// -*- mode: C++; c-file-style: "cc-mode" -*- //************************************************************************* // // Copyright 2010-2011 by Wilson Snyder. This program is free software; you can // redistribute it and/or modify it under the terms of either the GNU // Lesser General Public License Version 3 or the Perl Artistic License // Version 2.0. // SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0 // //************************************************************************* #ifdef IS_VPI #include "sv_vpi_user.h" #else #include "verilated.h" #include "verilated_vcd_c.h" #include "verilated_vpi.h" #ifdef T_VPI_VAR2 #include "Vt_vpi_var2.h" #include "Vt_vpi_var2__Dpi.h" #elif defined(T_VPI_VAR3) #include "Vt_vpi_var3.h" #include "Vt_vpi_var3__Dpi.h" #else #include "Vt_vpi_var.h" #include "Vt_vpi_var__Dpi.h" #endif #include "svdpi.h" #endif #include #include #include #include #include // These require the above. Comment prevents clang-format moving them #include "TestCheck.h" #include "TestSimulator.h" #include "TestVpi.h" int errors = 0; // __FILE__ is too long #define FILENM "t_vpi_var.cpp" #define TEST_MSG \ if (0) printf unsigned int main_time = 0; unsigned int callback_count = 0; unsigned int callback_count_half = 0; unsigned int callback_count_quad = 0; unsigned int callback_count_strs = 0; unsigned int callback_count_strs_max = 500; //====================================================================== #define CHECK_RESULT_VH(got, exp) \ if ((got) != (exp)) { \ printf("%%Error: %s:%d: GOT = %p EXP = %p\n", FILENM, __LINE__, (got), (exp)); \ return __LINE__; \ } #define CHECK_RESULT_NZ(got) \ if (!(got)) { \ printf("%%Error: %s:%d: GOT = NULL EXP = !NULL\n", FILENM, __LINE__); \ return __LINE__; \ } #define CHECK_RESULT_Z(got) \ if ((got)) { \ printf("%%Error: %s:%d: GOT = !NULL EXP = NULL\n", FILENM, __LINE__); \ return __LINE__; \ } // Use cout to avoid issues with %d/%lx etc #define CHECK_RESULT(got, exp) \ if ((got) != (exp)) { \ std::cout << std::dec << "%Error: " << FILENM << ":" << __LINE__ << ": GOT = " << (got) \ << " EXP = " << (exp) << std::endl; \ return __LINE__; \ } #define CHECK_RESULT_HEX(got, exp) \ if ((got) != (exp)) { \ std::cout << std::dec << "%Error: " << FILENM << ":" << __LINE__ << std::hex \ << ": GOT = " << (got) << " EXP = " << (exp) << std::endl; \ return __LINE__; \ } #define CHECK_RESULT_CSTR(got, exp) \ if (std::strcmp((got), (exp))) { \ printf("%%Error: %s:%d: GOT = '%s' EXP = '%s'\n", FILENM, __LINE__, \ ((got) != NULL) ? (got) : "", ((exp) != NULL) ? (exp) : ""); \ return __LINE__; \ } #define CHECK_RESULT_CSTR_STRIP(got, exp) CHECK_RESULT_CSTR(got + strspn(got, " "), exp) // We cannot replace those with VL_STRINGIFY, not available when PLI is build #define STRINGIFY(x) STRINGIFY2(x) #define STRINGIFY2(x) #x int _mon_check_mcd() { PLI_INT32 status; PLI_UINT32 mcd; PLI_BYTE8* filename = (PLI_BYTE8*)(STRINGIFY(TEST_OBJ_DIR) "/mcd_open.tmp"); mcd = vpi_mcd_open(filename); CHECK_RESULT_NZ(mcd); { // Check it got written FILE* fp = fopen(filename, "r"); CHECK_RESULT_NZ(fp); fclose(fp); } status = vpi_mcd_printf(mcd, (PLI_BYTE8*)"hello %s", "vpi_mcd_printf"); CHECK_RESULT(status, std::strlen("hello vpi_mcd_printf")); status = vpi_mcd_printf(0, (PLI_BYTE8*)"empty"); CHECK_RESULT(status, 0); status = vpi_mcd_flush(mcd); CHECK_RESULT(status, 0); status = vpi_mcd_flush(0); CHECK_RESULT(status, 1); status = vpi_mcd_close(mcd); // Icarus says 'error' on ones we're not using, so check only used ones return 0. CHECK_RESULT(status & mcd, 0); status = vpi_flush(); CHECK_RESULT(status, 0); return 0; } int _mon_check_callbacks_error(p_cb_data cb_data) { vpi_printf((PLI_BYTE8*)"%%Error: callback should not be executed\n"); return 1; } int _mon_check_callbacks() { t_cb_data cb_data; cb_data.reason = cbEndOfSimulation; cb_data.cb_rtn = _mon_check_callbacks_error; cb_data.user_data = 0; cb_data.value = NULL; cb_data.time = NULL; TestVpiHandle vh = vpi_register_cb(&cb_data); CHECK_RESULT_NZ(vh); PLI_INT32 status = vpi_remove_cb(vh); vh.freed(); CHECK_RESULT_NZ(status); return 0; } int _value_callback(p_cb_data cb_data) { if (verbose) vpi_printf(const_cast(" _value_callback:\n")); if (TestSimulator::is_verilator()) { // this check only makes sense in Verilator CHECK_RESULT(cb_data->value->value.integer + 10, main_time); } callback_count++; return 0; } int _value_callback_half(p_cb_data cb_data) { if (TestSimulator::is_verilator()) { // this check only makes sense in Verilator CHECK_RESULT(cb_data->value->value.integer * 2 + 10, main_time); } callback_count_half++; return 0; } int _value_callback_quad(p_cb_data cb_data) { for (int index = 0; index < 2; index++) { CHECK_RESULT_HEX(cb_data->value->value.vector[1].aval, (unsigned long)((index == 2) ? 0x1c77bb9bUL : 0x12819213UL)); CHECK_RESULT_HEX(cb_data->value->value.vector[0].aval, (unsigned long)((index == 2) ? 0x3784ea09UL : 0xabd31a1cUL)); } callback_count_quad++; return 0; } int _mon_check_value_callbacks() { s_vpi_value v; v.format = vpiIntVal; t_cb_data cb_data; cb_data.reason = cbValueChange; cb_data.time = NULL; { TestVpiHandle vh1 = VPI_HANDLE("count"); CHECK_RESULT_NZ(vh1); vpi_get_value(vh1, &v); cb_data.value = &v; cb_data.obj = vh1; cb_data.cb_rtn = _value_callback; if (verbose) vpi_printf(const_cast(" vpi_register_cb(_value_callback):\n")); TestVpiHandle callback_h = vpi_register_cb(&cb_data); CHECK_RESULT_NZ(callback_h); } { TestVpiHandle vh1 = VPI_HANDLE("half_count"); CHECK_RESULT_NZ(vh1); cb_data.obj = vh1; cb_data.cb_rtn = _value_callback_half; TestVpiHandle callback_h = vpi_register_cb(&cb_data); CHECK_RESULT_NZ(callback_h); } { TestVpiHandle vh1 = VPI_HANDLE("quads"); CHECK_RESULT_NZ(vh1); v.format = vpiVectorVal; cb_data.obj = vh1; cb_data.cb_rtn = _value_callback_quad; TestVpiHandle callback_h = vpi_register_cb(&cb_data); CHECK_RESULT_NZ(callback_h); } { TestVpiHandle vh1 = VPI_HANDLE("quads"); CHECK_RESULT_NZ(vh1); TestVpiHandle vh2 = vpi_handle_by_index(vh1, 2); CHECK_RESULT_NZ(vh2); cb_data.obj = vh2; cb_data.cb_rtn = _value_callback_quad; TestVpiHandle callback_h = vpi_register_cb(&cb_data); CHECK_RESULT_NZ(callback_h); } return 0; } int _mon_check_var() { TestVpiHandle vh1 = VPI_HANDLE("onebit"); CHECK_RESULT_NZ(vh1); TestVpiHandle vh2 = vpi_handle_by_name((PLI_BYTE8*)TestSimulator::top(), NULL); CHECK_RESULT_NZ(vh2); // scope attributes const char* p; p = vpi_get_str(vpiName, vh2); CHECK_RESULT_CSTR(p, "t"); p = vpi_get_str(vpiFullName, vh2); CHECK_RESULT_CSTR(p, TestSimulator::top()); p = vpi_get_str(vpiType, vh2); CHECK_RESULT_CSTR(p, "vpiModule"); TestVpiHandle vh3 = vpi_handle_by_name((PLI_BYTE8*)"onebit", vh2); CHECK_RESULT_NZ(vh3); #ifdef T_VPI_VAR2 // test scoped attributes TestVpiHandle vh_invisible1 = vpi_handle_by_name((PLI_BYTE8*)"invisible1", vh2); CHECK_RESULT_Z(vh_invisible1); TestVpiHandle vh_invisible2 = vpi_handle_by_name((PLI_BYTE8*)"invisible2", vh2); CHECK_RESULT_Z(vh_invisible2); TestVpiHandle vh_visibleParam1 = vpi_handle_by_name((PLI_BYTE8*)"visibleParam1", vh2); CHECK_RESULT_NZ(vh_visibleParam1); TestVpiHandle vh_invisibleParam1 = vpi_handle_by_name((PLI_BYTE8*)"invisibleParam1", vh2); CHECK_RESULT_Z(vh_invisibleParam1); TestVpiHandle vh_visibleParam2 = vpi_handle_by_name((PLI_BYTE8*)"visibleParam2", vh2); CHECK_RESULT_NZ(vh_visibleParam2); #endif // onebit attributes PLI_INT32 d; d = vpi_get(vpiType, vh3); CHECK_RESULT(d, vpiReg); if (TestSimulator::has_get_scalar()) { d = vpi_get(vpiVector, vh3); CHECK_RESULT(d, 0); } p = vpi_get_str(vpiName, vh3); CHECK_RESULT_CSTR(p, "onebit"); p = vpi_get_str(vpiFullName, vh3); CHECK_RESULT_CSTR(p, TestSimulator::rooted("onebit")); p = vpi_get_str(vpiType, vh3); CHECK_RESULT_CSTR(p, "vpiReg"); // array attributes TestVpiHandle vh4 = VPI_HANDLE("fourthreetwoone"); CHECK_RESULT_NZ(vh4); if (TestSimulator::has_get_scalar()) { d = vpi_get(vpiVector, vh4); CHECK_RESULT(d, 1); p = vpi_get_str(vpiType, vh4); CHECK_RESULT_CSTR(p, "vpiMemory"); } t_vpi_value tmpValue; tmpValue.format = vpiIntVal; { TestVpiHandle vh10 = vpi_handle(vpiLeftRange, vh4); CHECK_RESULT_NZ(vh10); vpi_get_value(vh10, &tmpValue); CHECK_RESULT(tmpValue.value.integer, 4); CHECK_RESULT(vpi_get(vpiType, vh10), vpiConstant); p = vpi_get_str(vpiType, vh10); CHECK_RESULT_CSTR(p, "vpiConstant"); } { TestVpiHandle vh10 = vpi_handle(vpiRightRange, vh4); CHECK_RESULT_NZ(vh10); vpi_get_value(vh10, &tmpValue); CHECK_RESULT(tmpValue.value.integer, 3); p = vpi_get_str(vpiType, vh10); CHECK_RESULT_CSTR(p, "vpiConstant"); } { TestVpiHandle vh10 = vpi_iterate(vpiMemoryWord, vh4); CHECK_RESULT_NZ(vh10); p = vpi_get_str(vpiType, vh10); CHECK_RESULT_CSTR(p, "vpiIterator"); TestVpiHandle vh11 = vpi_scan(vh10); CHECK_RESULT_NZ(vh11); p = vpi_get_str(vpiType, vh11); CHECK_RESULT_CSTR(p, "vpiMemoryWord"); TestVpiHandle vh12 = vpi_handle(vpiLeftRange, vh11); CHECK_RESULT_NZ(vh12); vpi_get_value(vh12, &tmpValue); CHECK_RESULT(tmpValue.value.integer, 2); p = vpi_get_str(vpiType, vh12); CHECK_RESULT_CSTR(p, "vpiConstant"); TestVpiHandle vh13 = vpi_handle(vpiRightRange, vh11); CHECK_RESULT_NZ(vh13); vpi_get_value(vh13, &tmpValue); CHECK_RESULT(tmpValue.value.integer, 1); p = vpi_get_str(vpiType, vh13); CHECK_RESULT_CSTR(p, "vpiConstant"); } TestVpiHandle vh5 = VPI_HANDLE("quads"); CHECK_RESULT_NZ(vh5); { TestVpiHandle vh10 = vpi_handle(vpiLeftRange, vh5); CHECK_RESULT_NZ(vh10); vpi_get_value(vh10, &tmpValue); CHECK_RESULT(tmpValue.value.integer, 2); p = vpi_get_str(vpiType, vh10); CHECK_RESULT_CSTR(p, "vpiConstant"); } { TestVpiHandle vh10 = vpi_handle(vpiRightRange, vh5); CHECK_RESULT_NZ(vh10); vpi_get_value(vh10, &tmpValue); CHECK_RESULT(tmpValue.value.integer, 3); p = vpi_get_str(vpiType, vh10); CHECK_RESULT_CSTR(p, "vpiConstant"); } // non-integer variables tmpValue.format = vpiRealVal; { TestVpiHandle vh101 = VPI_HANDLE("real1"); CHECK_RESULT_NZ(vh101); d = vpi_get(vpiType, vh101); CHECK_RESULT(d, vpiRealVar); vpi_get_value(vh101, &tmpValue); TEST_CHECK_REAL_EQ(tmpValue.value.real, 1.0, 0.0005); p = vpi_get_str(vpiType, vh101); CHECK_RESULT_CSTR(p, "vpiRealVar"); } // string variable tmpValue.format = vpiStringVal; { TestVpiHandle vh101 = VPI_HANDLE("str1"); CHECK_RESULT_NZ(vh101); d = vpi_get(vpiType, vh101); CHECK_RESULT(d, vpiStringVar); vpi_get_value(vh101, &tmpValue); CHECK_RESULT_CSTR(tmpValue.value.str, "hello"); p = vpi_get_str(vpiType, vh101); CHECK_RESULT_CSTR(p, "vpiStringVar"); } return errors; } int _mon_check_varlist() { const char* p; TestVpiHandle vh2 = VPI_HANDLE("sub"); CHECK_RESULT_NZ(vh2); p = vpi_get_str(vpiName, vh2); CHECK_RESULT_CSTR(p, "sub"); if (TestSimulator::is_verilator()) { p = vpi_get_str(vpiDefName, vh2); CHECK_RESULT_CSTR(p, ""); // Unsupported } TestVpiHandle vh10 = vpi_iterate(vpiReg, vh2); CHECK_RESULT_NZ(vh10); CHECK_RESULT(vpi_get(vpiType, vh10), vpiIterator); { TestVpiHandle vh11 = vpi_scan(vh10); CHECK_RESULT_NZ(vh11); p = vpi_get_str(vpiFullName, vh11); CHECK_RESULT_CSTR(p, TestSimulator::rooted("sub.subsig1")); } { TestVpiHandle vh12 = vpi_scan(vh10); CHECK_RESULT_NZ(vh12); p = vpi_get_str(vpiFullName, vh12); CHECK_RESULT_CSTR(p, TestSimulator::rooted("sub.subsig2")); } { TestVpiHandle vh13 = vpi_scan(vh10); vh10.freed(); // IEEE 37.2.2 vpi_scan at end does a vpi_release_handle CHECK_RESULT(vh13, 0); } return 0; } void touch_signal() { TestVpiHandle vh1 = VPI_HANDLE("count"); TEST_CHECK_NZ(vh1); s_vpi_value v; v.format = vpiIntVal; s_vpi_time t; t.type = vpiSimTime; t.high = 0; t.low = 0; v.value.integer = 0; vpi_put_value(vh1, &v, &t, vpiNoDelay); } int _mon_check_ports() { #ifdef TEST_VERBOSE printf("-mon_check_ports()\n"); #endif // test writing to input port TestVpiHandle vh1 = VPI_HANDLE("a"); TEST_CHECK_NZ(vh1); PLI_INT32 d; d = vpi_get(vpiType, vh1); if (TestSimulator::is_verilator()) { TEST_CHECK_EQ(d, vpiReg); } else { TEST_CHECK_EQ(d, vpiNet); } const char* portFullName; if (TestSimulator::is_verilator()) { portFullName = "TOP.a"; } else { portFullName = "t.a"; } const char* name = vpi_get_str(vpiFullName, vh1); TEST_CHECK_EQ(strcmp(name, portFullName), 0); std::string handleName1 = name; s_vpi_value v; v.format = vpiIntVal; vpi_get_value(vh1, &v); TEST_CHECK_EQ(v.value.integer, 0); s_vpi_time t; t.type = vpiSimTime; t.high = 0; t.low = 0; v.value.integer = 2; vpi_put_value(vh1, &v, &t, vpiNoDelay); v.value.integer = 100; vpi_get_value(vh1, &v); TEST_CHECK_EQ(v.value.integer, 2); // get handle of toplevel module TestVpiHandle vht = VPI_HANDLE(""); TEST_CHECK_NZ(vht); d = vpi_get(vpiType, vht); TEST_CHECK_EQ(d, vpiModule); TestVpiHandle vhi = vpi_iterate(vpiReg, vht); TEST_CHECK_NZ(vhi); TestVpiHandle vh11; std::string handleName2; while ((vh11 = vpi_scan(vhi))) { const char* fn = vpi_get_str(vpiFullName, vh11); #ifdef TEST_VERBOSE printf(" scanned %s\n", fn); #endif if (0 == strcmp(fn, portFullName)) { handleName2 = fn; break; } } TEST_CHECK_NZ(vh11); // If get zero we never found the variable vhi.release(); TEST_CHECK_EQ(vpi_get(vpiType, vh11), vpiReg); TEST_CHECK_EQ(handleName1, handleName2); return errors; } int _mon_check_getput() { TestVpiHandle vh2 = VPI_HANDLE("onebit"); CHECK_RESULT_NZ(vh2); const char* p = vpi_get_str(vpiFullName, vh2); CHECK_RESULT_CSTR(p, "t.onebit"); s_vpi_value v; v.format = vpiIntVal; vpi_get_value(vh2, &v); CHECK_RESULT(v.value.integer, 0); s_vpi_time t; t.type = vpiSimTime; t.high = 0; t.low = 0; v.value.integer = 0; vpi_put_value(vh2, &v, &t, vpiNoDelay); vpi_get_value(vh2, &v); CHECK_RESULT(v.value.integer, 0); v.value.integer = 1; vpi_put_value(vh2, &v, &t, vpiNoDelay); vpi_get_value(vh2, &v); CHECK_RESULT(v.value.integer, 1); // real TestVpiHandle vh3 = VPI_HANDLE("real1"); CHECK_RESULT_NZ(vh3); v.format = vpiRealVal; vpi_get_value(vh3, &v); TEST_CHECK_REAL_EQ(v.value.real, 1.0, 0.0005); v.value.real = 123456.789; vpi_put_value(vh3, &v, &t, vpiNoDelay); v.value.real = 0.0f; vpi_get_value(vh3, &v); TEST_CHECK_REAL_EQ(v.value.real, 123456.789, 0.0005); // string TestVpiHandle vh4 = VPI_HANDLE("str1"); CHECK_RESULT_NZ(vh4); v.format = vpiStringVal; vpi_get_value(vh4, &v); CHECK_RESULT_CSTR(v.value.str, "hello"); v.value.str = const_cast("something a lot longer than hello"); vpi_put_value(vh4, &v, &t, vpiNoDelay); v.value.str = 0; vpi_get_value(vh4, &v); TEST_CHECK_CSTR(v.value.str, "something a lot longer than hello"); return errors; } int _mon_check_var_long_name() { TestVpiHandle vh2 = VPI_HANDLE( "LONGSTART_a_very_long_name_which_will_get_hashed_a_very_long_name_which_will_get_hashed_" "a_very_long_name_which_will_get_hashed_a_very_long_name_which_will_get_hashed_LONGEND"); CHECK_RESULT_NZ(vh2); const char* p = vpi_get_str(vpiFullName, vh2); CHECK_RESULT_CSTR(p, "t.LONGSTART_a_very_long_name_which_will_get_hashed_a_very_long_name_" "which_will_get_hashed_a_very_long_name_which_will_get_hashed_a_very_" "long_name_which_will_get_hashed_LONGEND"); return 0; } int _mon_check_getput_iter() { TestVpiHandle vh2 = VPI_HANDLE("sub"); CHECK_RESULT_NZ(vh2); TestVpiHandle vh10 = vpi_iterate(vpiReg, vh2); CHECK_RESULT_NZ(vh10); CHECK_RESULT(vpi_get(vpiType, vh10), vpiIterator); TestVpiHandle vh11; while (1) { vh11 = vpi_scan(vh10); CHECK_RESULT_NZ(vh11); // If get zero we never found the variable const char* p = vpi_get_str(vpiFullName, vh11); #ifdef TEST_VERBOSE printf(" scanned %s\n", p); #endif if (0 == strcmp(p, "t.sub.subsig1")) break; } CHECK_RESULT(vpi_get(vpiType, vh11), vpiReg); s_vpi_time t; t.type = vpiSimTime; t.high = 0; t.low = 0; s_vpi_value v; v.format = vpiIntVal; v.value.integer = 0; vpi_put_value(vh11, &v, &t, vpiNoDelay); vpi_get_value(vh11, &v); CHECK_RESULT(v.value.integer, 0); v.value.integer = 1; vpi_put_value(vh11, &v, &t, vpiNoDelay); vpi_get_value(vh11, &v); CHECK_RESULT(v.value.integer, 1); return 0; } int _mon_check_quad() { TestVpiHandle vh2 = VPI_HANDLE("quads"); CHECK_RESULT_NZ(vh2); s_vpi_value v; t_vpi_vecval vv[2]; bzero(&vv, sizeof(vv)); s_vpi_time t; t.type = vpiSimTime; t.high = 0; t.low = 0; TestVpiHandle vhidx2 = vpi_handle_by_index(vh2, 2); CHECK_RESULT_NZ(vhidx2); TestVpiHandle vhidx3 = vpi_handle_by_index(vh2, 3); CHECK_RESULT_NZ(vhidx3); // Memory words should not be indexable TestVpiHandle vhidx3idx0 = vpi_handle_by_index(vhidx3, 0); CHECK_RESULT(vhidx3idx0, 0); TestVpiHandle vhidx2idx2 = vpi_handle_by_index(vhidx2, 2); CHECK_RESULT(vhidx2idx2, 0); TestVpiHandle vhidx3idx3 = vpi_handle_by_index(vhidx3, 3); CHECK_RESULT(vhidx3idx3, 0); TestVpiHandle vhidx2idx61 = vpi_handle_by_index(vhidx2, 61); CHECK_RESULT(vhidx2idx61, 0); v.format = vpiVectorVal; v.value.vector = vv; v.value.vector[1].aval = 0x12819213UL; v.value.vector[0].aval = 0xabd31a1cUL; vpi_put_value(vhidx2, &v, &t, vpiNoDelay); v.format = vpiVectorVal; v.value.vector = vv; v.value.vector[1].aval = 0x1c77bb9bUL; v.value.vector[0].aval = 0x3784ea09UL; vpi_put_value(vhidx3, &v, &t, vpiNoDelay); vpi_get_value(vhidx2, &v); CHECK_RESULT(v.value.vector[1].aval, 0x12819213UL); CHECK_RESULT(v.value.vector[1].bval, 0); vpi_get_value(vhidx3, &v); CHECK_RESULT(v.value.vector[1].aval, 0x1c77bb9bUL); CHECK_RESULT(v.value.vector[1].bval, 0); return 0; } int _mon_check_delayed() { TestVpiHandle vh = VPI_HANDLE("delayed"); CHECK_RESULT_NZ(vh); s_vpi_time t; t.type = vpiSimTime; t.high = 0; t.low = 0; s_vpi_value v; v.format = vpiIntVal; v.value.integer = 123; vpi_put_value(vh, &v, &t, vpiInertialDelay); CHECK_RESULT_Z(vpi_chk_error(nullptr)); vpi_get_value(vh, &v); CHECK_RESULT(v.value.integer, 0); TestVpiHandle vhMem = VPI_HANDLE("delayed_mem"); CHECK_RESULT_NZ(vhMem); TestVpiHandle vhMemWord = vpi_handle_by_index(vhMem, 7); CHECK_RESULT_NZ(vhMemWord); v.value.integer = 456; vpi_put_value(vhMemWord, &v, &t, vpiInertialDelay); CHECK_RESULT_Z(vpi_chk_error(nullptr)); // test unsupported vpiInertialDelay cases v.format = vpiStringVal; v.value.str = nullptr; vpi_put_value(vh, &v, &t, vpiInertialDelay); CHECK_RESULT_NZ(vpi_chk_error(nullptr)); v.format = vpiVectorVal; v.value.vector = nullptr; vpi_put_value(vh, &v, &t, vpiInertialDelay); CHECK_RESULT_NZ(vpi_chk_error(nullptr)); v.format = vpiObjTypeVal; vpi_put_value(vh, &v, &t, vpiInertialDelay); CHECK_RESULT_NZ(vpi_chk_error(nullptr)); return 0; } int _mon_check_string() { static struct { const char* name; const char* initial; const char* value; } text_test_obs[] = { {"text_byte", "B", "xxA"}, // x's dropped {"text_half", "Hf", "xxT2"}, // x's dropped {"text_word", "Word", "Tree"}, {"text_long", "Long64b", "44Four44"}, {"text", "Verilog Test module", "lorem ipsum"}, }; for (int i = 0; i < 5; i++) { TestVpiHandle vh1 = VPI_HANDLE(text_test_obs[i].name); CHECK_RESULT_NZ(vh1); s_vpi_value v; s_vpi_time t = {vpiSimTime, 0, 0, 0.0}; s_vpi_error_info e; v.format = vpiStringVal; vpi_get_value(vh1, &v); if (vpi_chk_error(&e)) printf("%%vpi_chk_error : %s\n", e.message); (void)vpi_chk_error(NULL); CHECK_RESULT_CSTR_STRIP(v.value.str, text_test_obs[i].initial); v.value.str = (PLI_BYTE8*)text_test_obs[i].value; vpi_put_value(vh1, &v, &t, vpiNoDelay); } return 0; } int _mon_check_putget_str(p_cb_data cb_data) { static TestVpiHandle cb; static struct { TestVpiHandle scope, sig, rfr, check, verbose; std::string str; int type; // value type in .str union { PLI_INT32 integer; s_vpi_vecval vector[4]; } value; // reference } data[129]; if (cb_data) { if (verbose) vpi_printf(const_cast(" _mon_check_putget_str callback:\n")); // this is the callback static unsigned int seed = 1; s_vpi_time t; t.type = vpiSimTime; t.high = 0; t.low = 0; for (int i = 2; i <= 6; i++) { static s_vpi_value v; int words = (i + 31) >> 5; TEST_MSG("========== %d ==========\n", i); if (callback_count_strs) { // check persistence if (data[i].type) { v.format = data[i].type; } else { static PLI_INT32 vals[] = {vpiBinStrVal, vpiOctStrVal, vpiHexStrVal, vpiDecStrVal}; v.format = vals[rand_r(&seed) % ((words > 2) ? 3 : 4)]; TEST_MSG("new format %d\n", v.format); } vpi_get_value(data[i].sig, &v); TEST_MSG("%s\n", v.value.str); if (data[i].type) { CHECK_RESULT_CSTR(v.value.str, data[i].str.c_str()); } else { data[i].type = v.format; data[i].str = std::string{v.value.str}; } } // check for corruption v.format = (words == 1) ? vpiIntVal : vpiVectorVal; vpi_get_value(data[i].sig, &v); if (v.format == vpiIntVal) { TEST_MSG("%08x %08x\n", v.value.integer, data[i].value.integer); CHECK_RESULT(v.value.integer, data[i].value.integer); } else { for (int k = 0; k < words; k++) { TEST_MSG("%d %08x %08x\n", k, v.value.vector[k].aval, data[i].value.vector[k].aval); CHECK_RESULT_HEX(v.value.vector[k].aval, data[i].value.vector[k].aval); } } if (callback_count_strs & 7) { // put same value back - checking encoding/decoding equivalent v.format = data[i].type; v.value.str = (PLI_BYTE8*)(data[i].str.c_str()); // Can't reinterpret_cast vpi_put_value(data[i].sig, &v, &t, vpiNoDelay); v.format = vpiIntVal; v.value.integer = 1; // vpi_put_value(data[i].verbose, &v, &t, vpiNoDelay); vpi_put_value(data[i].check, &v, &t, vpiNoDelay); } else { // stick a new random value in unsigned int mask = ((i & 31) ? (1 << (i & 31)) : 0) - 1; if (words == 1) { v.value.integer = rand_r(&seed); data[i].value.integer = v.value.integer &= mask; v.format = vpiIntVal; TEST_MSG("new value %08x\n", data[i].value.integer); } else { TEST_MSG("new value\n"); for (int j = 0; j < 4; j++) { data[i].value.vector[j].aval = rand_r(&seed); if (j == (words - 1)) data[i].value.vector[j].aval &= mask; TEST_MSG(" %08x\n", data[i].value.vector[j].aval); } v.value.vector = data[i].value.vector; v.format = vpiVectorVal; } vpi_put_value(data[i].sig, &v, &t, vpiNoDelay); vpi_put_value(data[i].rfr, &v, &t, vpiNoDelay); } if ((callback_count_strs & 1) == 0) data[i].type = 0; } if (++callback_count_strs == callback_count_strs_max) { int success = vpi_remove_cb(cb); cb.freed(); CHECK_RESULT_NZ(success); }; } else { // setup and install for (int i = 1; i <= 6; i++) { char buf[32]; snprintf(buf, sizeof(buf), TestSimulator::rooted("arr[%d].arr"), i); CHECK_RESULT_NZ(data[i].scope = vpi_handle_by_name((PLI_BYTE8*)buf, NULL)); CHECK_RESULT_NZ(data[i].sig = vpi_handle_by_name((PLI_BYTE8*)"sig", data[i].scope)); CHECK_RESULT_NZ(data[i].rfr = vpi_handle_by_name((PLI_BYTE8*)"rfr", data[i].scope)); CHECK_RESULT_NZ(data[i].check = vpi_handle_by_name((PLI_BYTE8*)"check", data[i].scope)); CHECK_RESULT_NZ(data[i].verbose = vpi_handle_by_name((PLI_BYTE8*)"verbose", data[i].scope)); } for (int i = 1; i <= 6; i++) { char buf[32]; snprintf(buf, sizeof(buf), TestSimulator::rooted("subs[%d].subsub"), i); CHECK_RESULT_NZ(data[i].scope = vpi_handle_by_name((PLI_BYTE8*)buf, NULL)); } static t_cb_data cb_data; static s_vpi_value v; TestVpiHandle count_h = VPI_HANDLE("count"); cb_data.reason = cbValueChange; cb_data.cb_rtn = _mon_check_putget_str; // this function cb_data.obj = count_h; cb_data.value = &v; cb_data.time = NULL; v.format = vpiIntVal; cb = vpi_register_cb(&cb_data); // It is legal to free the callback handle immediately if not otherwise needed CHECK_RESULT_NZ(cb); } return 0; } int _mon_check_vlog_info() { s_vpi_vlog_info vlog_info; PLI_INT32 rtn = vpi_get_vlog_info(&vlog_info); CHECK_RESULT(rtn, 1); CHECK_RESULT(vlog_info.argc, 4); CHECK_RESULT_CSTR(vlog_info.argv[1], "+PLUS"); CHECK_RESULT_CSTR(vlog_info.argv[2], "+INT=1234"); CHECK_RESULT_CSTR(vlog_info.argv[3], "+STRSTR"); CHECK_RESULT_Z(vlog_info.argv[4]); if (TestSimulator::is_verilator()) { CHECK_RESULT_CSTR(vlog_info.product, "Verilator"); CHECK_RESULT(std::strlen(vlog_info.version) > 0, 1); } return 0; } extern "C" int mon_check() { // Callback from initial block in monitor #ifdef TEST_VERBOSE printf("-mon_check()\n"); #endif if (int status = _mon_check_mcd()) return status; if (int status = _mon_check_callbacks()) return status; if (int status = _mon_check_value_callbacks()) return status; if (int status = _mon_check_var()) return status; if (int status = _mon_check_varlist()) return status; if (int status = _mon_check_var_long_name()) return status; // Ports are not public_flat_rw in t_vpi_var #if defined(T_VPI_VAR2) || defined(T_VPI_VAR3) if (int status = _mon_check_ports()) return status; #endif if (int status = _mon_check_getput()) return status; if (int status = _mon_check_getput_iter()) return status; if (int status = _mon_check_quad()) return status; if (int status = _mon_check_string()) return status; if (int status = _mon_check_putget_str(NULL)) return status; if (int status = _mon_check_vlog_info()) return status; if (int status = _mon_check_delayed()) return status; #ifndef IS_VPI VerilatedVpi::selfTest(); #endif return 0; // Ok } //====================================================================== #ifdef IS_VPI static int mon_check_vpi() { TestVpiHandle href = vpi_handle(vpiSysTfCall, 0); s_vpi_value vpi_value; vpi_value.format = vpiIntVal; vpi_value.value.integer = mon_check(); vpi_put_value(href, &vpi_value, NULL, vpiNoDelay); return 0; } static s_vpi_systf_data vpi_systf_data[] = {{vpiSysFunc, vpiIntFunc, (PLI_BYTE8*)"$mon_check", (PLI_INT32(*)(PLI_BYTE8*))mon_check_vpi, 0, 0, 0}, 0}; // cver entry void vpi_compat_bootstrap(void) { p_vpi_systf_data systf_data_p; systf_data_p = &(vpi_systf_data[0]); while (systf_data_p->type != 0) vpi_register_systf(systf_data_p++); } // icarus entry void (*vlog_startup_routines[])() = {vpi_compat_bootstrap, 0}; #else double sc_time_stamp() { return main_time; } int main(int argc, char** argv) { const std::unique_ptr contextp{new VerilatedContext}; uint64_t sim_time = 1100; contextp->debug(0); contextp->commandArgs(argc, argv); const std::unique_ptr topp{new VM_PREFIX{contextp.get(), // Note null name - we're flattening it out ""}}; #ifdef VERILATOR #ifdef TEST_VERBOSE contextp->scopesDump(); #endif #endif #if VM_TRACE contextp->traceEverOn(true); VL_PRINTF("Enabling waves...\n"); VerilatedVcdC* tfp = new VerilatedVcdC; topp->trace(tfp, 99); tfp->open(STRINGIFY(TEST_OBJ_DIR) "/simx.vcd"); #endif topp->eval(); topp->clk = 0; main_time += 10; while (vl_time_stamp64() < sim_time && !contextp->gotFinish()) { main_time += 1; VerilatedVpi::doInertialPuts(); topp->eval(); VerilatedVpi::callValueCbs(); topp->clk = !topp->clk; // mon_do(); #if VM_TRACE if (tfp) tfp->dump(main_time); #endif } CHECK_RESULT(callback_count, 501); CHECK_RESULT(callback_count_half, 250); CHECK_RESULT(callback_count_quad, 2); CHECK_RESULT(callback_count_strs, callback_count_strs_max); VerilatedVpi::clearEvalNeeded(); if (VerilatedVpi::evalNeeded()) { vl_fatal(FILENM, __LINE__, "main", "%Error: Unexpected VPI dirty state"); } touch_signal(); if (!VerilatedVpi::evalNeeded()) { vl_fatal(FILENM, __LINE__, "main", "%Error: Unexpected VPI clean state"); } if (!contextp->gotFinish()) { vl_fatal(FILENM, __LINE__, "main", "%Error: Timeout; never got a $finish"); } topp->final(); #if VM_TRACE if (tfp) tfp->close(); #endif return 0; } #endif