RULE: VL_SHIFTRS:  oclean=false; lclean=clean, rclean==clean;
static inline IData VL_SHIFTRS_III(int obits, int lbits, int, IData lhs, IData rhs) VL_PURE {
    // Note the C standard does not specify the >> operator as a arithmetic shift!
    // IEEE says signed if output signed, but bit position from lbits;
    // must use lbits for sign; lbits might != obits,
    // an EXTEND(SHIFTRS(...)) can became a SHIFTRS(...) within same 32/64 bit word length
    IData sign = -(lhs >> (lbits - 1));  // ffff_ffff if negative
    IData signext = ~(VL_MASK_I(lbits) >> rhs);  // One with bits where we've shifted "past"
    return (lhs >> rhs) | (sign & VL_CLEAN_II(obits, obits, signext));
}
static inline QData VL_SHIFTRS_QQI(int obits, int lbits, int, QData lhs, IData rhs) VL_PURE {
    QData sign = -(lhs >> (lbits - 1));
    QData signext = ~(VL_MASK_Q(lbits) >> rhs);
    return (lhs >> rhs) | (sign & VL_CLEAN_QQ(obits, obits, signext));
}
static inline IData VL_SHIFTRS_IQI(int obits, int lbits, int rbits, QData lhs, IData rhs) VL_PURE {
    return static_cast<IData>(VL_SHIFTRS_QQI(obits, lbits, rbits, lhs, rhs));
}
static inline WDataOutP VL_SHIFTRS_WWI(int obits, int lbits, int, WDataOutP owp, WDataInP lwp,
                                       IData rd) VL_MT_SAFE {
    int word_shift = VL_BITWORD_E(rd);
    int bit_shift = VL_BITBIT_E(rd);
    int lmsw = VL_WORDS_I(obits) - 1;
    EData sign = VL_SIGNONES_E(lbits, lwp[lmsw]);
    if (rd >= static_cast<IData>(obits)) {  // Shifting past end, sign in all of lbits
        for (int i = 0; i <= lmsw; ++i) owp[i] = sign;
        owp[lmsw] &= VL_MASK_E(lbits);
    } else if (bit_shift == 0) {  // Aligned word shift (>>0,>>32,>>64 etc)
        int copy_words = (VL_WORDS_I(obits) - word_shift);
        for (int i = 0; i < copy_words; ++i) owp[i] = lwp[i + word_shift];
        if (copy_words >= 0) owp[copy_words - 1] |= ~VL_MASK_E(obits) & sign;
        for (int i = copy_words; i < VL_WORDS_I(obits); ++i) owp[i] = sign;
        owp[lmsw] &= VL_MASK_E(lbits);
    } else {
        int loffset = rd & VL_SIZEBITS_E;
        int nbitsonright = VL_EDATASIZE - loffset;  // bits that end up in lword (know loffset!=0)
        // Middle words
        int words = VL_WORDS_I(obits - rd);
        for (int i = 0; i < words; ++i) {
            owp[i] = lwp[i + word_shift] >> loffset;
            int upperword = i + word_shift + 1;
            if (upperword < VL_WORDS_I(obits)) owp[i] |= lwp[upperword] << nbitsonright;
        }
        if (words) owp[words - 1] |= sign & ~VL_MASK_E(obits - loffset);
        for (int i = words; i < VL_WORDS_I(obits); ++i) owp[i] = sign;
        owp[lmsw] &= VL_MASK_E(lbits);
    }
    return owp;
}
static inline WDataOutP VL_SHIFTRS_WWW(int obits, int lbits, int rbits, WDataOutP owp,
                                       WDataInP lwp, WDataInP rwp) VL_MT_SAFE {
    EData overshift = 0;  // Huge shift 1>>32 or more
    for (int i = 1; i < VL_WORDS_I(rbits); ++i) overshift |= rwp[i];
    if (VL_UNLIKELY(overshift)) {
        int lmsw = VL_WORDS_I(obits) - 1;
        EData sign = VL_SIGNONES_E(lbits, lwp[lmsw]);
        for (int j = 0; j <= lmsw; ++j) owp[j] = sign;
        owp[lmsw] &= VL_MASK_E(lbits);
        return owp;
    }
    return VL_SHIFTRS_WWI(obits, lbits, 32, owp, lwp, rwp[0]);
}
static inline WDataOutP VL_SHIFTRS_WWQ(int obits, int lbits, int rbits, WDataOutP owp,
                                       WDataInP lwp, QData rd) VL_MT_SAFE {
    WData rwp[VL_WQ_WORDS_E];
    VL_SET_WQ(rwp, rd);
    return VL_SHIFTRS_WWW(obits, lbits, rbits, owp, lwp, rwp);
}
static inline IData VL_SHIFTRS_IIW(int obits, int lbits, int rbits, IData lhs,
                                   WDataInP rwp) VL_MT_SAFE {
    EData overshift = 0;  // Huge shift 1>>32 or more
    for (int i = 1; i < VL_WORDS_I(rbits); ++i) overshift |= rwp[i];
    if (VL_UNLIKELY(overshift)) {
        IData sign = -(lhs >> (lbits - 1));  // ffff_ffff if negative
        return VL_CLEAN_II(obits, obits, sign);
    }
    return VL_SHIFTRS_III(obits, lbits, 32, lhs, rwp[0]);
}
static inline QData VL_SHIFTRS_QQW(int obits, int lbits, int rbits, QData lhs,
                                   WDataInP rwp) VL_MT_SAFE {
    EData overshift = 0;  // Huge shift 1>>32 or more
    for (int i = 1; i < VL_WORDS_I(rbits); ++i) overshift |= rwp[i];
    if (VL_UNLIKELY(overshift)) {
        QData sign = -(lhs >> (lbits - 1));  // ffff_ffff if negative
        return VL_CLEAN_QQ(obits, obits, sign);
    }
    return VL_SHIFTRS_QQI(obits, lbits, 32, lhs, rwp[0]);
}
static inline IData VL_SHIFTRS_IIQ(int obits, int lbits, int rbits, IData lhs, QData rhs) VL_PURE {
    WData rwp[VL_WQ_WORDS_E];
    VL_SET_WQ(rwp, rhs);
    return VL_SHIFTRS_IIW(obits, lbits, rbits, lhs, rwp);
}
static inline QData VL_SHIFTRS_QQQ(int obits, int lbits, int rbits, QData lhs, QData rhs) VL_PURE {
    WData rwp[VL_WQ_WORDS_E];
    VL_SET_WQ(rwp, rhs);
    return VL_SHIFTRS_QQW(obits, lbits, rbits, lhs, rwp);
}

//===================================================================
// Bit selection

// EMIT_RULE: VL_BITSEL:  oclean=dirty; rclean==clean;
#define VL_BITSEL_IIII(obits, lbits, rbits, zbits, lhs, rhs) ((lhs) >> (rhs))
#define VL_BITSEL_QIII(obits, lbits, rbits, zbits, lhs, rhs) ((lhs) >> (rhs))
#define VL_BITSEL_QQII(obits, lbits, rbits, zbits, lhs, rhs) ((lhs) >> (rhs))
#define VL_BITSEL_IQII(obits, lbits, rbits, zbits, lhs, rhs) (static_cast<IData>((lhs) >> (rhs)))

static inline IData VL_BITSEL_IWII(int, int lbits, int, int, WDataInP lwp, IData rd) VL_MT_SAFE {
    int word = VL_BITWORD_E(rd);
    if (VL_UNLIKELY(rd > static_cast<IData>(lbits))) {
        return ~0;  // Spec says you can go outside the range of a array.  Don't coredump if so.
        // We return all 1's as that's more likely to find bugs (?) than 0's.
    } else {
        return (lwp[word] >> VL_BITBIT_E(rd));
    }
}

// EMIT_RULE: VL_RANGE:  oclean=lclean;  out=dirty
// <msb> & <lsb> MUST BE CLEAN (currently constant)
#define VL_SEL_IIII(obits, lbits, rbits, tbits, lhs, lsb, width) ((lhs) >> (lsb))
#define VL_SEL_QQII(obits, lbits, rbits, tbits, lhs, lsb, width) ((lhs) >> (lsb))
#define VL_SEL_IQII(obits, lbits, rbits, tbits, lhs, lsb, width) \
    (static_cast<IData>((lhs) >> (lsb)))

static inline IData VL_SEL_IWII(int, int lbits, int, int, WDataInP lwp, IData lsb,
                                IData width) VL_MT_SAFE {
    int msb = lsb + width - 1;
    if (VL_UNLIKELY(msb > lbits)) {
        return ~0;  // Spec says you can go outside the range of a array.  Don't coredump if so.
    } else if (VL_BITWORD_E(msb) == VL_BITWORD_E(static_cast<int>(lsb))) {
        return VL_BITRSHIFT_W(lwp, lsb);
    } else {
        // 32 bit extraction may span two words
        int nbitsfromlow = VL_EDATASIZE - VL_BITBIT_E(lsb);  // bits that come from low word
        return ((lwp[VL_BITWORD_E(msb)] << nbitsfromlow) | VL_BITRSHIFT_W(lwp, lsb));
    }
}

static inline QData VL_SEL_QWII(int, int lbits, int, int, WDataInP lwp, IData lsb,
                                IData width) VL_MT_SAFE {
    int msb = lsb + width - 1;
    if (VL_UNLIKELY(msb > lbits)) {
        return ~0;  // Spec says you can go outside the range of a array.  Don't coredump if so.
    } else if (VL_BITWORD_E(msb) == VL_BITWORD_E(static_cast<int>(lsb))) {
        return VL_BITRSHIFT_W(lwp, lsb);
    } else if (VL_BITWORD_E(msb) == 1 + VL_BITWORD_E(static_cast<int>(lsb))) {
        int nbitsfromlow = VL_EDATASIZE - VL_BITBIT_E(lsb);
        QData hi = (lwp[VL_BITWORD_E(msb)]);
        QData lo = VL_BITRSHIFT_W(lwp, lsb);
        return (hi << nbitsfromlow) | lo;
    } else {
        // 64 bit extraction may span three words
        int nbitsfromlow = VL_EDATASIZE - VL_BITBIT_E(lsb);
        QData hi = (lwp[VL_BITWORD_E(msb)]);
        QData mid = (lwp[VL_BITWORD_E(lsb) + 1]);
        QData lo = VL_BITRSHIFT_W(lwp, lsb);
        return (hi << (nbitsfromlow + VL_EDATASIZE)) | (mid << nbitsfromlow) | lo;
    }
}

static inline WDataOutP VL_SEL_WWII(int obits, int lbits, int, int, WDataOutP owp, WDataInP lwp,
                                    IData lsb, IData width) VL_MT_SAFE {
    int msb = lsb + width - 1;
    int word_shift = VL_BITWORD_E(lsb);
    if (VL_UNLIKELY(msb > lbits)) {  // Outside bounds,
        for (int i = 0; i < VL_WORDS_I(obits) - 1; ++i) owp[i] = ~0;
        owp[VL_WORDS_I(obits) - 1] = VL_MASK_E(obits);
    } else if (VL_BITBIT_E(lsb) == 0) {
        // Just a word extract
        for (int i = 0; i < VL_WORDS_I(obits); ++i) owp[i] = lwp[i + word_shift];
    } else {
        // Not a _VL_INSERT because the bits come from any bit number and goto bit 0
        int loffset = lsb & VL_SIZEBITS_E;
        int nbitsfromlow = VL_EDATASIZE - loffset;  // bits that end up in lword (know loffset!=0)
        // Middle words
        int words = VL_WORDS_I(msb - lsb + 1);
        for (int i = 0; i < words; ++i) {
            owp[i] = lwp[i + word_shift] >> loffset;
            int upperword = i + word_shift + 1;
            if (upperword <= static_cast<int>(VL_BITWORD_E(msb))) {
                owp[i] |= lwp[upperword] << nbitsfromlow;
            }
        }
        for (int i = words; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
    }
    return owp;
}

//======================================================================
// Math needing insert/select

/// Return QData from double (numeric)
// EMIT_RULE: VL_RTOIROUND_Q_D:  oclean=dirty; lclean==clean/real
static inline QData VL_RTOIROUND_Q_D(int, double lhs) VL_PURE {
    // IEEE format: [63]=sign [62:52]=exp+1023 [51:0]=mantissa
    // This does not need to support subnormals as they are sub-integral
    lhs = VL_ROUND(lhs);
    if (lhs == 0.0) return 0;
    QData q = VL_CVT_Q_D(lhs);
    int lsb = static_cast<int>((q >> 52ULL) & VL_MASK_Q(11)) - 1023 - 52;
    vluint64_t mantissa = (q & VL_MASK_Q(52)) | (1ULL << 52);
    vluint64_t out = 0;
    if (lsb < 0) {
        out = mantissa >> -lsb;
    } else if (lsb < 64) {
        out = mantissa << lsb;
    }
    if (lhs < 0) out = -out;
    return out;
}
static inline IData VL_RTOIROUND_I_D(int bits, double lhs) VL_PURE {
    return static_cast<IData>(VL_RTOIROUND_Q_D(bits, lhs));
}
static inline WDataOutP VL_RTOIROUND_W_D(int obits, WDataOutP owp, double lhs) VL_PURE {
    // IEEE format: [63]=sign [62:52]=exp+1023 [51:0]=mantissa
    // This does not need to support subnormals as they are sub-integral
    lhs = VL_ROUND(lhs);
    VL_ZERO_W(obits, owp);
    if (lhs == 0.0) return owp;
    QData q = VL_CVT_Q_D(lhs);
    int lsb = static_cast<int>((q >> 52ULL) & VL_MASK_Q(11)) - 1023 - 52;
    vluint64_t mantissa = (q & VL_MASK_Q(52)) | (1ULL << 52);
    if (lsb < 0) {
        VL_SET_WQ(owp, mantissa >> -lsb);
    } else if (lsb < obits) {
        _VL_INSERT_WQ(obits, owp, mantissa, lsb + 52, lsb);
    }
    if (lhs < 0) VL_NEGATE_INPLACE_W(VL_WORDS_I(obits), owp);
    return owp;
}

//======================================================================
// Range assignments

// EMIT_RULE: VL_ASSIGNRANGE:  rclean=dirty;
static inline void VL_ASSIGNSEL_IIII(int obits, int lsb, CData& lhsr, IData rhs) VL_PURE {
    _VL_INSERT_II(obits, lhsr, rhs, lsb + obits - 1, lsb);
}
static inline void VL_ASSIGNSEL_IIII(int obits, int lsb, SData& lhsr, IData rhs) VL_PURE {
    _VL_INSERT_II(obits, lhsr, rhs, lsb + obits - 1, lsb);
}
static inline void VL_ASSIGNSEL_IIII(int obits, int lsb, IData& lhsr, IData rhs) VL_PURE {
    _VL_INSERT_II(obits, lhsr, rhs, lsb + obits - 1, lsb);
}
static inline void VL_ASSIGNSEL_QIII(int obits, int lsb, QData& lhsr, IData rhs) VL_PURE {
    _VL_INSERT_QQ(obits, lhsr, rhs, lsb + obits - 1, lsb);
}
static inline void VL_ASSIGNSEL_QQII(int obits, int lsb, QData& lhsr, QData rhs) VL_PURE {
    _VL_INSERT_QQ(obits, lhsr, rhs, lsb + obits - 1, lsb);
}
static inline void VL_ASSIGNSEL_QIIQ(int obits, int lsb, QData& lhsr, QData rhs) VL_PURE {
    _VL_INSERT_QQ(obits, lhsr, rhs, lsb + obits - 1, lsb);
}
// static inline void VL_ASSIGNSEL_IIIW(int obits, int lsb, IData& lhsr, WDataInP rwp) VL_MT_SAFE {
// Illegal, as lhs width >= rhs width
static inline void VL_ASSIGNSEL_WIII(int obits, int lsb, WDataOutP owp, IData rhs) VL_MT_SAFE {
    _VL_INSERT_WI(obits, owp, rhs, lsb + obits - 1, lsb);
}
static inline void VL_ASSIGNSEL_WIIQ(int obits, int lsb, WDataOutP owp, QData rhs) VL_MT_SAFE {
    _VL_INSERT_WQ(obits, owp, rhs, lsb + obits - 1, lsb);
}
static inline void VL_ASSIGNSEL_WIIW(int obits, int lsb, WDataOutP owp, WDataInP rwp) VL_MT_SAFE {
    _VL_INSERT_WW(obits, owp, rwp, lsb + obits - 1, lsb);
}

//======================================================================
// Triops

static inline WDataOutP VL_COND_WIWW(int obits, int, int, int, WDataOutP owp, int cond,
                                     WDataInP w1p, WDataInP w2p) VL_MT_SAFE {
    int words = VL_WORDS_I(obits);
    for (int i = 0; i < words; ++i) owp[i] = cond ? w1p[i] : w2p[i];
    return owp;
}

//======================================================================
// Constification

// VL_CONST_W_#X(int obits, WDataOutP owp, IData data0, .... IData data(#-1))
// Sets wide vector words to specified constant words.
// These macros are used when o might represent more words then are given as constants,
// hence all upper words must be zeroed.
// If changing the number of functions here, also change EMITCINLINES_NUM_CONSTW

#define _END(obits, wordsSet) \
    for (int i = (wordsSet); i < VL_WORDS_I(obits); ++i) o[i] = 0; \
    return o

// clang-format off
static inline WDataOutP VL_CONST_W_1X(int obits, WDataOutP o, EData d0) VL_MT_SAFE {
    o[0] = d0;
    _END(obits, 1);
}
static inline WDataOutP VL_CONST_W_2X(int obits, WDataOutP o, EData d1, EData d0) VL_MT_SAFE {
    o[0] = d0;  o[1] = d1;
    _END(obits, 2);
}
static inline WDataOutP VL_CONST_W_3X(int obits, WDataOutP o, EData d2, EData d1,
                                      EData d0) VL_MT_SAFE {
    o[0] = d0;  o[1] = d1;  o[2] = d2;
    _END(obits,3);
}
static inline WDataOutP VL_CONST_W_4X(int obits, WDataOutP o,
                                      EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
    o[0] = d0;  o[1] = d1;  o[2] = d2;  o[3] = d3;
    _END(obits,4);
}
static inline WDataOutP VL_CONST_W_5X(int obits, WDataOutP o,
                                      EData d4,
                                      EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
    o[0] = d0;  o[1] = d1;  o[2] = d2;  o[3] = d3;
    o[4] = d4;
    _END(obits,5);
}
static inline WDataOutP VL_CONST_W_6X(int obits, WDataOutP o,
                                      EData d5, EData d4,
                                      EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
    o[0] = d0;  o[1] = d1;  o[2] = d2;  o[3] = d3;
    o[4] = d4;  o[5] = d5;
    _END(obits,6);
}
static inline WDataOutP VL_CONST_W_7X(int obits, WDataOutP o,
                                      EData d6, EData d5, EData d4,
                                      EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
    o[0] = d0;  o[1] = d1;  o[2] = d2;  o[3] = d3;
    o[4] = d4;  o[5] = d5;  o[6] = d6;
    _END(obits,7);
}
static inline WDataOutP VL_CONST_W_8X(int obits, WDataOutP o,
                                      EData d7, EData d6, EData d5, EData d4,
                                      EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
    o[0] = d0;  o[1] = d1;  o[2] = d2;  o[3] = d3;
    o[4] = d4;  o[5] = d5;  o[6] = d6;  o[7] = d7;
    _END(obits,8);
}
//
static inline WDataOutP VL_CONSTHI_W_1X(int obits, int lsb, WDataOutP obase,
                                        EData d0) VL_MT_SAFE {
    WDataOutP o = obase + VL_WORDS_I(lsb);
    o[0] = d0;
    _END(obits, VL_WORDS_I(lsb) + 1);
}
static inline WDataOutP VL_CONSTHI_W_2X(int obits, int lsb, WDataOutP obase,
                                        EData d1, EData d0) VL_MT_SAFE {
    WDataOutP o = obase + VL_WORDS_I(lsb);
    o[0] = d0;  o[1] = d1;
    _END(obits, VL_WORDS_I(lsb) + 2);
}
static inline WDataOutP VL_CONSTHI_W_3X(int obits, int lsb, WDataOutP obase,
                                        EData d2, EData d1, EData d0) VL_MT_SAFE {
    WDataOutP o = obase + VL_WORDS_I(lsb);
    o[0] = d0;  o[1] = d1;  o[2] = d2;
    _END(obits, VL_WORDS_I(lsb) + 3);
}
static inline WDataOutP VL_CONSTHI_W_4X(int obits, int lsb, WDataOutP obase,
                                        EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
    WDataOutP o = obase + VL_WORDS_I(lsb);
    o[0] = d0;  o[1] = d1;  o[2] = d2;  o[3] = d3;
    _END(obits, VL_WORDS_I(lsb) + 4);
}
static inline WDataOutP VL_CONSTHI_W_5X(int obits, int lsb, WDataOutP obase,
                                        EData d4,
                                        EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
    WDataOutP o = obase + VL_WORDS_I(lsb);
    o[0] = d0;  o[1] = d1;  o[2] = d2;  o[3] = d3;
    o[4] = d4;
    _END(obits, VL_WORDS_I(lsb) + 5);
}
static inline WDataOutP VL_CONSTHI_W_6X(int obits, int lsb, WDataOutP obase,
                                        EData d5, EData d4,
                                        EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
    WDataOutP o = obase + VL_WORDS_I(lsb);
    o[0] = d0;  o[1] = d1;  o[2] = d2;  o[3] = d3;
    o[4] = d4;  o[5] = d5;
    _END(obits, VL_WORDS_I(lsb) + 6);
}
static inline WDataOutP VL_CONSTHI_W_7X(int obits, int lsb, WDataOutP obase,
                                        EData d6, EData d5, EData d4,
                                        EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
    WDataOutP o = obase + VL_WORDS_I(lsb);
    o[0] = d0;  o[1] = d1;  o[2] = d2;  o[3] = d3;
    o[4] = d4;  o[5] = d5;  o[6] = d6;
    _END(obits, VL_WORDS_I(lsb) + 7);
}
static inline WDataOutP VL_CONSTHI_W_8X(int obits, int lsb, WDataOutP obase,
                                        EData d7, EData d6, EData d5, EData d4,
                                        EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
    WDataOutP o = obase + VL_WORDS_I(lsb);
    o[0] = d0;  o[1] = d1;  o[2] = d2;  o[3] = d3;
    o[4] = d4;  o[5] = d5;  o[6] = d6;  o[7] = d7;
    _END(obits, VL_WORDS_I(lsb) + 8);
}

#undef _END

// Partial constant, lower words of vector wider than 8*32, starting at bit number lsb
static inline void VL_CONSTLO_W_8X(int lsb, WDataOutP obase,
                                   EData d7, EData d6, EData d5, EData d4,
                                   EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
    WDataOutP o = obase + VL_WORDS_I(lsb);
    o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3; o[4] = d4; o[5] = d5; o[6] = d6; o[7] = d7;
}
// clang-format on

//======================================================================

#endif  // Guard